[mlir][linalg][python] Add min operation in OpDSL.

Add the min operation to OpDSL and introduce a min pooling operation to test the implementation. The patch is a sibling of the max operation patch https://reviews.llvm.org/D105203 and the min operation is again lowered to a compare and select pair.

Differential Revision: https://reviews.llvm.org/D105345
This commit is contained in:
Tobias Gysi 2021-07-02 16:08:22 +00:00
parent 7c5d654f64
commit f239026f89
8 changed files with 280 additions and 27 deletions

View File

@ -664,6 +664,77 @@ structured_op: !LinalgStructuredOpConfig
- !ScalarExpression
scalar_arg: I
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: pooling_nhwc_min_poly
cpp_class_name: PoolingNhwcMinPolyOp
doc: |-
Performs min pooling.
Numeric casting is performed on the input operand, promoting it to the same
data type as the accumulator/output.
structured_op: !LinalgStructuredOpConfig
args:
- !LinalgOperandDefConfig
name: I
usage: InputOperand
type_var: T1
shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11] ->
(s0, s1, s2, s3)>
- !LinalgOperandDefConfig
name: K
usage: InputOperand
type_var: T2
shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11] ->
(s4, s5)>
- !LinalgOperandDefConfig
name: O
usage: OutputOperand
type_var: U
shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11] ->
(s0, s6, s7, s3)>
- !LinalgOperandDefConfig
name: strides
usage: IndexAttribute
type_var: I64
attribute_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11]
-> (s8, s9)>
- !LinalgOperandDefConfig
name: dilations
usage: IndexAttribute
type_var: I64
attribute_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11]
-> (s10, s11)>
indexing_maps: !LinalgIndexingMapsConfig
static_indexing_maps:
- affine_map<(d0, d1, d2, d3, d4, d5)[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9,
s10, s11] -> (d0, d1 * s8 + d3 * s10, d2 * s9 + d4 * s11, d5)>
- affine_map<(d0, d1, d2, d3, d4, d5)[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9,
s10, s11] -> (d3, d4)>
- affine_map<(d0, d1, d2, d3, d4, d5)[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9,
s10, s11] -> (d0, d1, d2, d5)>
iterator_types:
- parallel
- parallel
- parallel
- reduction
- reduction
- parallel
assignments:
- !ScalarAssign
arg: O
value: !ScalarExpression
scalar_apply:
fn_name: min
operands:
- !ScalarExpression
scalar_arg: O
- !ScalarExpression
symbolic_cast:
type_var: U
operands:
- !ScalarExpression
scalar_arg: I
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: fill_rng_2d
cpp_class_name: FillRng2DOp

View File

@ -275,17 +275,18 @@ public:
}
Value applyfn__max(Value lhs, Value rhs) {
OpBuilder builder = getBuilder();
if (isFloatingPoint(lhs)) {
Value condition =
builder.create<CmpFOp>(lhs.getLoc(), CmpFPredicate::OGT, lhs, rhs);
return builder.create<SelectOp>(lhs.getLoc(), condition, lhs, rhs);
}
if (isInteger(lhs)) {
Value condition =
builder.create<CmpIOp>(lhs.getLoc(), CmpIPredicate::sgt, lhs, rhs);
return builder.create<SelectOp>(lhs.getLoc(), condition, lhs, rhs);
}
if (isFloatingPoint(lhs))
return emitCmpFAndSelect(lhs, rhs, CmpFPredicate::OGT);
if (isInteger(lhs))
return emitCmpIAndSelect(lhs, rhs, CmpIPredicate::sgt);
llvm_unreachable("unsupported non numeric type");
}
Value applyfn__min(Value lhs, Value rhs) {
if (isFloatingPoint(lhs))
return emitCmpFAndSelect(lhs, rhs, CmpFPredicate::OLT);
if (isInteger(lhs))
return emitCmpIAndSelect(lhs, rhs, CmpIPredicate::slt);
llvm_unreachable("unsupported non numeric type");
}
@ -322,6 +323,17 @@ private:
MLIRContext *context;
Block &block;
Value emitCmpFAndSelect(Value lhs, Value rhs, CmpFPredicate predicate) {
OpBuilder builder = getBuilder();
Value condition = builder.create<CmpFOp>(lhs.getLoc(), predicate, lhs, rhs);
return builder.create<SelectOp>(lhs.getLoc(), condition, lhs, rhs);
}
Value emitCmpIAndSelect(Value lhs, Value rhs, CmpIPredicate predicate) {
OpBuilder builder = getBuilder();
Value condition = builder.create<CmpIOp>(lhs.getLoc(), predicate, lhs, rhs);
return builder.create<SelectOp>(lhs.getLoc(), condition, lhs, rhs);
}
bool isFloatingPoint(Value value) { return value.getType().isa<FloatType>(); }
bool isInteger(Value value) { return value.getType().isa<IntegerType>(); }

View File

@ -339,6 +339,7 @@ class PrimFn:
log = PrimFnType("log")
mul = PrimFnType("mul")
max = PrimFnType("max")
min = PrimFnType("min")
sub = PrimFnType("sub")
@ -364,6 +365,7 @@ class ReduceFn:
add = PrimFn.add.reduce
mul = PrimFn.mul.reduce
max = PrimFn.max.reduce
min = PrimFn.min.reduce
class PrimApply(TensorExpression):

View File

@ -308,17 +308,23 @@ class _BodyBuilder:
raise NotImplementedError("Unsupported 'mul' operand: {lhs}")
def _eval_max(self, lhs: Value, rhs: Value) -> Value:
i1 = IntegerType.get_signless(1)
if _is_floating_point_type(lhs.type):
ogt_attr = IntegerAttr.get(IntegerType.get_signless(64), 2)
cond = std.CmpFOp(i1, ogt_attr, lhs, rhs).result
return std.SelectOp(lhs.type, cond, lhs, rhs).result
return _emit_cmpf_and_select(lhs, rhs, ogt_attr)
if _is_integer_type(lhs.type) or _is_index_type(lhs.type):
sgt_attr = IntegerAttr.get(IntegerType.get_signless(64), 4)
cond = std.CmpIOp(i1, sgt_attr, lhs, rhs).result
return std.SelectOp(lhs.type, cond, lhs, rhs).result
return _emit_cmpi_and_select(lhs, rhs, sgt_attr)
raise NotImplementedError("Unsupported 'max' operand: {lhs}")
def _eval_min(self, lhs: Value, rhs: Value) -> Value:
if _is_floating_point_type(lhs.type):
olt_attr = IntegerAttr.get(IntegerType.get_signless(64), 4)
return _emit_cmpf_and_select(lhs, rhs, olt_attr)
if _is_integer_type(lhs.type) or _is_index_type(lhs.type):
slt_attr = IntegerAttr.get(IntegerType.get_signless(64), 2)
return _emit_cmpi_and_select(lhs, rhs, slt_attr)
raise NotImplementedError("Unsupported 'min' operand: {lhs}")
def _infer_structured_outs(op_config: LinalgStructuredOpConfig,
in_arg_defs: Sequence[OperandDefConfig],
@ -397,3 +403,13 @@ def _get_floating_point_width(t: Type) -> int:
if BF16Type.isinstance(t):
return 16
raise NotImplementedError(f"Unhandled floating point type switch {t}")
def _emit_cmpf_and_select(lhs: Value, rhs: Value, pred: IntegerAttr) -> Value:
cond = std.CmpFOp(IntegerType.get_signless(1), pred, lhs, rhs).result
return std.SelectOp(lhs.type, cond, lhs, rhs).result
def _emit_cmpi_and_select(lhs: Value, rhs: Value, pred: IntegerAttr) -> Value:
cond = std.CmpIOp(IntegerType.get_signless(1), pred, lhs, rhs).result
return std.SelectOp(lhs.type, cond, lhs, rhs).result

View File

@ -166,6 +166,24 @@ def pooling_nhwc_max_poly(
D.c]))
@linalg_structured_op
def pooling_nhwc_min_poly(
I=TensorDef(T1, S.N, S.H, S.W, S.C),
K=TensorDef(T2, S.KH, S.KW, index_dims=[D.kh, D.kw]),
O=TensorDef(U, S.N, S.OH, S.OW, S.C, output=True),
strides=AttributeDef(S.SH, S.SW),
dilations=AttributeDef(S.DH, S.DW)):
"""Performs min pooling.
Numeric casting is performed on the input operand, promoting it to the same
data type as the accumulator/output.
"""
domain(D.n, D.oh, D.ow, D.kh, D.kw, D.c)
O[D.n, D.oh, D.ow, D.c] = ReduceFn.min(D.kh, D.kw)(
cast(U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW,
D.c]))
@linalg_structured_op
def fill_rng_2d(
min=ScalarDef(F64),

View File

@ -90,6 +90,36 @@ func @generalize_pooling_nhwc_max_poly_i32(%input : tensor<1x4x16x1xi32>, %shape
// -----
func @generalize_pooling_nhwc_min_poly_f32(%input : tensor<1x4x16x1xf32>, %shape: tensor<2x2xf32>, %output: tensor<1x2x4x1xf32>) -> tensor<1x2x4x1xf32> {
%0 = linalg.pooling_nhwc_min_poly {dilations = dense<[1, 2]> : tensor<2xi64>, strides = dense<[2, 4]> : tensor<2xi64>}
ins(%input, %shape : tensor<1x4x16x1xf32>, tensor<2x2xf32>) outs(%output : tensor<1x2x4x1xf32>) -> tensor<1x2x4x1xf32>
return %0: tensor<1x2x4x1xf32>
}
// CHECK-LABEL: @generalize_pooling_nhwc_min_poly_f32
// CHECK: ^{{.*}}(%[[IN_ARG:.+]]: f32, %[[SHAPE_ARG:.+]]: f32, %[[OUT_ARG:.+]]: f32)
// CHECK-NEXT: %[[COND:.+]] = cmpf olt, %[[OUT_ARG]], %[[IN_ARG]] : f32
// CHECK-NEXT: %[[MAX:.+]] = select %[[COND]], %[[OUT_ARG]], %[[IN_ARG]] : f32
// CHECK-NEXT: linalg.yield %[[MAX]] : f32
// CHECK-NEXT: -> tensor<1x2x4x1xf32>
// -----
func @generalize_pooling_nhwc_min_poly_i32(%input : tensor<1x4x16x1xi32>, %shape: tensor<2x2xi32>, %output: tensor<1x2x4x1xi32>) -> tensor<1x2x4x1xi32> {
%0 = linalg.pooling_nhwc_min_poly {dilations = dense<[1, 2]> : tensor<2xi64>, strides = dense<[2, 4]> : tensor<2xi64>}
ins(%input, %shape : tensor<1x4x16x1xi32>, tensor<2x2xi32>) outs(%output : tensor<1x2x4x1xi32>) -> tensor<1x2x4x1xi32>
return %0: tensor<1x2x4x1xi32>
}
// CHECK-LABEL: @generalize_pooling_nhwc_min_poly_i32
// CHECK: ^{{.*}}(%[[IN_ARG:.+]]: i32, %[[SHAPE_ARG:.+]]: i32, %[[OUT_ARG:.+]]: i32)
// CHECK-NEXT: %[[COND:.+]] = cmpi slt, %[[OUT_ARG]], %[[IN_ARG]] : i32
// CHECK-NEXT: %[[MAX:.+]] = select %[[COND]], %[[OUT_ARG]], %[[IN_ARG]] : i32
// CHECK-NEXT: linalg.yield %[[MAX]] : i32
// CHECK-NEXT: -> tensor<1x2x4x1xi32>
// -----
func @generalize_pooling_nhwc_sum_poly_f32(%input : tensor<1x4x16x1xf32>, %shape: tensor<2x2xf32>, %output: tensor<1x2x4x1xf32>) -> tensor<1x2x4x1xf32> {
%0 = linalg.pooling_nhwc_sum_poly {dilations = dense<[1, 2]> : tensor<2xi64>, strides = dense<[2, 4]> : tensor<2xi64>}
ins(%input, %shape : tensor<1x4x16x1xf32>, tensor<2x2xf32>) outs(%output : tensor<1x2x4x1xf32>) -> tensor<1x2x4x1xf32>

View File

@ -43,7 +43,7 @@ def conv_poly(
@linalg_structured_op
def pooling_poly(
def pooling_max_poly(
I=TensorDef(T1, S.N, S.H, S.W, S.C),
K=TensorDef(T2, S.KH, S.KW, index_dims=[D.kh, D.kw]),
O=TensorDef(U, S.N, S.OH, S.OW, S.C, output=True),
@ -55,6 +55,19 @@ def pooling_poly(
D.c]))
@linalg_structured_op
def pooling_min_poly(
I=TensorDef(T1, S.N, S.H, S.W, S.C),
K=TensorDef(T2, S.KH, S.KW, index_dims=[D.kh, D.kw]),
O=TensorDef(U, S.N, S.OH, S.OW, S.C, output=True),
strides=AttributeDef(S.SH, S.SW),
dilations=AttributeDef(S.DH, S.DW)):
domain(D.n, D.oh, D.ow, D.kh, D.kw, D.c)
O[D.n, D.oh, D.ow, D.c] = ReduceFn.min(D.kh, D.kw)(
cast(U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW,
D.c]))
@linalg_structured_op
def fill_rng_poly(
min=ScalarDef(F64),
@ -216,7 +229,7 @@ with Context() as ctx, Location.unknown():
return conv_poly(
input, filter, outs=[init_result], strides=[2, 4], dilations=[1, 2])
# CHECK-LABEL: @test_f32i32_pooling
# CHECK-LABEL: @test_f32i32_max_pooling
# CHECK: linalg.generic
# CHECK-SAME: indexing_maps = [#[[$CONV_MAP_I]], #[[$POOL_MAP_K]], #[[$CONV_MAP_O]]]
# CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "reduction", "reduction", "parallel"]
@ -229,11 +242,11 @@ with Context() as ctx, Location.unknown():
@builtin.FuncOp.from_py_func(
RankedTensorType.get((4, 16), f32), RankedTensorType.get((2, 2), f32),
RankedTensorType.get((2, 4), i32))
def test_f32i32_pooling(input, shape, init_result):
return pooling_poly(
def test_f32i32_max_pooling(input, shape, init_result):
return pooling_max_poly(
input, shape, outs=[init_result], strides=[2, 4], dilations=[1, 2])
# CHECK-LABEL: @test_f32f32_pooling
# CHECK-LABEL: @test_f32f32_max_pooling
# CHECK: linalg.generic
# CHECK-SAME: indexing_maps = [#[[$CONV_MAP_I]], #[[$POOL_MAP_K]], #[[$CONV_MAP_O]]]
# CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "reduction", "reduction", "parallel"]
@ -245,8 +258,26 @@ with Context() as ctx, Location.unknown():
@builtin.FuncOp.from_py_func(
RankedTensorType.get((4, 16), f32), RankedTensorType.get((2, 2), f32),
RankedTensorType.get((2, 4), f32))
def test_f32f32_pooling(input, shape, init_result):
return pooling_poly(
def test_f32f32_max_pooling(input, shape, init_result):
return pooling_max_poly(
input, shape, outs=[init_result], strides=[2, 4], dilations=[1, 2])
# CHECK-LABEL: @test_f32i32_min_pooling
# CHECK: = cmpi slt,
@builtin.FuncOp.from_py_func(
RankedTensorType.get((4, 16), f32), RankedTensorType.get((2, 2), f32),
RankedTensorType.get((2, 4), i32))
def test_f32i32_min_pooling(input, shape, init_result):
return pooling_min_poly(
input, shape, outs=[init_result], strides=[2, 4], dilations=[1, 2])
# CHECK-LABEL: @test_f32f32_min_pooling
# CHECK: = cmpf olt,
@builtin.FuncOp.from_py_func(
RankedTensorType.get((4, 16), f32), RankedTensorType.get((2, 2), f32),
RankedTensorType.get((2, 4), f32))
def test_f32f32_min_pooling(input, shape, init_result):
return pooling_min_poly(
input, shape, outs=[init_result], strides=[2, 4], dilations=[1, 2])
# CHECK-LABEL: @test_i32_fill_rng

View File

@ -86,6 +86,8 @@ pooling_boiler = """
func @main() -> i32 attributes {llvm.emit_c_interface} {
%v0 = constant 0 : i32
%v42 = constant 42.0 : f64
%v77 = constant 77.0 : f64
%v-13 = constant -13.0 : f64
%v1 = constant 1.0 : f64
%input = memref.alloc() : memref<1x4x16x1xf64>
@ -96,7 +98,11 @@ func @main() -> i32 attributes {llvm.emit_c_interface} {
linalg.fill(%v0, %output) : i32, memref<1x2x4x1xi32>
%c0 = constant 0 : index
%c1 = constant 1 : index
%c2 = constant 2 : index
memref.store %v42, %input[%c0, %c0, %c0, %c0] : memref<1x4x16x1xf64>
memref.store %v77, %input[%c0, %c0, %c1, %c0] : memref<1x4x16x1xf64>
memref.store %v-13, %input[%c0, %c0, %c2, %c0] : memref<1x4x16x1xf64>
call @pooling_on_buffers(%input, %shape, %output) :
(memref<1x4x16x1xf64>, memref<2x2xf64>, memref<1x2x4x1xi32>) -> ()
@ -301,7 +307,7 @@ def test_conv_generic():
test_conv_generic()
def test_pooling_builtin():
def test_max_pooling_builtin():
with Context() as ctx, Location.unknown():
module = Module.create()
f64 = F64Type.get()
@ -325,13 +331,14 @@ def test_pooling_builtin():
execution_engine.invoke("main", res)
log("RESULT: ", res[0])
# 77 is not selected due to the dilation 2 in the second dimension.
# CHECK: RESULT: 42
test_pooling_builtin()
test_max_pooling_builtin()
def test_pooling_generic():
def test_max_pooling_generic():
with Context() as ctx, Location.unknown():
module = Module.create()
f64 = F64Type.get()
@ -360,7 +367,73 @@ def test_pooling_generic():
execution_engine.invoke("main", res)
log("RESULT: ", res[0])
# 77 is not selected due to the dilation 2 in the second dimension.
# CHECK: RESULT: 42
test_pooling_generic()
test_max_pooling_generic()
def test_min_pooling_builtin():
with Context() as ctx, Location.unknown():
module = Module.create()
f64 = F64Type.get()
i32 = IntegerType.get_signless(32)
with InsertionPoint(module.body):
@builtin.FuncOp.from_py_func(
MemRefType.get((1, 4, 16, 1), f64), MemRefType.get((2, 2), f64),
MemRefType.get((1, 2, 4, 1), i32))
def pooling_on_buffers(input, shape, output):
linalg.pooling_nhwc_min_poly(
input, shape, outs=[output], strides=[2, 4], dilations=[1, 2])
execution_engine = ExecutionEngine(transform(module, pooling_boiler))
# TODO: FFI-based solution to allow testing and printing with python code.
# Prepare arguments: one result i32.
# Arguments must be passed as pointers.
c_int_p = ctypes.c_int * 1
res = c_int_p(-1)
execution_engine.invoke("main", res)
log("RESULT: ", res[0])
# CHECK: RESULT: -13
test_min_pooling_builtin()
def test_min_pooling_generic():
with Context() as ctx, Location.unknown():
module = Module.create()
f64 = F64Type.get()
i32 = IntegerType.get_signless(32)
with InsertionPoint(module.body):
@builtin.FuncOp.from_py_func(
MemRefType.get((1, 4, 16, 1), f64), MemRefType.get((2, 2), f64),
MemRefType.get((1, 2, 4, 1), i32))
def pooling_on_buffers(input, shape, output):
linalg.pooling_nhwc_min_poly(
input,
shape,
outs=[output],
strides=[2, 4],
dilations=[1, 2],
emit_generic=True)
execution_engine = ExecutionEngine(transform(module, pooling_boiler))
# TODO: FFI-based solution to allow testing and printing with python code.
# Prepare arguments: one result i32.
# Arguments must be passed as pointers.
c_int_p = ctypes.c_int * 1
res = c_int_p(-1)
execution_engine.invoke("main", res)
log("RESULT: ", res[0])
# CHECK: RESULT: -13
test_min_pooling_generic()