Revert "SLPVectorizer: Handle more horizontal reductions (disabled)"

This reverts commit r191108.

The horizontal.ll test case fails under libgmalloc. Thanks Shuxin for pointing
this out to me.

llvm-svn: 191121
This commit is contained in:
Arnold Schwaighofer 2013-09-21 00:06:20 +00:00
parent 9b04f41899
commit f1dfbfdde1
2 changed files with 8 additions and 783 deletions

View File

@ -49,11 +49,6 @@ static cl::opt<int>
SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
cl::desc("Only vectorize if you gain more than this "
"number "));
static cl::opt<bool>
ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden,
cl::desc("Attempt to vectorize horizontal reductions"));
namespace {
static const unsigned MinVecRegSize = 128;
@ -243,21 +238,17 @@ public:
}
/// \brief Vectorize the tree that starts with the elements in \p VL.
/// Returns the vectorized root and the scalar operations the root was based
/// on.
std::pair<Value *, ValueList *> vectorizeTree();
void vectorizeTree();
/// \returns the vectorization cost of the subtree that starts at \p VL.
/// A negative number means that this is profitable.
int getTreeCost();
/// Construct a vectorizable tree that starts at \p Roots and is possibly
/// used by a reduction of \p RdxOps.
void buildTree(ArrayRef<Value *> Roots, ValueSet *RdxOps = 0);
/// Construct a vectorizable tree that starts at \p Roots.
void buildTree(ArrayRef<Value *> Roots);
/// Clear the internal data structures that are created by 'buildTree'.
void deleteTree() {
RdxOps = 0;
VectorizableTree.clear();
ScalarToTreeEntry.clear();
MustGather.clear();
@ -410,9 +401,6 @@ private:
/// Numbers instructions in different blocks.
DenseMap<BasicBlock *, BlockNumbering> BlocksNumbers;
/// Reduction operators.
ValueSet *RdxOps;
// Analysis and block reference.
Function *F;
ScalarEvolution *SE;
@ -425,9 +413,8 @@ private:
IRBuilder<> Builder;
};
void BoUpSLP::buildTree(ArrayRef<Value *> Roots, ValueSet *Rdx) {
void BoUpSLP::buildTree(ArrayRef<Value *> Roots) {
deleteTree();
RdxOps = Rdx;
if (!getSameType(Roots))
return;
buildTree_rec(Roots, 0);
@ -458,12 +445,8 @@ void BoUpSLP::buildTree(ArrayRef<Value *> Roots, ValueSet *Rdx) {
assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
continue;
}
Instruction *UserInst = dyn_cast<Instruction>(*User);
if (!UserInst)
continue;
// Ignore uses that are part of the reduction.
if (Rdx && std::find(Rdx->begin(), Rdx->end(), UserInst) != Rdx->end())
if (!isa<Instruction>(*User))
continue;
DEBUG(dbgs() << "SLP: Need to extract:" << **User << " from lane " <<
@ -595,10 +578,6 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
continue;
}
// This user is part of the reduction.
if (RdxOps && RdxOps->count(User))
continue;
// Make sure that we can schedule this unknown user.
BlockNumbering &BN = BlocksNumbers[BB];
int UserIndex = BN.getIndex(User);
@ -1393,7 +1372,7 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
return 0;
}
std::pair<Value *, BoUpSLP::ValueList *> BoUpSLP::vectorizeTree() {
void BoUpSLP::vectorizeTree() {
Builder.SetInsertPoint(F->getEntryBlock().begin());
vectorizeTree(&VectorizableTree[0]);
@ -1470,10 +1449,7 @@ std::pair<Value *, BoUpSLP::ValueList *> BoUpSLP::vectorizeTree() {
DEBUG(dbgs() << "SLP: \tvalidating user:" << **User << ".\n");
assert(!MustGather.count(*User) &&
"Replacing gathered value with undef");
assert((ScalarToTreeEntry.count(*User) ||
// It is legal to replace the reduction users by undef.
(RdxOps && RdxOps->count(*User))) &&
assert(ScalarToTreeEntry.count(*User) &&
"Replacing out-of-tree value with undef");
}
Value *Undef = UndefValue::get(Ty);
@ -1488,9 +1464,6 @@ std::pair<Value *, BoUpSLP::ValueList *> BoUpSLP::vectorizeTree() {
BlocksNumbers[it].forget();
}
Builder.ClearInsertionPoint();
return std::make_pair(VectorizableTree[0].VectorizedValue,
&VectorizableTree[0].Scalars);
}
void BoUpSLP::optimizeGatherSequence() {
@ -1914,310 +1887,6 @@ bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
return 0;
}
/// \brief Generate a shuffle mask to be used in a reduction tree.
///
/// \param VecLen The length of the vector to be reduced.
/// \param NumEltsToRdx The number of elements that should be reduced in the
/// vector.
/// \param IsPairwise Whether the reduction is a pairwise or splitting
/// reduction. A pairwise reduction will generate a mask of
/// <0,2,...> or <1,3,..> while a splitting reduction will generate
/// <2,3, undef,undef> for a vector of 4 and NumElts = 2.
/// \param IsLeft True will generate a mask of even elements, odd otherwise.
static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
bool IsPairwise, bool IsLeft,
IRBuilder<> &Builder) {
assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
SmallVector<Constant *, 32> ShuffleMask(
VecLen, UndefValue::get(Builder.getInt32Ty()));
if (IsPairwise)
// Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
for (unsigned i = 0; i != NumEltsToRdx; ++i)
ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
else
// Move the upper half of the vector to the lower half.
for (unsigned i = 0; i != NumEltsToRdx; ++i)
ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
return ConstantVector::get(ShuffleMask);
}
/// Model horizontal reductions.
///
/// A horizontal reduction is a tree of reduction operations (currently add and
/// fadd) that has operations that can be put into a vector as its leaf.
/// For example, this tree:
///
/// mul mul mul mul
/// \ / \ /
/// + +
/// \ /
/// +
/// This tree has "mul" as its reduced values and "+" as its reduction
/// operations. A reduction might be feeding into a store or a binary operation
/// feeding a phi.
/// ...
/// \ /
/// +
/// \
/// phi +=
///
/// Or:
/// ...
/// \ /
/// +
/// \
/// *p =
///
class HorizontalReduction {
SmallPtrSet<Value *, 16> ReductionOps;
SmallVector<Value *, 32> ReducedVals;
BinaryOperator *ReductionRoot;
PHINode *ReductionPHI;
/// The opcode of the reduction.
unsigned ReductionOpcode;
/// The opcode of the values we perform a reduction on.
unsigned ReducedValueOpcode;
/// The width of one full horizontal reduction operation.
unsigned ReduxWidth;
/// Should we model this reduction as a pairwise reduction tree or a tree that
/// splits the vector in halves and adds those halves.
bool IsPairwiseReduction;
public:
HorizontalReduction()
: ReductionRoot(0), ReductionPHI(0), ReductionOpcode(0),
ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {}
/// \brief Try to find a reduction tree.
bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B,
DataLayout *DL) {
assert((!Phi ||
std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) &&
"Thi phi needs to use the binary operator");
// We could have a initial reductions that is not an add.
// r *= v1 + v2 + v3 + v4
// In such a case start looking for a tree rooted in the first '+'.
if (Phi) {
if (B->getOperand(0) == Phi) {
Phi = 0;
B = dyn_cast<BinaryOperator>(B->getOperand(1));
} else if (B->getOperand(1) == Phi) {
Phi = 0;
B = dyn_cast<BinaryOperator>(B->getOperand(0));
}
}
if (!B)
return false;
Type *Ty = B->getType();
if (Ty->isVectorTy())
return false;
ReductionOpcode = B->getOpcode();
ReducedValueOpcode = 0;
ReduxWidth = MinVecRegSize / DL->getTypeSizeInBits(Ty);
ReductionRoot = B;
ReductionPHI = Phi;
if (ReduxWidth < 4)
return false;
// We currently only support adds.
if (ReductionOpcode != Instruction::Add &&
ReductionOpcode != Instruction::FAdd)
return false;
// Post order traverse the reduction tree starting at B. We only handle true
// trees containing only binary operators.
SmallVector<std::pair<BinaryOperator *, unsigned>, 32> Stack;
Stack.push_back(std::make_pair(B, 0));
while (!Stack.empty()) {
BinaryOperator *TreeN = Stack.back().first;
unsigned EdgeToVist = Stack.back().second++;
bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
// Only handle trees in the current basic block.
if (TreeN->getParent() != B->getParent())
return false;
// Each tree node needs to have one user except for the ultimate
// reduction.
if (!TreeN->hasOneUse() && TreeN != B)
return false;
// Postorder vist.
if (EdgeToVist == 2 || IsReducedValue) {
if (IsReducedValue) {
// Make sure that the opcodes of the operations that we are going to
// reduce match.
if (!ReducedValueOpcode)
ReducedValueOpcode = TreeN->getOpcode();
else if (ReducedValueOpcode != TreeN->getOpcode())
return false;
ReducedVals.push_back(TreeN);
} else {
// We need to be able to reassociate the adds.
if (!TreeN->isAssociative())
return false;
ReductionOps.insert(TreeN);
}
// Retract.
Stack.pop_back();
continue;
}
// Visit left or right.
Value *NextV = TreeN->getOperand(EdgeToVist);
BinaryOperator *Next = dyn_cast<BinaryOperator>(NextV);
if (Next)
Stack.push_back(std::make_pair(Next, 0));
else if (NextV != Phi)
return false;
}
return true;
}
/// \brief Attempt to vectorize the tree found by
/// matchAssociativeReduction.
bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
if (ReducedVals.empty())
return false;
unsigned NumReducedVals = ReducedVals.size();
if (NumReducedVals < ReduxWidth)
return false;
Value *VectorizedTree = 0;
IRBuilder<> Builder(ReductionRoot);
FastMathFlags Unsafe;
Unsafe.setUnsafeAlgebra();
Builder.SetFastMathFlags(Unsafe);
unsigned i = 0;
for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
ArrayRef<Value *> ValsToReduce(&ReducedVals[i], ReduxWidth);
V.buildTree(ValsToReduce, &ReductionOps);
// Estimate cost.
int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
if (Cost >= -SLPCostThreshold)
break;
DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
<< ". (HorRdx)\n");
// Vectorize a tree.
Value *VectorizedRoot;
BoUpSLP::ValueList *Scalars;
tie(VectorizedRoot, Scalars) = V.vectorizeTree();
// Emit a reduction.
Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder);
if (VectorizedTree) {
Builder.SetCurrentDebugLocation(
cast<Instruction>((*Scalars)[0])->getDebugLoc());
VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
ReducedSubTree, "bin.rdx");
} else
VectorizedTree = ReducedSubTree;
}
if (VectorizedTree) {
// Finish the reduction.
for (; i < NumReducedVals; ++i) {
Builder.SetCurrentDebugLocation(
cast<Instruction>(ReducedVals[i])->getDebugLoc());
VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
ReducedVals[i]);
}
// Update users.
if (ReductionPHI) {
assert(ReductionRoot != NULL && "Need a reduction operation");
ReductionRoot->setOperand(0, VectorizedTree);
ReductionRoot->setOperand(1, ReductionPHI);
} else
ReductionRoot->replaceAllUsesWith(VectorizedTree);
}
return VectorizedTree != 0;
}
private:
/// \brief Calcuate the cost of a reduction.
int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) {
Type *ScalarTy = FirstReducedVal->getType();
Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
int ScalarReduxCost =
ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy);
DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
<< " for reduction that starts with " << *FirstReducedVal
<< " (It is a "
<< (IsPairwiseReduction ? "pairwise" : "splitting")
<< " reduction)\n");
return VecReduxCost - ScalarReduxCost;
}
static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L,
Value *R, const Twine &Name = "") {
if (Opcode == Instruction::FAdd)
return Builder.CreateFAdd(L, R, Name);
return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name);
}
/// \brief Emit a horizontal reduction of the vectorized value.
Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) {
assert(VectorizedValue && "Need to have a vectorized tree node");
Instruction *ValToReduce = dyn_cast<Instruction>(VectorizedValue);
assert(isPowerOf2_32(ReduxWidth) &&
"We only handle power-of-two reductions for now");
SmallVector<Constant *, 32> ShuffleMask(ReduxWidth, 0);
Value *TmpVec = ValToReduce;
for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
if (IsPairwiseReduction) {
Value *LeftMask =
createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
Value *RightMask =
createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
Value *LeftShuf = Builder.CreateShuffleVector(
TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
Value *RightShuf = Builder.CreateShuffleVector(
TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
"rdx.shuf.r");
TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf,
"bin.rdx");
} else {
Value *UpperHalf =
createRdxShuffleMask(ReduxWidth, i, false, false, Builder);
Value *Shuf = Builder.CreateShuffleVector(
TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf");
TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx");
}
}
// The result is in the first element of the vector.
return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
}
};
/// \brief Recognize construction of vectors like
/// %ra = insertelement <4 x float> undef, float %s0, i32 0
/// %rb = insertelement <4 x float> %ra, float %s1, i32 1
@ -2312,18 +1981,7 @@ bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
if (!BI)
continue;
// Try to match and vectorize a horizontal reduction.
HorizontalReduction HorRdx;
if (ShouldVectorizeHor &&
HorRdx.matchAssociativeReduction(P, BI, DL) &&
HorRdx.tryToReduce(R, TTI)) {
Changed = true;
it = BB->begin();
e = BB->end();
continue;
}
Value *Inst = BI->getOperand(0);
Value *Inst = BI->getOperand(0);
if (Inst == P)
Inst = BI->getOperand(1);
@ -2333,28 +1991,10 @@ bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
Changed = true;
it = BB->begin();
e = BB->end();
continue;
}
continue;
}
// Try to vectorize horizontal reductions feeding into a store.
if (StoreInst *SI = dyn_cast<StoreInst>(it))
if (BinaryOperator *BinOp =
dyn_cast<BinaryOperator>(SI->getValueOperand())) {
HorizontalReduction HorRdx;
if (ShouldVectorizeHor &&
((HorRdx.matchAssociativeReduction(0, BinOp, DL) &&
HorRdx.tryToReduce(R, TTI)) ||
tryToVectorize(BinOp, R))) {
Changed = true;
it = BB->begin();
e = BB->end();
continue;
}
}
// Try to vectorize trees that start at compare instructions.
if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {

View File

@ -1,415 +0,0 @@
; RUN: opt -slp-vectorizer -slp-vectorize-hor -S < %s -mtriple=x86_64-apple-macosx -mcpu=corei7-avx | FileCheck %s
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
; #include <stdint.h>
;
; int foo(float *A, int n) {
; float sum = 0;
; for (intptr_t i=0; i < n; ++i) {
; sum += 7*A[i*4 ] +
; 7*A[i*4+1] +
; 7*A[i*4+2] +
; 7*A[i*4+3];
; }
; return sum;
; }
; CHECK-LABEL: add_red
; CHECK: fmul <4 x float>
; CHECK: shufflevector <4 x float>
define i32 @add_red(float* %A, i32 %n) {
entry:
%cmp31 = icmp sgt i32 %n, 0
br i1 %cmp31, label %for.body.lr.ph, label %for.end
for.body.lr.ph:
%0 = sext i32 %n to i64
br label %for.body
for.body:
%i.033 = phi i64 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
%sum.032 = phi float [ 0.000000e+00, %for.body.lr.ph ], [ %add17, %for.body ]
%mul = shl nsw i64 %i.033, 2
%arrayidx = getelementptr inbounds float* %A, i64 %mul
%1 = load float* %arrayidx, align 4
%mul2 = fmul float %1, 7.000000e+00
%add28 = or i64 %mul, 1
%arrayidx4 = getelementptr inbounds float* %A, i64 %add28
%2 = load float* %arrayidx4, align 4
%mul5 = fmul float %2, 7.000000e+00
%add6 = fadd fast float %mul2, %mul5
%add829 = or i64 %mul, 2
%arrayidx9 = getelementptr inbounds float* %A, i64 %add829
%3 = load float* %arrayidx9, align 4
%mul10 = fmul float %3, 7.000000e+00
%add11 = fadd fast float %add6, %mul10
%add1330 = or i64 %mul, 3
%arrayidx14 = getelementptr inbounds float* %A, i64 %add1330
%4 = load float* %arrayidx14, align 4
%mul15 = fmul float %4, 7.000000e+00
%add16 = fadd fast float %add11, %mul15
%add17 = fadd fast float %sum.032, %add16
%inc = add nsw i64 %i.033, 1
%exitcond = icmp eq i64 %inc, %0
br i1 %exitcond, label %for.cond.for.end_crit_edge, label %for.body
for.cond.for.end_crit_edge:
%phitmp = fptosi float %add17 to i32
br label %for.end
for.end:
%sum.0.lcssa = phi i32 [ %phitmp, %for.cond.for.end_crit_edge ], [ 0, %entry ]
ret i32 %sum.0.lcssa
}
; int foo(float * restrict A, float * restrict B, int n) {
; float sum = 0;
; for (intptr_t i=0; i < n; ++i) {
; sum *= B[0]*A[i*4 ] +
; B[1]*A[i*4+1] +
; B[2]*A[i*4+2] +
; B[3]*A[i*4+3];
; }
; return sum;
; }
; CHECK-LABEL: mul_red
; CHECK: fmul <4 x float>
; CHECK: shufflevector <4 x float>
define i32 @mul_red(float* noalias %A, float* noalias %B, i32 %n) {
entry:
%cmp38 = icmp sgt i32 %n, 0
br i1 %cmp38, label %for.body.lr.ph, label %for.end
for.body.lr.ph:
%0 = load float* %B, align 4
%arrayidx4 = getelementptr inbounds float* %B, i64 1
%1 = load float* %arrayidx4, align 4
%arrayidx9 = getelementptr inbounds float* %B, i64 2
%2 = load float* %arrayidx9, align 4
%arrayidx15 = getelementptr inbounds float* %B, i64 3
%3 = load float* %arrayidx15, align 4
%4 = sext i32 %n to i64
br label %for.body
for.body:
%i.040 = phi i64 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
%sum.039 = phi float [ 0.000000e+00, %for.body.lr.ph ], [ %mul21, %for.body ]
%mul = shl nsw i64 %i.040, 2
%arrayidx2 = getelementptr inbounds float* %A, i64 %mul
%5 = load float* %arrayidx2, align 4
%mul3 = fmul float %0, %5
%add35 = or i64 %mul, 1
%arrayidx6 = getelementptr inbounds float* %A, i64 %add35
%6 = load float* %arrayidx6, align 4
%mul7 = fmul float %1, %6
%add8 = fadd fast float %mul3, %mul7
%add1136 = or i64 %mul, 2
%arrayidx12 = getelementptr inbounds float* %A, i64 %add1136
%7 = load float* %arrayidx12, align 4
%mul13 = fmul float %2, %7
%add14 = fadd fast float %add8, %mul13
%add1737 = or i64 %mul, 3
%arrayidx18 = getelementptr inbounds float* %A, i64 %add1737
%8 = load float* %arrayidx18, align 4
%mul19 = fmul float %3, %8
%add20 = fadd fast float %add14, %mul19
%mul21 = fmul float %sum.039, %add20
%inc = add nsw i64 %i.040, 1
%exitcond = icmp eq i64 %inc, %4
br i1 %exitcond, label %for.cond.for.end_crit_edge, label %for.body
for.cond.for.end_crit_edge:
%phitmp = fptosi float %mul21 to i32
br label %for.end
for.end:
%sum.0.lcssa = phi i32 [ %phitmp, %for.cond.for.end_crit_edge ], [ 0, %entry ]
ret i32 %sum.0.lcssa
}
; int foo(float * restrict A, float * restrict B, int n) {
; float sum = 0;
; for (intptr_t i=0; i < n; ++i) {
; sum += B[0]*A[i*6 ] +
; B[1]*A[i*6+1] +
; B[2]*A[i*6+2] +
; B[3]*A[i*6+3] +
; B[4]*A[i*6+4] +
; B[5]*A[i*6+5] +
; B[6]*A[i*6+6] +
; B[7]*A[i*6+7] +
; B[8]*A[i*6+8];
; }
; return sum;
; }
; CHECK-LABEL: long_red
; CHECK: fmul <4 x float>
; CHECK: shufflevector <4 x float>
define i32 @long_red(float* noalias %A, float* noalias %B, i32 %n) {
entry:
%cmp81 = icmp sgt i32 %n, 0
br i1 %cmp81, label %for.body.lr.ph, label %for.end
for.body.lr.ph:
%0 = load float* %B, align 4
%arrayidx4 = getelementptr inbounds float* %B, i64 1
%1 = load float* %arrayidx4, align 4
%arrayidx9 = getelementptr inbounds float* %B, i64 2
%2 = load float* %arrayidx9, align 4
%arrayidx15 = getelementptr inbounds float* %B, i64 3
%3 = load float* %arrayidx15, align 4
%arrayidx21 = getelementptr inbounds float* %B, i64 4
%4 = load float* %arrayidx21, align 4
%arrayidx27 = getelementptr inbounds float* %B, i64 5
%5 = load float* %arrayidx27, align 4
%arrayidx33 = getelementptr inbounds float* %B, i64 6
%6 = load float* %arrayidx33, align 4
%arrayidx39 = getelementptr inbounds float* %B, i64 7
%7 = load float* %arrayidx39, align 4
%arrayidx45 = getelementptr inbounds float* %B, i64 8
%8 = load float* %arrayidx45, align 4
%9 = sext i32 %n to i64
br label %for.body
for.body:
%i.083 = phi i64 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
%sum.082 = phi float [ 0.000000e+00, %for.body.lr.ph ], [ %add51, %for.body ]
%mul = mul nsw i64 %i.083, 6
%arrayidx2 = getelementptr inbounds float* %A, i64 %mul
%10 = load float* %arrayidx2, align 4
%mul3 = fmul fast float %0, %10
%add80 = or i64 %mul, 1
%arrayidx6 = getelementptr inbounds float* %A, i64 %add80
%11 = load float* %arrayidx6, align 4
%mul7 = fmul fast float %1, %11
%add8 = fadd fast float %mul3, %mul7
%add11 = add nsw i64 %mul, 2
%arrayidx12 = getelementptr inbounds float* %A, i64 %add11
%12 = load float* %arrayidx12, align 4
%mul13 = fmul fast float %2, %12
%add14 = fadd fast float %add8, %mul13
%add17 = add nsw i64 %mul, 3
%arrayidx18 = getelementptr inbounds float* %A, i64 %add17
%13 = load float* %arrayidx18, align 4
%mul19 = fmul fast float %3, %13
%add20 = fadd fast float %add14, %mul19
%add23 = add nsw i64 %mul, 4
%arrayidx24 = getelementptr inbounds float* %A, i64 %add23
%14 = load float* %arrayidx24, align 4
%mul25 = fmul fast float %4, %14
%add26 = fadd fast float %add20, %mul25
%add29 = add nsw i64 %mul, 5
%arrayidx30 = getelementptr inbounds float* %A, i64 %add29
%15 = load float* %arrayidx30, align 4
%mul31 = fmul fast float %5, %15
%add32 = fadd fast float %add26, %mul31
%add35 = add nsw i64 %mul, 6
%arrayidx36 = getelementptr inbounds float* %A, i64 %add35
%16 = load float* %arrayidx36, align 4
%mul37 = fmul fast float %6, %16
%add38 = fadd fast float %add32, %mul37
%add41 = add nsw i64 %mul, 7
%arrayidx42 = getelementptr inbounds float* %A, i64 %add41
%17 = load float* %arrayidx42, align 4
%mul43 = fmul fast float %7, %17
%add44 = fadd fast float %add38, %mul43
%add47 = add nsw i64 %mul, 8
%arrayidx48 = getelementptr inbounds float* %A, i64 %add47
%18 = load float* %arrayidx48, align 4
%mul49 = fmul fast float %8, %18
%add50 = fadd fast float %add44, %mul49
%add51 = fadd fast float %sum.082, %add50
%inc = add nsw i64 %i.083, 1
%exitcond = icmp eq i64 %inc, %9
br i1 %exitcond, label %for.cond.for.end_crit_edge, label %for.body
for.cond.for.end_crit_edge:
%phitmp = fptosi float %add51 to i32
br label %for.end
for.end:
%sum.0.lcssa = phi i32 [ %phitmp, %for.cond.for.end_crit_edge ], [ 0, %entry ]
ret i32 %sum.0.lcssa
}
; int foo(float * restrict A, float * restrict B, int n) {
; float sum = 0;
; for (intptr_t i=0; i < n; ++i) {
; sum += B[0]*A[i*4 ];
; sum += B[1]*A[i*4+1];
; sum += B[2]*A[i*4+2];
; sum += B[3]*A[i*4+3];
; }
; return sum;
; }
; CHECK-LABEL: chain_red
; CHECK: fmul <4 x float>
; CHECK: shufflevector <4 x float>
define i32 @chain_red(float* noalias %A, float* noalias %B, i32 %n) {
entry:
%cmp41 = icmp sgt i32 %n, 0
br i1 %cmp41, label %for.body.lr.ph, label %for.end
for.body.lr.ph:
%0 = load float* %B, align 4
%arrayidx4 = getelementptr inbounds float* %B, i64 1
%1 = load float* %arrayidx4, align 4
%arrayidx10 = getelementptr inbounds float* %B, i64 2
%2 = load float* %arrayidx10, align 4
%arrayidx16 = getelementptr inbounds float* %B, i64 3
%3 = load float* %arrayidx16, align 4
%4 = sext i32 %n to i64
br label %for.body
for.body:
%i.043 = phi i64 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
%sum.042 = phi float [ 0.000000e+00, %for.body.lr.ph ], [ %add21, %for.body ]
%mul = shl nsw i64 %i.043, 2
%arrayidx2 = getelementptr inbounds float* %A, i64 %mul
%5 = load float* %arrayidx2, align 4
%mul3 = fmul fast float %0, %5
%add = fadd fast float %sum.042, %mul3
%add638 = or i64 %mul, 1
%arrayidx7 = getelementptr inbounds float* %A, i64 %add638
%6 = load float* %arrayidx7, align 4
%mul8 = fmul fast float %1, %6
%add9 = fadd fast float %add, %mul8
%add1239 = or i64 %mul, 2
%arrayidx13 = getelementptr inbounds float* %A, i64 %add1239
%7 = load float* %arrayidx13, align 4
%mul14 = fmul fast float %2, %7
%add15 = fadd fast float %add9, %mul14
%add1840 = or i64 %mul, 3
%arrayidx19 = getelementptr inbounds float* %A, i64 %add1840
%8 = load float* %arrayidx19, align 4
%mul20 = fmul fast float %3, %8
%add21 = fadd fast float %add15, %mul20
%inc = add nsw i64 %i.043, 1
%exitcond = icmp eq i64 %inc, %4
br i1 %exitcond, label %for.cond.for.end_crit_edge, label %for.body
for.cond.for.end_crit_edge:
%phitmp = fptosi float %add21 to i32
br label %for.end
for.end:
%sum.0.lcssa = phi i32 [ %phitmp, %for.cond.for.end_crit_edge ], [ 0, %entry ]
ret i32 %sum.0.lcssa
}
; int foo(float * restrict A, float * restrict B, float * restrict C, int n) {
; float sum = 0;
; for (intptr_t i=0; i < n; ++i) {
; C[i] = B[0] *A[i*4 ] +
; B[1] *A[i*4+1] +
; B[2] *A[i*4+2] +
; B[3] *A[i*4+3];
; }
; return sum;
; }
; CHECK-LABEL: store_red
; CHECK: fmul <4 x float>
; CHECK: shufflevector <4 x float>
define i32 @store_red(float* noalias %A, float* noalias %B, float* noalias %C, i32 %n) {
entry:
%cmp37 = icmp sgt i32 %n, 0
br i1 %cmp37, label %for.body.lr.ph, label %for.end
for.body.lr.ph:
%arrayidx4 = getelementptr inbounds float* %B, i64 1
%arrayidx9 = getelementptr inbounds float* %B, i64 2
%arrayidx15 = getelementptr inbounds float* %B, i64 3
%0 = sext i32 %n to i64
br label %for.body
for.body:
%i.039 = phi i64 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
%C.addr.038 = phi float* [ %C, %for.body.lr.ph ], [ %incdec.ptr, %for.body ]
%1 = load float* %B, align 4
%mul = shl nsw i64 %i.039, 2
%arrayidx2 = getelementptr inbounds float* %A, i64 %mul
%2 = load float* %arrayidx2, align 4
%mul3 = fmul fast float %1, %2
%3 = load float* %arrayidx4, align 4
%add34 = or i64 %mul, 1
%arrayidx6 = getelementptr inbounds float* %A, i64 %add34
%4 = load float* %arrayidx6, align 4
%mul7 = fmul fast float %3, %4
%add8 = fadd fast float %mul3, %mul7
%5 = load float* %arrayidx9, align 4
%add1135 = or i64 %mul, 2
%arrayidx12 = getelementptr inbounds float* %A, i64 %add1135
%6 = load float* %arrayidx12, align 4
%mul13 = fmul fast float %5, %6
%add14 = fadd fast float %add8, %mul13
%7 = load float* %arrayidx15, align 4
%add1736 = or i64 %mul, 3
%arrayidx18 = getelementptr inbounds float* %A, i64 %add1736
%8 = load float* %arrayidx18, align 4
%mul19 = fmul fast float %7, %8
%add20 = fadd fast float %add14, %mul19
store float %add20, float* %C.addr.038, align 4
%incdec.ptr = getelementptr inbounds float* %C.addr.038, i64 1
%inc = add nsw i64 %i.039, 1
%exitcond = icmp eq i64 %inc, %0
br i1 %exitcond, label %for.end, label %for.body
for.end:
ret i32 0
}
; void foo(double * restrict A, double * restrict B, double * restrict C,
; int n) {
; for (intptr_t i=0; i < n; ++i) {
; C[i] = B[0] *A[i*4 ] + B[1] *A[i*4+1];
; }
; }
; CHECK-LABEL: store_red_double
; CHECK: fmul <2 x double>
; CHECK: extractelement <2 x double>
; CHECK: extractelement <2 x double>
define void @store_red_double(double* noalias %A, double* noalias %B, double* noalias %C, i32 %n) {
entry:
%cmp17 = icmp sgt i32 %n, 0
br i1 %cmp17, label %for.body.lr.ph, label %for.end
for.body.lr.ph:
%0 = load double* %B, align 8
%arrayidx4 = getelementptr inbounds double* %B, i64 1
%1 = load double* %arrayidx4, align 8
%2 = sext i32 %n to i64
br label %for.body
for.body:
%i.018 = phi i64 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
%mul = shl nsw i64 %i.018, 2
%arrayidx2 = getelementptr inbounds double* %A, i64 %mul
%3 = load double* %arrayidx2, align 8
%mul3 = fmul fast double %0, %3
%add16 = or i64 %mul, 1
%arrayidx6 = getelementptr inbounds double* %A, i64 %add16
%4 = load double* %arrayidx6, align 8
%mul7 = fmul fast double %1, %4
%add8 = fadd fast double %mul3, %mul7
%arrayidx9 = getelementptr inbounds double* %C, i64 %i.018
store double %add8, double* %arrayidx9, align 8
%inc = add nsw i64 %i.018, 1
%exitcond = icmp eq i64 %inc, %2
br i1 %exitcond, label %for.end, label %for.body
for.end:
ret void
}