Revert r299168 and r299169 due to library dependency issues.

http://bb.pgr.jp/builders/i686-mingw32-RA-on-linux/builds/25073/steps/build_llvmclang/logs/stdio

llvm-svn: 299171
This commit is contained in:
Peter Collingbourne 2017-03-31 02:44:50 +00:00
parent ae9c74280c
commit f10698b940
8 changed files with 299 additions and 664 deletions

View File

@ -355,12 +355,13 @@ void BitcodeFile::parse() {
SymbolBody *Alias = Symtab->addUndefined(Saver.save(Fallback));
checkAndSetWeakAlias(Symtab, this, Sym->body(), Alias);
} else {
bool IsCOMDAT = ObjSym.getComdatIndex() != -1;
Expected<int> ComdatIndex = ObjSym.getComdatIndex();
bool IsCOMDAT = ComdatIndex && *ComdatIndex != -1;
Sym = Symtab->addRegular(this, SymName, IsCOMDAT);
}
SymbolBodies.push_back(Sym->body());
}
Directives = Obj->getCOFFLinkerOpts();
Directives = check(Obj->getLinkerOpts());
}
MachineTypes BitcodeFile::getMachineType() {

View File

@ -818,7 +818,7 @@ static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats,
uint8_t Visibility = mapVisibility(ObjSym.getVisibility());
bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable();
int C = ObjSym.getComdatIndex();
int C = check(ObjSym.getComdatIndex(), F->LogName);
if (C != -1 && !KeptComdats[C])
return Symtab<ELFT>::X->addUndefined(NameRef, /*IsLocal=*/false, Binding,
Visibility, Type, CanOmitFromDynSym,
@ -855,8 +855,10 @@ void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) {
Obj = check(lto::InputFile::create(MBRef), this->LogName);
std::vector<bool> KeptComdats;
for (StringRef S : Obj->getComdatTable())
KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(S)).second);
for (StringRef S : Obj->getComdatTable()) {
StringRef N = Saver.save(S);
KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(N)).second);
}
for (const lto::InputFile::Symbol &ObjSym : Obj->symbols())
Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, this));

View File

@ -24,7 +24,7 @@
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/LTO/Config.h"
#include "llvm/Linker/IRMover.h"
#include "llvm/Object/IRSymtab.h"
#include "llvm/Object/ModuleSymbolTable.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ToolOutputFile.h"
#include "llvm/Support/thread.h"
@ -79,26 +79,21 @@ class LTO;
struct SymbolResolution;
class ThinBackendProc;
/// An input file. This is a symbol table wrapper that only exposes the
/// An input file. This is a wrapper for ModuleSymbolTable that exposes only the
/// information that an LTO client should need in order to do symbol resolution.
class InputFile {
public:
class Symbol;
private:
// FIXME: Remove LTO class friendship once we have bitcode symbol tables.
friend LTO;
InputFile() = default;
std::vector<BitcodeModule> Mods;
SmallVector<char, 0> Strtab;
std::vector<Symbol> Symbols;
// FIXME: Remove the LLVMContext once we have bitcode symbol tables.
LLVMContext Ctx;
struct InputModule;
std::vector<InputModule> Mods;
ModuleSymbolTable SymTab;
// [begin, end) for each module
std::vector<std::pair<size_t, size_t>> ModuleSymIndices;
StringRef SourceFileName, COFFLinkerOpts;
std::vector<StringRef> ComdatTable;
std::vector<StringRef> Comdats;
DenseMap<const Comdat *, unsigned> ComdatMap;
public:
~InputFile();
@ -106,48 +101,170 @@ public:
/// Create an InputFile.
static Expected<std::unique_ptr<InputFile>> create(MemoryBufferRef Object);
/// The purpose of this class is to only expose the symbol information that an
/// LTO client should need in order to do symbol resolution.
class Symbol : irsymtab::Symbol {
class symbol_iterator;
/// This is a wrapper for ArrayRef<ModuleSymbolTable::Symbol>::iterator that
/// exposes only the information that an LTO client should need in order to do
/// symbol resolution.
///
/// This object is ephemeral; it is only valid as long as an iterator obtained
/// from symbols() refers to it.
class Symbol {
friend symbol_iterator;
friend LTO;
public:
Symbol(const irsymtab::Symbol &S) : irsymtab::Symbol(S) {}
ArrayRef<ModuleSymbolTable::Symbol>::iterator I;
const ModuleSymbolTable &SymTab;
const InputFile *File;
uint32_t Flags;
SmallString<64> Name;
using irsymtab::Symbol::isUndefined;
using irsymtab::Symbol::isCommon;
using irsymtab::Symbol::isWeak;
using irsymtab::Symbol::isIndirect;
using irsymtab::Symbol::getName;
using irsymtab::Symbol::getVisibility;
using irsymtab::Symbol::canBeOmittedFromSymbolTable;
using irsymtab::Symbol::isTLS;
using irsymtab::Symbol::getComdatIndex;
using irsymtab::Symbol::getCommonSize;
using irsymtab::Symbol::getCommonAlignment;
using irsymtab::Symbol::getCOFFWeakExternalFallback;
bool shouldSkip() {
return !(Flags & object::BasicSymbolRef::SF_Global) ||
(Flags & object::BasicSymbolRef::SF_FormatSpecific);
}
void skip() {
ArrayRef<ModuleSymbolTable::Symbol>::iterator E = SymTab.symbols().end();
while (I != E) {
Flags = SymTab.getSymbolFlags(*I);
if (!shouldSkip())
break;
++I;
}
if (I == E)
return;
Name.clear();
{
raw_svector_ostream OS(Name);
SymTab.printSymbolName(OS, *I);
}
}
bool isGV() const { return I->is<GlobalValue *>(); }
GlobalValue *getGV() const { return I->get<GlobalValue *>(); }
public:
Symbol(ArrayRef<ModuleSymbolTable::Symbol>::iterator I,
const ModuleSymbolTable &SymTab, const InputFile *File)
: I(I), SymTab(SymTab), File(File) {
skip();
}
bool isUndefined() const {
return Flags & object::BasicSymbolRef::SF_Undefined;
}
bool isCommon() const { return Flags & object::BasicSymbolRef::SF_Common; }
bool isWeak() const { return Flags & object::BasicSymbolRef::SF_Weak; }
bool isIndirect() const {
return Flags & object::BasicSymbolRef::SF_Indirect;
}
/// For COFF weak externals, returns the name of the symbol that is used
/// as a fallback if the weak external remains undefined.
std::string getCOFFWeakExternalFallback() const {
assert((Flags & object::BasicSymbolRef::SF_Weak) &&
(Flags & object::BasicSymbolRef::SF_Indirect) &&
"symbol is not a weak external");
std::string Name;
raw_string_ostream OS(Name);
SymTab.printSymbolName(
OS,
cast<GlobalValue>(
cast<GlobalAlias>(getGV())->getAliasee()->stripPointerCasts()));
OS.flush();
return Name;
}
/// Returns the mangled name of the global.
StringRef getName() const { return Name; }
GlobalValue::VisibilityTypes getVisibility() const {
if (isGV())
return getGV()->getVisibility();
return GlobalValue::DefaultVisibility;
}
bool canBeOmittedFromSymbolTable() const {
return isGV() && llvm::canBeOmittedFromSymbolTable(getGV());
}
bool isTLS() const {
// FIXME: Expose a thread-local flag for module asm symbols.
return isGV() && getGV()->isThreadLocal();
}
// Returns the index of the comdat this symbol is in or -1 if the symbol
// is not in a comdat.
// FIXME: We have to return Expected<int> because aliases point to an
// arbitrary ConstantExpr and that might not actually be a constant. That
// means we might not be able to find what an alias is aliased to and
// so find its comdat.
Expected<int> getComdatIndex() const;
uint64_t getCommonSize() const {
assert(Flags & object::BasicSymbolRef::SF_Common);
if (!isGV())
return 0;
return getGV()->getParent()->getDataLayout().getTypeAllocSize(
getGV()->getType()->getElementType());
}
unsigned getCommonAlignment() const {
assert(Flags & object::BasicSymbolRef::SF_Common);
if (!isGV())
return 0;
return getGV()->getAlignment();
}
};
class symbol_iterator {
Symbol Sym;
public:
symbol_iterator(ArrayRef<ModuleSymbolTable::Symbol>::iterator I,
const ModuleSymbolTable &SymTab, const InputFile *File)
: Sym(I, SymTab, File) {}
symbol_iterator &operator++() {
++Sym.I;
Sym.skip();
return *this;
}
symbol_iterator operator++(int) {
symbol_iterator I = *this;
++*this;
return I;
}
const Symbol &operator*() const { return Sym; }
const Symbol *operator->() const { return &Sym; }
bool operator!=(const symbol_iterator &Other) const {
return Sym.I != Other.Sym.I;
}
};
/// A range over the symbols in this InputFile.
ArrayRef<Symbol> symbols() const { return Symbols; }
iterator_range<symbol_iterator> symbols() {
return llvm::make_range(
symbol_iterator(SymTab.symbols().begin(), SymTab, this),
symbol_iterator(SymTab.symbols().end(), SymTab, this));
}
/// Returns linker options specified in the input file.
StringRef getCOFFLinkerOpts() const { return COFFLinkerOpts; }
Expected<std::string> getLinkerOpts();
/// Returns the path to the InputFile.
StringRef getName() const;
/// Returns the source file path specified at compile time.
StringRef getSourceFileName() const { return SourceFileName; }
StringRef getSourceFileName() const;
// Returns a table with all the comdats used by this file.
ArrayRef<StringRef> getComdatTable() const { return ComdatTable; }
ArrayRef<StringRef> getComdatTable() const { return Comdats; }
private:
ArrayRef<Symbol> module_symbols(unsigned I) const {
const auto &Indices = ModuleSymIndices[I];
return {Symbols.data() + Indices.first, Symbols.data() + Indices.second};
}
iterator_range<symbol_iterator> module_symbols(InputModule &IM);
};
/// This class wraps an output stream for a native object. Most clients should
@ -335,20 +452,20 @@ private:
// Global mapping from mangled symbol names to resolutions.
StringMap<GlobalResolution> GlobalResolutions;
void addSymbolToGlobalRes(const InputFile::Symbol &Sym, SymbolResolution Res,
void addSymbolToGlobalRes(SmallPtrSet<GlobalValue *, 8> &Used,
const InputFile::Symbol &Sym, SymbolResolution Res,
unsigned Partition);
// These functions take a range of symbol resolutions [ResI, ResE) and consume
// the resolutions used by a single input module by incrementing ResI. After
// these functions return, [ResI, ResE) will refer to the resolution range for
// the remaining modules in the InputFile.
Error addModule(InputFile &Input, unsigned ModI,
Error addModule(InputFile &Input, InputFile::InputModule &IM,
const SymbolResolution *&ResI, const SymbolResolution *ResE);
Error addRegularLTO(BitcodeModule BM,
ArrayRef<InputFile::Symbol> Syms,
const SymbolResolution *&ResI,
Error addRegularLTO(BitcodeModule BM, const SymbolResolution *&ResI,
const SymbolResolution *ResE);
Error addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
Error addThinLTO(BitcodeModule BM, Module &M,
iterator_range<InputFile::symbol_iterator> Syms,
const SymbolResolution *&ResI, const SymbolResolution *ResE);
Error runRegularLTO(AddStreamFn AddStream);

View File

@ -1,298 +0,0 @@
//===- IRSymtab.h - data definitions for IR symbol tables -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains data definitions and a reader and builder for a symbol
// table for LLVM IR. Its purpose is to allow linkers and other consumers of
// bitcode files to efficiently read the symbol table for symbol resolution
// purposes without needing to construct a module in memory.
//
// As with most object files the symbol table has two parts: the symbol table
// itself and a string table which is referenced by the symbol table.
//
// A symbol table corresponds to a single bitcode file, which may consist of
// multiple modules, so symbol tables may likewise contain symbols for multiple
// modules.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_OBJECT_IRSYMTAB_H
#define LLVM_OBJECT_IRSYMTAB_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/Object/SymbolicFile.h"
#include "llvm/Support/Endian.h"
namespace llvm {
namespace irsymtab {
namespace storage {
// The data structures in this namespace define the low-level serialization
// format. Clients that just want to read a symbol table should use the
// irsymtab::Reader class.
typedef support::ulittle32_t Word;
/// A reference to a string in the string table.
struct Str {
Word Offset;
StringRef get(StringRef Strtab) const {
return Strtab.data() + Offset;
}
};
/// A reference to a range of objects in the symbol table.
template <typename T> struct Range {
Word Offset, Size;
ArrayRef<T> get(StringRef Symtab) const {
return {reinterpret_cast<const T *>(Symtab.data() + Offset), Size};
}
};
/// Describes the range of a particular module's symbols within the symbol
/// table.
struct Module {
Word Begin, End;
};
/// This is equivalent to an IR comdat.
struct Comdat {
Str Name;
};
/// Contains the information needed by linkers for symbol resolution, as well as
/// by the LTO implementation itself.
struct Symbol {
/// The mangled symbol name.
Str Name;
/// The unmangled symbol name, or the empty string if this is not an IR
/// symbol.
Str IRName;
/// The index into Header::Comdats, or -1 if not a comdat member.
Word ComdatIndex;
Word Flags;
enum FlagBits {
FB_visibility, // 2 bits
FB_undefined = FB_visibility + 2,
FB_weak,
FB_common,
FB_indirect,
FB_used,
FB_tls,
FB_may_omit,
FB_global,
FB_format_specific,
FB_unnamed_addr,
};
/// The index into the Uncommon table, or -1 if this symbol does not have an
/// Uncommon.
Word UncommonIndex;
};
/// This data structure contains rarely used symbol fields and is optionally
/// referenced by a Symbol.
struct Uncommon {
Word CommonSize, CommonAlign;
/// COFF-specific: the name of the symbol that a weak external resolves to
/// if not defined.
Str COFFWeakExternFallbackName;
};
struct Header {
Range<Module> Modules;
Range<Comdat> Comdats;
Range<Symbol> Symbols;
Range<Uncommon> Uncommons;
Str SourceFileName;
/// COFF-specific: linker directives.
Str COFFLinkerOpts;
};
}
/// Fills in Symtab and Strtab with a valid symbol and string table for Mods.
Error build(ArrayRef<Module *> Mods, SmallVector<char, 0> &Symtab,
SmallVector<char, 0> &Strtab);
/// This represents a symbol that has been read from a storage::Symbol and
/// possibly a storage::Uncommon.
struct Symbol {
// Copied from storage::Symbol.
StringRef Name, IRName;
int ComdatIndex;
uint32_t Flags;
// Copied from storage::Uncommon.
uint32_t CommonSize, CommonAlign;
StringRef COFFWeakExternFallbackName;
/// Returns the mangled symbol name.
StringRef getName() const { return Name; }
/// Returns the unmangled symbol name, or the empty string if this is not an
/// IR symbol.
StringRef getIRName() const { return IRName; }
/// Returns the index into the comdat table (see Reader::getComdatTable()), or
/// -1 if not a comdat member.
int getComdatIndex() const { return ComdatIndex; }
using S = storage::Symbol;
GlobalValue::VisibilityTypes getVisibility() const {
return GlobalValue::VisibilityTypes((Flags >> S::FB_visibility) & 3);
}
bool isUndefined() const { return (Flags >> S::FB_undefined) & 1; }
bool isWeak() const { return (Flags >> S::FB_weak) & 1; }
bool isCommon() const { return (Flags >> S::FB_common) & 1; }
bool isIndirect() const { return (Flags >> S::FB_indirect) & 1; }
bool isUsed() const { return (Flags >> S::FB_used) & 1; }
bool isTLS() const { return (Flags >> S::FB_tls) & 1; }
bool canBeOmittedFromSymbolTable() const {
return (Flags >> S::FB_may_omit) & 1;
}
bool isGlobal() const { return (Flags >> S::FB_global) & 1; }
bool isFormatSpecific() const { return (Flags >> S::FB_format_specific) & 1; }
bool isUnnamedAddr() const { return (Flags >> S::FB_unnamed_addr) & 1; }
uint64_t getCommonSize() const {
assert(isCommon());
return CommonSize;
}
uint32_t getCommonAlignment() const {
assert(isCommon());
return CommonAlign;
}
/// COFF-specific: for weak externals, returns the name of the symbol that is
/// used as a fallback if the weak external remains undefined.
StringRef getCOFFWeakExternalFallback() const {
assert(isWeak() && isIndirect());
return COFFWeakExternFallbackName;
}
};
/// This class can be used to read a Symtab and Strtab produced by
/// irsymtab::build.
class Reader {
StringRef Symtab, Strtab;
ArrayRef<storage::Module> Modules;
ArrayRef<storage::Comdat> Comdats;
ArrayRef<storage::Symbol> Symbols;
ArrayRef<storage::Uncommon> Uncommons;
StringRef str(storage::Str S) const { return S.get(Strtab); }
template <typename T> ArrayRef<T> range(storage::Range<T> R) const {
return R.get(Symtab);
}
const storage::Header &header() const {
return *reinterpret_cast<const storage::Header *>(Symtab.data());
}
public:
class SymbolRef;
Reader() = default;
Reader(StringRef Symtab, StringRef Strtab) : Symtab(Symtab), Strtab(Strtab) {
Modules = range(header().Modules);
Comdats = range(header().Comdats);
Symbols = range(header().Symbols);
Uncommons = range(header().Uncommons);
}
typedef iterator_range<object::content_iterator<SymbolRef>> symbol_range;
/// Returns the symbol table for the entire bitcode file.
/// The symbols enumerated by this method are ephemeral, but they can be
/// copied into an irsymtab::Symbol object.
symbol_range symbols() const;
/// Returns a slice of the symbol table for the I'th module in the file.
/// The symbols enumerated by this method are ephemeral, but they can be
/// copied into an irsymtab::Symbol object.
symbol_range module_symbols(unsigned I) const;
/// Returns the source file path specified at compile time.
StringRef getSourceFileName() const { return str(header().SourceFileName); }
/// Returns a table with all the comdats used by this file.
std::vector<StringRef> getComdatTable() const {
std::vector<StringRef> ComdatTable;
ComdatTable.reserve(Comdats.size());
for (auto C : Comdats)
ComdatTable.push_back(str(C.Name));
return ComdatTable;
}
/// COFF-specific: returns linker options specified in the input file.
StringRef getCOFFLinkerOpts() const { return str(header().COFFLinkerOpts); }
};
/// Ephemeral symbols produced by Reader::symbols() and
/// Reader::module_symbols().
class Reader::SymbolRef : public Symbol {
const storage::Symbol *SymI, *SymE;
const Reader *R;
public:
SymbolRef(const storage::Symbol *SymI, const storage::Symbol *SymE,
const Reader *R)
: SymI(SymI), SymE(SymE), R(R) {
read();
}
void read() {
if (SymI == SymE)
return;
Name = R->str(SymI->Name);
IRName = R->str(SymI->IRName);
ComdatIndex = SymI->ComdatIndex;
Flags = SymI->Flags;
uint32_t UncI = SymI->UncommonIndex;
if (UncI != -1u) {
const storage::Uncommon &Unc = R->Uncommons[UncI];
CommonSize = Unc.CommonSize;
CommonAlign = Unc.CommonAlign;
COFFWeakExternFallbackName = R->str(Unc.COFFWeakExternFallbackName);
}
}
void moveNext() {
++SymI;
read();
}
bool operator==(const SymbolRef &Other) const { return SymI == Other.SymI; }
};
inline Reader::symbol_range Reader::symbols() const {
return {SymbolRef(Symbols.begin(), Symbols.end(), this),
SymbolRef(Symbols.end(), Symbols.end(), this)};
}
inline Reader::symbol_range Reader::module_symbols(unsigned I) const {
const storage::Module &M = Modules[I];
const storage::Symbol *MBegin = Symbols.begin() + M.Begin,
*MEnd = Symbols.begin() + M.End;
return {SymbolRef(MBegin, MEnd, this), SymbolRef(MEnd, MEnd, this)};
}
}
}
#endif

View File

@ -305,6 +305,14 @@ void llvm::thinLTOInternalizeAndPromoteInIndex(
thinLTOInternalizeAndPromoteGUID(I.second, I.first, isExported);
}
struct InputFile::InputModule {
BitcodeModule BM;
std::unique_ptr<Module> Mod;
// The range of ModuleSymbolTable entries for this input module.
size_t SymBegin, SymEnd;
};
// Requires a destructor for std::vector<InputModule>.
InputFile::~InputFile() = default;
@ -325,51 +333,87 @@ Expected<std::unique_ptr<InputFile>> InputFile::create(MemoryBufferRef Object) {
return make_error<StringError>("Bitcode file does not contain any modules",
inconvertibleErrorCode());
File->Mods = *BMsOrErr;
LLVMContext Ctx;
std::vector<Module *> Mods;
std::vector<std::unique_ptr<Module>> OwnedMods;
// Create an InputModule for each module in the InputFile, and add it to the
// ModuleSymbolTable.
for (auto BM : *BMsOrErr) {
Expected<std::unique_ptr<Module>> MOrErr =
BM.getLazyModule(Ctx, /*ShouldLazyLoadMetadata*/ true,
BM.getLazyModule(File->Ctx, /*ShouldLazyLoadMetadata*/ true,
/*IsImporting*/ false);
if (!MOrErr)
return MOrErr.takeError();
if ((*MOrErr)->getDataLayoutStr().empty())
return make_error<StringError>("input module has no datalayout",
inconvertibleErrorCode());
size_t SymBegin = File->SymTab.symbols().size();
File->SymTab.addModule(MOrErr->get());
size_t SymEnd = File->SymTab.symbols().size();
Mods.push_back(MOrErr->get());
OwnedMods.push_back(std::move(*MOrErr));
for (const auto &C : (*MOrErr)->getComdatSymbolTable()) {
auto P = File->ComdatMap.insert(
std::make_pair(&C.second, File->Comdats.size()));
assert(P.second);
(void)P;
File->Comdats.push_back(C.first());
}
SmallVector<char, 0> Symtab;
if (Error E = irsymtab::build(Mods, Symtab, File->Strtab))
return std::move(E);
irsymtab::Reader R({Symtab.data(), Symtab.size()},
{File->Strtab.data(), File->Strtab.size()});
File->SourceFileName = R.getSourceFileName();
File->COFFLinkerOpts = R.getCOFFLinkerOpts();
File->ComdatTable = R.getComdatTable();
for (unsigned I = 0; I != Mods.size(); ++I) {
size_t Begin = File->Symbols.size();
for (const irsymtab::Reader::SymbolRef &Sym : R.module_symbols(I))
// Skip symbols that are irrelevant to LTO. Note that this condition needs
// to match the one in Skip() in LTO::addRegularLTO().
if (Sym.isGlobal() && !Sym.isFormatSpecific())
File->Symbols.push_back(Sym);
File->ModuleSymIndices.push_back({Begin, File->Symbols.size()});
File->Mods.push_back({BM, std::move(*MOrErr), SymBegin, SymEnd});
}
return std::move(File);
}
Expected<int> InputFile::Symbol::getComdatIndex() const {
if (!isGV())
return -1;
const GlobalObject *GO = getGV()->getBaseObject();
if (!GO)
return make_error<StringError>("Unable to determine comdat of alias!",
inconvertibleErrorCode());
if (const Comdat *C = GO->getComdat()) {
auto I = File->ComdatMap.find(C);
assert(I != File->ComdatMap.end());
return I->second;
}
return -1;
}
Expected<std::string> InputFile::getLinkerOpts() {
std::string LinkerOpts;
raw_string_ostream LOS(LinkerOpts);
// Extract linker options from module metadata.
for (InputModule &Mod : Mods) {
std::unique_ptr<Module> &M = Mod.Mod;
if (auto E = M->materializeMetadata())
return std::move(E);
if (Metadata *Val = M->getModuleFlag("Linker Options")) {
MDNode *LinkerOptions = cast<MDNode>(Val);
for (const MDOperand &MDOptions : LinkerOptions->operands())
for (const MDOperand &MDOption : cast<MDNode>(MDOptions)->operands())
LOS << " " << cast<MDString>(MDOption)->getString();
}
}
// Synthesize export flags for symbols with dllexport storage.
const Triple TT(Mods[0].Mod->getTargetTriple());
Mangler M;
for (const ModuleSymbolTable::Symbol &Sym : SymTab.symbols())
if (auto *GV = Sym.dyn_cast<GlobalValue*>())
emitLinkerFlagsForGlobalCOFF(LOS, GV, TT, M);
LOS.flush();
return LinkerOpts;
}
StringRef InputFile::getName() const {
return Mods[0].getModuleIdentifier();
return Mods[0].BM.getModuleIdentifier();
}
StringRef InputFile::getSourceFileName() const {
return Mods[0].Mod->getSourceFileName();
}
iterator_range<InputFile::symbol_iterator>
InputFile::module_symbols(InputModule &IM) {
return llvm::make_range(
symbol_iterator(SymTab.symbols().data() + IM.SymBegin, SymTab, this),
symbol_iterator(SymTab.symbols().data() + IM.SymEnd, SymTab, this));
}
LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel,
@ -393,17 +437,21 @@ LTO::LTO(Config Conf, ThinBackend Backend,
LTO::~LTO() = default;
// Add the given symbol to the GlobalResolutions map, and resolve its partition.
void LTO::addSymbolToGlobalRes(const InputFile::Symbol &Sym,
void LTO::addSymbolToGlobalRes(SmallPtrSet<GlobalValue *, 8> &Used,
const InputFile::Symbol &Sym,
SymbolResolution Res, unsigned Partition) {
auto &GlobalRes = GlobalResolutions[Sym.getName()];
GlobalRes.UnnamedAddr &= Sym.isUnnamedAddr();
if (Res.Prevailing)
GlobalRes.IRName = Sym.getIRName();
GlobalValue *GV = Sym.isGV() ? Sym.getGV() : nullptr;
auto &GlobalRes = GlobalResolutions[Sym.getName()];
if (GV) {
GlobalRes.UnnamedAddr &= GV->hasGlobalUnnamedAddr();
if (Res.Prevailing)
GlobalRes.IRName = GV->getName();
}
// Set the partition to external if we know it is used elsewhere, e.g.
// it is visible to a regular object, is referenced from llvm.compiler_used,
// or was already recorded as being referenced from a different partition.
if (Res.VisibleToRegularObj || Sym.isUsed() ||
if (Res.VisibleToRegularObj || (GV && Used.count(GV)) ||
(GlobalRes.Partition != GlobalResolution::Unknown &&
GlobalRes.Partition != Partition)) {
GlobalRes.Partition = GlobalResolution::External;
@ -447,32 +495,41 @@ Error LTO::add(std::unique_ptr<InputFile> Input,
writeToResolutionFile(*Conf.ResolutionFile, Input.get(), Res);
const SymbolResolution *ResI = Res.begin();
for (unsigned I = 0; I != Input->Mods.size(); ++I)
if (Error Err = addModule(*Input, I, ResI, Res.end()))
for (InputFile::InputModule &IM : Input->Mods)
if (Error Err = addModule(*Input, IM, ResI, Res.end()))
return Err;
assert(ResI == Res.end());
return Error::success();
}
Error LTO::addModule(InputFile &Input, unsigned ModI,
Error LTO::addModule(InputFile &Input, InputFile::InputModule &IM,
const SymbolResolution *&ResI,
const SymbolResolution *ResE) {
Expected<bool> HasThinLTOSummary = Input.Mods[ModI].hasSummary();
// FIXME: move to backend
Module &M = *IM.Mod;
if (M.getDataLayoutStr().empty())
return make_error<StringError>("input module has no datalayout",
inconvertibleErrorCode());
if (!Conf.OverrideTriple.empty())
M.setTargetTriple(Conf.OverrideTriple);
else if (M.getTargetTriple().empty())
M.setTargetTriple(Conf.DefaultTriple);
Expected<bool> HasThinLTOSummary = IM.BM.hasSummary();
if (!HasThinLTOSummary)
return HasThinLTOSummary.takeError();
auto ModSyms = Input.module_symbols(ModI);
if (*HasThinLTOSummary)
return addThinLTO(Input.Mods[ModI], ModSyms, ResI, ResE);
return addThinLTO(IM.BM, M, Input.module_symbols(IM), ResI, ResE);
else
return addRegularLTO(Input.Mods[ModI], ModSyms, ResI, ResE);
return addRegularLTO(IM.BM, ResI, ResE);
}
// Add a regular LTO object to the link.
Error LTO::addRegularLTO(BitcodeModule BM,
ArrayRef<InputFile::Symbol> Syms,
const SymbolResolution *&ResI,
Error LTO::addRegularLTO(BitcodeModule BM, const SymbolResolution *&ResI,
const SymbolResolution *ResE) {
if (!RegularLTO.CombinedModule) {
RegularLTO.CombinedModule =
@ -493,6 +550,9 @@ Error LTO::addRegularLTO(BitcodeModule BM,
ModuleSymbolTable SymTab;
SymTab.addModule(&M);
SmallPtrSet<GlobalValue *, 8> Used;
collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ false);
std::vector<GlobalValue *> Keep;
for (GlobalVariable &GV : M.globals())
@ -504,35 +564,17 @@ Error LTO::addRegularLTO(BitcodeModule BM,
if (GlobalObject *GO = GA.getBaseObject())
AliasedGlobals.insert(GO);
// In this function we need IR GlobalValues matching the symbols in Syms
// (which is not backed by a module), so we need to enumerate them in the same
// order. The symbol enumeration order of a ModuleSymbolTable intentionally
// matches the order of an irsymtab, but when we read the irsymtab in
// InputFile::create we omit some symbols that are irrelevant to LTO. The
// Skip() function skips the same symbols from the module as InputFile does
// from the symbol table.
auto MsymI = SymTab.symbols().begin(), MsymE = SymTab.symbols().end();
auto Skip = [&]() {
while (MsymI != MsymE) {
auto Flags = SymTab.getSymbolFlags(*MsymI);
if ((Flags & object::BasicSymbolRef::SF_Global) &&
!(Flags & object::BasicSymbolRef::SF_FormatSpecific))
return;
++MsymI;
}
};
Skip();
for (const InputFile::Symbol &Sym : Syms) {
for (const InputFile::Symbol &Sym :
make_range(InputFile::symbol_iterator(SymTab.symbols().begin(), SymTab,
nullptr),
InputFile::symbol_iterator(SymTab.symbols().end(), SymTab,
nullptr))) {
assert(ResI != ResE);
SymbolResolution Res = *ResI++;
addSymbolToGlobalRes(Sym, Res, 0);
addSymbolToGlobalRes(Used, Sym, Res, 0);
assert(MsymI != MsymE);
ModuleSymbolTable::Symbol Msym = *MsymI++;
Skip();
if (GlobalValue *GV = Msym.dyn_cast<GlobalValue *>()) {
if (Sym.isGV()) {
GlobalValue *GV = Sym.getGV();
if (Res.Prevailing) {
if (Sym.isUndefined())
continue;
@ -570,7 +612,7 @@ Error LTO::addRegularLTO(BitcodeModule BM,
if (Sym.isCommon()) {
// FIXME: We should figure out what to do about commons defined by asm.
// For now they aren't reported correctly by ModuleSymbolTable.
auto &CommonRes = RegularLTO.Commons[Sym.getIRName()];
auto &CommonRes = RegularLTO.Commons[Sym.getGV()->getName()];
CommonRes.Size = std::max(CommonRes.Size, Sym.getCommonSize());
CommonRes.Align = std::max(CommonRes.Align, Sym.getCommonAlignment());
CommonRes.Prevailing |= Res.Prevailing;
@ -578,7 +620,6 @@ Error LTO::addRegularLTO(BitcodeModule BM,
// FIXME: use proposed local attribute for FinalDefinitionInLinkageUnit.
}
assert(MsymI == MsymE);
return RegularLTO.Mover->move(std::move(*MOrErr), Keep,
[](GlobalValue &, IRMover::ValueAdder) {},
@ -586,10 +627,15 @@ Error LTO::addRegularLTO(BitcodeModule BM,
}
// Add a ThinLTO object to the link.
Error LTO::addThinLTO(BitcodeModule BM,
ArrayRef<InputFile::Symbol> Syms,
// FIXME: This function should not need to take as many parameters once we have
// a bitcode symbol table.
Error LTO::addThinLTO(BitcodeModule BM, Module &M,
iterator_range<InputFile::symbol_iterator> Syms,
const SymbolResolution *&ResI,
const SymbolResolution *ResE) {
SmallPtrSet<GlobalValue *, 8> Used;
collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ false);
Expected<std::unique_ptr<ModuleSummaryIndex>> SummaryOrErr = BM.getSummary();
if (!SummaryOrErr)
return SummaryOrErr.takeError();
@ -599,15 +645,11 @@ Error LTO::addThinLTO(BitcodeModule BM,
for (const InputFile::Symbol &Sym : Syms) {
assert(ResI != ResE);
SymbolResolution Res = *ResI++;
addSymbolToGlobalRes(Sym, Res, ThinLTO.ModuleMap.size() + 1);
addSymbolToGlobalRes(Used, Sym, Res, ThinLTO.ModuleMap.size() + 1);
if (Res.Prevailing) {
if (!Sym.getIRName().empty()) {
auto GUID = GlobalValue::getGUID(GlobalValue::getGlobalIdentifier(
Sym.getIRName(), GlobalValue::ExternalLinkage, ""));
ThinLTO.PrevailingModuleForGUID[GUID] = BM.getModuleIdentifier();
}
}
if (Res.Prevailing && Sym.isGV())
ThinLTO.PrevailingModuleForGUID[Sym.getGV()->getGUID()] =
BM.getModuleIdentifier();
}
if (!ThinLTO.ModuleMap.insert({BM.getModuleIdentifier(), BM}).second)

View File

@ -8,7 +8,6 @@ add_llvm_library(LLVMObject
ELFObjectFile.cpp
Error.cpp
IRObjectFile.cpp
IRSymtab.cpp
MachOObjectFile.cpp
MachOUniversal.cpp
ModuleSummaryIndexObjectFile.cpp

View File

@ -1,228 +0,0 @@
//===- IRSymtab.cpp - implementation of IR symbol tables --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Object/IRSymtab.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Object/ModuleSymbolTable.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/StringSaver.h"
using namespace llvm;
using namespace irsymtab;
namespace {
/// Stores the temporary state that is required to build an IR symbol table.
struct Builder {
SmallVector<char, 0> &Symtab;
SmallVector<char, 0> &Strtab;
Builder(SmallVector<char, 0> &Symtab, SmallVector<char, 0> &Strtab)
: Symtab(Symtab), Strtab(Strtab) {}
StringTableBuilder StrtabBuilder{StringTableBuilder::ELF};
BumpPtrAllocator Alloc;
StringSaver Saver{Alloc};
DenseMap<const Comdat *, unsigned> ComdatMap;
ModuleSymbolTable Msymtab;
SmallPtrSet<GlobalValue *, 8> Used;
Mangler Mang;
Triple TT;
std::vector<storage::Comdat> Comdats;
std::vector<storage::Module> Mods;
std::vector<storage::Symbol> Syms;
std::vector<storage::Uncommon> Uncommons;
std::string COFFLinkerOpts;
raw_string_ostream COFFLinkerOptsOS{COFFLinkerOpts};
void setStr(storage::Str &S, StringRef Value) {
S.Offset = StrtabBuilder.add(Value);
}
template <typename T>
void writeRange(storage::Range<T> &R, const std::vector<T> &Objs) {
R.Offset = Symtab.size();
R.Size = Objs.size();
Symtab.insert(Symtab.end(), reinterpret_cast<const char *>(Objs.data()),
reinterpret_cast<const char *>(Objs.data() + Objs.size()));
}
Error addModule(Module *M);
Error addSymbol(ModuleSymbolTable::Symbol Sym);
Error build(ArrayRef<Module *> Mods);
};
Error Builder::addModule(Module *M) {
collectUsedGlobalVariables(*M, Used, /*CompilerUsed*/ false);
storage::Module Mod;
Mod.Begin = Msymtab.symbols().size();
Msymtab.addModule(M);
Mod.End = Msymtab.symbols().size();
Mods.push_back(Mod);
if (TT.isOSBinFormatCOFF()) {
if (auto E = M->materializeMetadata())
return E;
if (Metadata *Val = M->getModuleFlag("Linker Options")) {
MDNode *LinkerOptions = cast<MDNode>(Val);
for (const MDOperand &MDOptions : LinkerOptions->operands())
for (const MDOperand &MDOption : cast<MDNode>(MDOptions)->operands())
COFFLinkerOptsOS << " " << cast<MDString>(MDOption)->getString();
}
}
return Error::success();
}
Error Builder::addSymbol(ModuleSymbolTable::Symbol Msym) {
Syms.emplace_back();
storage::Symbol &Sym = Syms.back();
Sym = {};
Sym.UncommonIndex = -1;
storage::Uncommon *Unc = nullptr;
auto Uncommon = [&]() -> storage::Uncommon & {
if (Unc)
return *Unc;
Sym.UncommonIndex = Uncommons.size();
Uncommons.emplace_back();
Unc = &Uncommons.back();
*Unc = {};
setStr(Unc->COFFWeakExternFallbackName, "");
return *Unc;
};
SmallString<64> Name;
{
raw_svector_ostream OS(Name);
Msymtab.printSymbolName(OS, Msym);
}
setStr(Sym.Name, Saver.save(StringRef(Name)));
auto Flags = Msymtab.getSymbolFlags(Msym);
if (Flags & object::BasicSymbolRef::SF_Undefined)
Sym.Flags |= 1 << storage::Symbol::FB_undefined;
if (Flags & object::BasicSymbolRef::SF_Weak)
Sym.Flags |= 1 << storage::Symbol::FB_weak;
if (Flags & object::BasicSymbolRef::SF_Common)
Sym.Flags |= 1 << storage::Symbol::FB_common;
if (Flags & object::BasicSymbolRef::SF_Indirect)
Sym.Flags |= 1 << storage::Symbol::FB_indirect;
if (Flags & object::BasicSymbolRef::SF_Global)
Sym.Flags |= 1 << storage::Symbol::FB_global;
if (Flags & object::BasicSymbolRef::SF_FormatSpecific)
Sym.Flags |= 1 << storage::Symbol::FB_format_specific;
Sym.ComdatIndex = -1;
auto *GV = Msym.dyn_cast<GlobalValue *>();
if (!GV) {
setStr(Sym.IRName, "");
return Error::success();
}
setStr(Sym.IRName, GV->getName());
if (Used.count(GV))
Sym.Flags |= 1 << storage::Symbol::FB_used;
if (GV->isThreadLocal())
Sym.Flags |= 1 << storage::Symbol::FB_tls;
if (GV->hasGlobalUnnamedAddr())
Sym.Flags |= 1 << storage::Symbol::FB_unnamed_addr;
if (canBeOmittedFromSymbolTable(GV))
Sym.Flags |= 1 << storage::Symbol::FB_may_omit;
Sym.Flags |= unsigned(GV->getVisibility()) << storage::Symbol::FB_visibility;
if (Flags & object::BasicSymbolRef::SF_Common) {
Uncommon().CommonSize = GV->getParent()->getDataLayout().getTypeAllocSize(
GV->getType()->getElementType());
Uncommon().CommonAlign = GV->getAlignment();
}
const GlobalObject *Base = GV->getBaseObject();
if (!Base)
return make_error<StringError>("Unable to determine comdat of alias!",
inconvertibleErrorCode());
if (const Comdat *C = Base->getComdat()) {
auto P = ComdatMap.insert(std::make_pair(C, Comdats.size()));
Sym.ComdatIndex = P.first->second;
if (P.second) {
storage::Comdat Comdat;
setStr(Comdat.Name, C->getName());
Comdats.push_back(Comdat);
}
}
if (TT.isOSBinFormatCOFF()) {
emitLinkerFlagsForGlobalCOFF(COFFLinkerOptsOS, GV, TT, Mang);
if ((Flags & object::BasicSymbolRef::SF_Weak) &&
(Flags & object::BasicSymbolRef::SF_Indirect)) {
std::string FallbackName;
raw_string_ostream OS(FallbackName);
Msymtab.printSymbolName(
OS, cast<GlobalValue>(
cast<GlobalAlias>(GV)->getAliasee()->stripPointerCasts()));
OS.flush();
setStr(Uncommon().COFFWeakExternFallbackName, Saver.save(FallbackName));
}
}
return Error::success();
}
Error Builder::build(ArrayRef<Module *> IRMods) {
storage::Header Hdr;
assert(!IRMods.empty());
setStr(Hdr.SourceFileName, IRMods[0]->getSourceFileName());
TT = Triple(IRMods[0]->getTargetTriple());
// This adds the symbols for each module to Msymtab.
for (auto *M : IRMods)
if (Error Err = addModule(M))
return Err;
for (ModuleSymbolTable::Symbol Msym : Msymtab.symbols())
if (Error Err = addSymbol(Msym))
return Err;
COFFLinkerOptsOS.flush();
setStr(Hdr.COFFLinkerOpts, COFFLinkerOpts);
// We are about to fill in the header's range fields, so reserve space for it
// and copy it in afterwards.
Symtab.resize(sizeof(storage::Header));
writeRange(Hdr.Modules, Mods);
writeRange(Hdr.Comdats, Comdats);
writeRange(Hdr.Symbols, Syms);
writeRange(Hdr.Uncommons, Uncommons);
*reinterpret_cast<storage::Header *>(Symtab.data()) = Hdr;
raw_svector_ostream OS(Strtab);
StrtabBuilder.finalizeInOrder();
StrtabBuilder.write(OS);
return Error::success();
}
} // anonymous namespace
Error irsymtab::build(ArrayRef<Module *> Mods, SmallVector<char, 0> &Symtab,
SmallVector<char, 0> &Strtab) {
return Builder(Symtab, Strtab).build(Mods);
}

View File

@ -465,7 +465,7 @@ static ld_plugin_status claim_file_hook(const ld_plugin_input_file *file,
EC == object::object_error::bitcode_section_not_found)
*claimed = 0;
else
message(LDPL_FATAL,
message(LDPL_ERROR,
"LLVM gold plugin has failed to create LTO module: %s",
EI.message().c_str());
});
@ -536,7 +536,7 @@ static ld_plugin_status claim_file_hook(const ld_plugin_input_file *file,
sym.size = 0;
sym.comdat_key = nullptr;
int CI = Sym.getComdatIndex();
int CI = check(Sym.getComdatIndex());
if (CI != -1) {
StringRef C = Obj->getComdatTable()[CI];
sym.comdat_key = strdup(C.str().c_str());