Revert "[AMDGPU] Support disassembly for AMDGPU kernel descriptors"

This reverts commit 487a805310.

Tests fail on big endian machines.
This commit is contained in:
Ronak Chauhan 2020-09-09 18:01:28 +05:30
parent d816499f95
commit f078577f31
11 changed files with 50 additions and 690 deletions

View File

@ -162,49 +162,39 @@ struct kernel_descriptor_t {
uint8_t reserved2[6];
};
enum : uint32_t {
GROUP_SEGMENT_FIXED_SIZE_OFFSET = 0,
PRIVATE_SEGMENT_FIXED_SIZE_OFFSET = 4,
RESERVED0_OFFSET = 8,
KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET = 16,
RESERVED1_OFFSET = 24,
COMPUTE_PGM_RSRC3_OFFSET = 44,
COMPUTE_PGM_RSRC1_OFFSET = 48,
COMPUTE_PGM_RSRC2_OFFSET = 52,
KERNEL_CODE_PROPERTIES_OFFSET = 56,
RESERVED2_OFFSET = 58,
};
static_assert(
sizeof(kernel_descriptor_t) == 64,
"invalid size for kernel_descriptor_t");
static_assert(offsetof(kernel_descriptor_t, group_segment_fixed_size) ==
GROUP_SEGMENT_FIXED_SIZE_OFFSET,
"invalid offset for group_segment_fixed_size");
static_assert(offsetof(kernel_descriptor_t, private_segment_fixed_size) ==
PRIVATE_SEGMENT_FIXED_SIZE_OFFSET,
"invalid offset for private_segment_fixed_size");
static_assert(offsetof(kernel_descriptor_t, reserved0) == RESERVED0_OFFSET,
"invalid offset for reserved0");
static_assert(offsetof(kernel_descriptor_t, kernel_code_entry_byte_offset) ==
KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET,
"invalid offset for kernel_code_entry_byte_offset");
static_assert(offsetof(kernel_descriptor_t, reserved1) == RESERVED1_OFFSET,
"invalid offset for reserved1");
static_assert(offsetof(kernel_descriptor_t, compute_pgm_rsrc3) ==
COMPUTE_PGM_RSRC3_OFFSET,
"invalid offset for compute_pgm_rsrc3");
static_assert(offsetof(kernel_descriptor_t, compute_pgm_rsrc1) ==
COMPUTE_PGM_RSRC1_OFFSET,
"invalid offset for compute_pgm_rsrc1");
static_assert(offsetof(kernel_descriptor_t, compute_pgm_rsrc2) ==
COMPUTE_PGM_RSRC2_OFFSET,
"invalid offset for compute_pgm_rsrc2");
static_assert(offsetof(kernel_descriptor_t, kernel_code_properties) ==
KERNEL_CODE_PROPERTIES_OFFSET,
"invalid offset for kernel_code_properties");
static_assert(offsetof(kernel_descriptor_t, reserved2) == RESERVED2_OFFSET,
"invalid offset for reserved2");
static_assert(
offsetof(kernel_descriptor_t, group_segment_fixed_size) == 0,
"invalid offset for group_segment_fixed_size");
static_assert(
offsetof(kernel_descriptor_t, private_segment_fixed_size) == 4,
"invalid offset for private_segment_fixed_size");
static_assert(
offsetof(kernel_descriptor_t, reserved0) == 8,
"invalid offset for reserved0");
static_assert(
offsetof(kernel_descriptor_t, kernel_code_entry_byte_offset) == 16,
"invalid offset for kernel_code_entry_byte_offset");
static_assert(
offsetof(kernel_descriptor_t, reserved1) == 24,
"invalid offset for reserved1");
static_assert(
offsetof(kernel_descriptor_t, compute_pgm_rsrc3) == 44,
"invalid offset for compute_pgm_rsrc3");
static_assert(
offsetof(kernel_descriptor_t, compute_pgm_rsrc1) == 48,
"invalid offset for compute_pgm_rsrc1");
static_assert(
offsetof(kernel_descriptor_t, compute_pgm_rsrc2) == 52,
"invalid offset for compute_pgm_rsrc2");
static_assert(
offsetof(kernel_descriptor_t, kernel_code_properties) == 56,
"invalid offset for kernel_code_properties");
static_assert(
offsetof(kernel_descriptor_t, reserved2) == 58,
"invalid offset for reserved2");
} // end namespace amdhsa
} // end namespace llvm

View File

@ -34,7 +34,6 @@
#include "llvm/MC/MCFixedLenDisassembler.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/AMDHSAKernelDescriptor.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
@ -1216,350 +1215,6 @@ bool AMDGPUDisassembler::isGFX10() const {
return STI.getFeatureBits()[AMDGPU::FeatureGFX10];
}
//===----------------------------------------------------------------------===//
// AMDGPU specific symbol handling
//===----------------------------------------------------------------------===//
#define PRINT_DIRECTIVE(DIRECTIVE, MASK) \
do { \
KdStream << Indent << DIRECTIVE " " \
<< ((FourByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \
} while (0)
// NOLINTNEXTLINE(readability-identifier-naming)
MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC1(
uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
using namespace amdhsa;
StringRef Indent = "\t";
// We cannot accurately backward compute #VGPRs used from
// GRANULATED_WORKITEM_VGPR_COUNT. But we are concerned with getting the same
// value of GRANULATED_WORKITEM_VGPR_COUNT in the reassembled binary. So we
// simply calculate the inverse of what the assembler does.
uint32_t GranulatedWorkitemVGPRCount =
(FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT) >>
COMPUTE_PGM_RSRC1_GRANULATED_WORKITEM_VGPR_COUNT_SHIFT;
uint32_t NextFreeVGPR = (GranulatedWorkitemVGPRCount + 1) *
AMDGPU::IsaInfo::getVGPREncodingGranule(&STI);
KdStream << Indent << ".amdhsa_next_free_vgpr " << NextFreeVGPR << '\n';
// We cannot backward compute values used to calculate
// GRANULATED_WAVEFRONT_SGPR_COUNT. Hence the original values for following
// directives can't be computed:
// .amdhsa_reserve_vcc
// .amdhsa_reserve_flat_scratch
// .amdhsa_reserve_xnack_mask
// They take their respective default values if not specified in the assembly.
//
// GRANULATED_WAVEFRONT_SGPR_COUNT
// = f(NEXT_FREE_SGPR + VCC + FLAT_SCRATCH + XNACK_MASK)
//
// We compute the inverse as though all directives apart from NEXT_FREE_SGPR
// are set to 0. So while disassembling we consider that:
//
// GRANULATED_WAVEFRONT_SGPR_COUNT
// = f(NEXT_FREE_SGPR + 0 + 0 + 0)
//
// The disassembler cannot recover the original values of those 3 directives.
uint32_t GranulatedWavefrontSGPRCount =
(FourByteBuffer & COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT) >>
COMPUTE_PGM_RSRC1_GRANULATED_WAVEFRONT_SGPR_COUNT_SHIFT;
if (isGFX10() && GranulatedWavefrontSGPRCount)
return MCDisassembler::Fail;
uint32_t NextFreeSGPR = (GranulatedWavefrontSGPRCount + 1) *
AMDGPU::IsaInfo::getSGPREncodingGranule(&STI);
KdStream << Indent << ".amdhsa_reserve_vcc " << 0 << '\n';
KdStream << Indent << ".amdhsa_reserve_flat_scratch " << 0 << '\n';
KdStream << Indent << ".amdhsa_reserve_xnack_mask " << 0 << '\n';
KdStream << Indent << ".amdhsa_next_free_sgpr " << NextFreeSGPR << "\n";
if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIORITY)
return MCDisassembler::Fail;
PRINT_DIRECTIVE(".amdhsa_float_round_mode_32",
COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_32);
PRINT_DIRECTIVE(".amdhsa_float_round_mode_16_64",
COMPUTE_PGM_RSRC1_FLOAT_ROUND_MODE_16_64);
PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_32",
COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_32);
PRINT_DIRECTIVE(".amdhsa_float_denorm_mode_16_64",
COMPUTE_PGM_RSRC1_FLOAT_DENORM_MODE_16_64);
if (FourByteBuffer & COMPUTE_PGM_RSRC1_PRIV)
return MCDisassembler::Fail;
PRINT_DIRECTIVE(".amdhsa_dx10_clamp", COMPUTE_PGM_RSRC1_ENABLE_DX10_CLAMP);
if (FourByteBuffer & COMPUTE_PGM_RSRC1_DEBUG_MODE)
return MCDisassembler::Fail;
PRINT_DIRECTIVE(".amdhsa_ieee_mode", COMPUTE_PGM_RSRC1_ENABLE_IEEE_MODE);
if (FourByteBuffer & COMPUTE_PGM_RSRC1_BULKY)
return MCDisassembler::Fail;
if (FourByteBuffer & COMPUTE_PGM_RSRC1_CDBG_USER)
return MCDisassembler::Fail;
PRINT_DIRECTIVE(".amdhsa_fp16_overflow", COMPUTE_PGM_RSRC1_FP16_OVFL);
if (FourByteBuffer & COMPUTE_PGM_RSRC1_RESERVED0)
return MCDisassembler::Fail;
if (isGFX10()) {
PRINT_DIRECTIVE(".amdhsa_workgroup_processor_mode",
COMPUTE_PGM_RSRC1_WGP_MODE);
PRINT_DIRECTIVE(".amdhsa_memory_ordered", COMPUTE_PGM_RSRC1_MEM_ORDERED);
PRINT_DIRECTIVE(".amdhsa_forward_progress", COMPUTE_PGM_RSRC1_FWD_PROGRESS);
}
return MCDisassembler::Success;
}
// NOLINTNEXTLINE(readability-identifier-naming)
MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeCOMPUTE_PGM_RSRC2(
uint32_t FourByteBuffer, raw_string_ostream &KdStream) const {
using namespace amdhsa;
StringRef Indent = "\t";
PRINT_DIRECTIVE(
".amdhsa_system_sgpr_private_segment_wavefront_offset",
COMPUTE_PGM_RSRC2_ENABLE_SGPR_PRIVATE_SEGMENT_WAVEFRONT_OFFSET);
PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_x",
COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_X);
PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_y",
COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Y);
PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_id_z",
COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_ID_Z);
PRINT_DIRECTIVE(".amdhsa_system_sgpr_workgroup_info",
COMPUTE_PGM_RSRC2_ENABLE_SGPR_WORKGROUP_INFO);
PRINT_DIRECTIVE(".amdhsa_system_vgpr_workitem_id",
COMPUTE_PGM_RSRC2_ENABLE_VGPR_WORKITEM_ID);
if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_ADDRESS_WATCH)
return MCDisassembler::Fail;
if (FourByteBuffer & COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_MEMORY)
return MCDisassembler::Fail;
if (FourByteBuffer & COMPUTE_PGM_RSRC2_GRANULATED_LDS_SIZE)
return MCDisassembler::Fail;
PRINT_DIRECTIVE(
".amdhsa_exception_fp_ieee_invalid_op",
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION);
PRINT_DIRECTIVE(".amdhsa_exception_fp_denorm_src",
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_FP_DENORMAL_SOURCE);
PRINT_DIRECTIVE(
".amdhsa_exception_fp_ieee_div_zero",
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO);
PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_overflow",
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW);
PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_underflow",
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW);
PRINT_DIRECTIVE(".amdhsa_exception_fp_ieee_inexact",
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_IEEE_754_FP_INEXACT);
PRINT_DIRECTIVE(".amdhsa_exception_int_div_zero",
COMPUTE_PGM_RSRC2_ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO);
if (FourByteBuffer & COMPUTE_PGM_RSRC2_RESERVED0)
return MCDisassembler::Fail;
return MCDisassembler::Success;
}
#undef PRINT_DIRECTIVE
MCDisassembler::DecodeStatus
AMDGPUDisassembler::decodeKernelDescriptorDirective(
DataExtractor::Cursor &Cursor, ArrayRef<uint8_t> Bytes,
raw_string_ostream &KdStream) const {
#define PRINT_DIRECTIVE(DIRECTIVE, MASK) \
do { \
KdStream << Indent << DIRECTIVE " " \
<< ((TwoByteBuffer & MASK) >> (MASK##_SHIFT)) << '\n'; \
} while (0)
uint16_t TwoByteBuffer = 0;
uint32_t FourByteBuffer = 0;
uint64_t EightByteBuffer = 0;
StringRef ReservedBytes;
StringRef Indent = "\t";
assert(Bytes.size() == 64);
DataExtractor DE(Bytes, /*IsLittleEndian=*/true, /*AddressSize=*/8);
switch (Cursor.tell()) {
case amdhsa::GROUP_SEGMENT_FIXED_SIZE_OFFSET:
FourByteBuffer = DE.getU32(Cursor);
KdStream << Indent << ".amdhsa_group_segment_fixed_size " << FourByteBuffer
<< '\n';
return MCDisassembler::Success;
case amdhsa::PRIVATE_SEGMENT_FIXED_SIZE_OFFSET:
FourByteBuffer = DE.getU32(Cursor);
KdStream << Indent << ".amdhsa_private_segment_fixed_size "
<< FourByteBuffer << '\n';
return MCDisassembler::Success;
case amdhsa::RESERVED0_OFFSET:
// 8 reserved bytes, must be 0.
EightByteBuffer = DE.getU64(Cursor);
if (EightByteBuffer) {
return MCDisassembler::Fail;
}
return MCDisassembler::Success;
case amdhsa::KERNEL_CODE_ENTRY_BYTE_OFFSET_OFFSET:
// KERNEL_CODE_ENTRY_BYTE_OFFSET
// So far no directive controls this for Code Object V3, so simply skip for
// disassembly.
DE.skip(Cursor, 8);
return MCDisassembler::Success;
case amdhsa::RESERVED1_OFFSET:
// 20 reserved bytes, must be 0.
ReservedBytes = DE.getBytes(Cursor, 20);
for (int I = 0; I < 20; ++I) {
if (ReservedBytes[I] != 0) {
return MCDisassembler::Fail;
}
}
return MCDisassembler::Success;
case amdhsa::COMPUTE_PGM_RSRC3_OFFSET:
// COMPUTE_PGM_RSRC3
// - Only set for GFX10, GFX6-9 have this to be 0.
// - Currently no directives directly control this.
FourByteBuffer = DE.getU32(Cursor);
if (!isGFX10() && FourByteBuffer) {
return MCDisassembler::Fail;
}
return MCDisassembler::Success;
case amdhsa::COMPUTE_PGM_RSRC1_OFFSET:
FourByteBuffer = DE.getU32(Cursor);
if (decodeCOMPUTE_PGM_RSRC1(FourByteBuffer, KdStream) ==
MCDisassembler::Fail) {
return MCDisassembler::Fail;
}
return MCDisassembler::Success;
case amdhsa::COMPUTE_PGM_RSRC2_OFFSET:
FourByteBuffer = DE.getU32(Cursor);
if (decodeCOMPUTE_PGM_RSRC2(FourByteBuffer, KdStream) ==
MCDisassembler::Fail) {
return MCDisassembler::Fail;
}
return MCDisassembler::Success;
case amdhsa::KERNEL_CODE_PROPERTIES_OFFSET:
using namespace amdhsa;
TwoByteBuffer = DE.getU16(Cursor);
PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_buffer",
KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER);
PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_ptr",
KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR);
PRINT_DIRECTIVE(".amdhsa_user_sgpr_queue_ptr",
KERNEL_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR);
PRINT_DIRECTIVE(".amdhsa_user_sgpr_kernarg_segment_ptr",
KERNEL_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR);
PRINT_DIRECTIVE(".amdhsa_user_sgpr_dispatch_id",
KERNEL_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID);
PRINT_DIRECTIVE(".amdhsa_user_sgpr_flat_scratch_init",
KERNEL_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT);
PRINT_DIRECTIVE(".amdhsa_user_sgpr_private_segment_size",
KERNEL_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE);
if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED0)
return MCDisassembler::Fail;
// Reserved for GFX9
if (isGFX9() &&
(TwoByteBuffer & KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32)) {
return MCDisassembler::Fail;
} else if (isGFX10()) {
PRINT_DIRECTIVE(".amdhsa_wavefront_size32",
KERNEL_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32);
}
if (TwoByteBuffer & KERNEL_CODE_PROPERTY_RESERVED1)
return MCDisassembler::Fail;
return MCDisassembler::Success;
case amdhsa::RESERVED2_OFFSET:
// 6 bytes from here are reserved, must be 0.
ReservedBytes = DE.getBytes(Cursor, 6);
for (int I = 0; I < 6; ++I) {
if (ReservedBytes[I] != 0)
return MCDisassembler::Fail;
}
return MCDisassembler::Success;
default:
llvm_unreachable("Unhandled index. Case statements cover everything.");
return MCDisassembler::Fail;
}
#undef PRINT_DIRECTIVE
}
MCDisassembler::DecodeStatus AMDGPUDisassembler::decodeKernelDescriptor(
StringRef KdName, ArrayRef<uint8_t> Bytes, uint64_t KdAddress) const {
// CP microcode requires the kernel descriptor to be 64 aligned.
if (Bytes.size() != 64 || KdAddress % 64 != 0)
return MCDisassembler::Fail;
std::string Kd;
raw_string_ostream KdStream(Kd);
KdStream << ".amdhsa_kernel " << KdName << '\n';
DataExtractor::Cursor C(0);
while (C && C.tell() < Bytes.size()) {
MCDisassembler::DecodeStatus Status =
decodeKernelDescriptorDirective(C, Bytes, KdStream);
cantFail(C.takeError());
if (Status == MCDisassembler::Fail)
return MCDisassembler::Fail;
}
KdStream << ".end_amdhsa_kernel\n";
outs() << KdStream.str();
return MCDisassembler::Success;
}
Optional<MCDisassembler::DecodeStatus>
AMDGPUDisassembler::onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
ArrayRef<uint8_t> Bytes, uint64_t Address,
raw_ostream &CStream) const {
// Right now only kernel descriptor needs to be handled.
// We ignore all other symbols for target specific handling.
// TODO:
// Fix the spurious symbol issue for AMDGPU kernels. Exists for both Code
// Object V2 and V3 when symbols are marked protected.
// amd_kernel_code_t for Code Object V2.
if (Symbol.Type == ELF::STT_AMDGPU_HSA_KERNEL) {
Size = 256;
return MCDisassembler::Fail;
}
// Code Object V3 kernel descriptors.
StringRef Name = Symbol.Name;
if (Symbol.Type == ELF::STT_OBJECT && Name.endswith(StringRef(".kd"))) {
Size = 64; // Size = 64 regardless of success or failure.
return decodeKernelDescriptor(Name.drop_back(3), Bytes, Address);
}
return None;
}
//===----------------------------------------------------------------------===//
// AMDGPUSymbolizer
//===----------------------------------------------------------------------===//

View File

@ -17,11 +17,10 @@
#include "llvm/ADT/ArrayRef.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
#include "llvm/MC/MCDisassembler/MCSymbolizer.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/Support/DataExtractor.h"
#include <algorithm>
#include <cstdint>
@ -67,33 +66,6 @@ public:
DecodeStatus tryDecodeInst(const uint8_t* Table, MCInst &MI, uint64_t Inst,
uint64_t Address) const;
Optional<DecodeStatus> onSymbolStart(SymbolInfoTy &Symbol, uint64_t &Size,
ArrayRef<uint8_t> Bytes,
uint64_t Address,
raw_ostream &CStream) const override;
DecodeStatus decodeKernelDescriptor(StringRef KdName, ArrayRef<uint8_t> Bytes,
uint64_t KdAddress) const;
DecodeStatus
decodeKernelDescriptorDirective(DataExtractor::Cursor &Cursor,
ArrayRef<uint8_t> Bytes,
raw_string_ostream &KdStream) const;
/// Decode as directives that handle COMPUTE_PGM_RSRC1.
/// \param FourByteBuffer - Bytes holding contents of COMPUTE_PGM_RSRC1.
/// \param KdStream - Stream to write the disassembled directives to.
// NOLINTNEXTLINE(readability-identifier-naming)
DecodeStatus decodeCOMPUTE_PGM_RSRC1(uint32_t FourByteBuffer,
raw_string_ostream &KdStream) const;
/// Decode as directives that handle COMPUTE_PGM_RSRC2.
/// \param FourByteBuffer - Bytes holding contents of COMPUTE_PGM_RSRC2.
/// \param KdStream - Stream to write the disassembled directives to.
// NOLINTNEXTLINE(readability-identifier-naming)
DecodeStatus decodeCOMPUTE_PGM_RSRC2(uint32_t FourByteBuffer,
raw_string_ostream &KdStream) const;
DecodeStatus convertSDWAInst(MCInst &MI) const;
DecodeStatus convertDPP8Inst(MCInst &MI) const;
DecodeStatus convertMIMGInst(MCInst &MI) const;

View File

@ -1,7 +1,7 @@
; RUN: llc -mtriple=amdgcn--amdhsa -mattr=-code-object-v3 -mcpu=fiji -filetype=obj < %s | llvm-objdump -d - --mcpu=fiji | FileCheck %s
; CHECK: <kernel0>:
; CHECK: s_endpgm
; CHECK-NEXT: s_endpgm
define amdgpu_kernel void @kernel0() align 256 {
entry:
ret void
@ -80,7 +80,7 @@ entry:
; CHECK-EMPTY:
; CHECK-NEXT: <kernel1>:
; CHECK: s_endpgm
; CHECK-NEXT: s_endpgm
define amdgpu_kernel void @kernel1(i32 addrspace(1)* addrspace(4)* %ptr.out) align 256 {
entry:
ret void

View File

@ -1,37 +0,0 @@
;; Failure test. We create a malformed kernel descriptor (KD) by manually
;; setting the bytes, because one can't create a malformed KD using the
;; assembler directives.
; RUN: llvm-mc %s -mattr=+code-object-v3 --triple=amdgcn-amd-amdhsa -mcpu=gfx908 -filetype=obj -o %t.o
; RUN: printf ".type my_kernel.kd, @object \nmy_kernel.kd:\n.size my_kernel.kd, 64\n" > %t1.sym_info
; RUN: llvm-objdump --disassemble-symbols=my_kernel.kd %t.o \
; RUN: | tail -n +9 > %t1.sym_content
; RUN: cat %t1.sym_info %t1.sym_content > %t1.s
; RUN: llvm-mc %t1.s -mattr=+code-object-v3 --triple=amdgcn-amd-amdhsa -mcpu=gfx908 -filetype=obj -o %t-re-assemble.o
; RUN: diff %t.o %t-re-assemble.o
;; Test failure by setting one of the reserved bytes to non-zero value.
.type my_kernel.kd, @object
.size my_kernel.kd, 64
my_kernel.kd:
.long 0x00000000 ;; group_segment_fixed_size
.long 0x00000000 ;; private_segment_fixed_size
.quad 0x00FF000000000000 ;; reserved bytes.
.quad 0x0000000000000000 ;; kernel_code_entry_byte_offset, any value works.
;; 20 reserved bytes.
.quad 0x0000000000000000
.quad 0x0000000000000000
.long 0x00000000
.long 0x00000000 ;; compute_PGM_RSRC3
.long 0x00000000 ;; compute_PGM_RSRC1
.long 0x00000000 ;; compute_PGM_RSRC2
.short 0x0000 ;; additional fields.
;; 6 reserved bytes.
.long 0x0000000
.short 0x0000

View File

@ -1,49 +0,0 @@
;; Test disassembly for GRANULATED_WAVEFRONT_SGPR_COUNT in the kernel descriptor.
; RUN: split-file %s %t.dir
; RUN: llvm-mc %t.dir/1.s -mattr=+code-object-v3 --triple=amdgcn-amd-amdhsa -mcpu=gfx908 -filetype=obj -o %t1
; RUN: llvm-objdump --disassemble-symbols=my_kernel_1.kd %t1 | tail -n +8 \
; RUN: | llvm-mc --triple=amdgcn-amd-amdhsa -mcpu=gfx908 -filetype=obj -o %t1-re-assemble
; RUN: diff %t1 %t1-re-assemble
; RUN: llvm-mc %t.dir/2.s -mattr=+code-object-v3 --triple=amdgcn-amd-amdhsa -mcpu=gfx908 -filetype=obj -o %t2
; RUN: llvm-objdump --disassemble-symbols=my_kernel_2.kd %t2 | tail -n +8 \
; RUN: | llvm-mc --triple=amdgcn-amd-amdhsa -mcpu=gfx908 -filetype=obj -o %t2-re-assemble
; RUN: diff %t2 %t2-re-assemble
; RUN: llvm-mc %t.dir/3.s -mattr=+code-object-v3 --triple=amdgcn-amd-amdhsa -mcpu=gfx908 -filetype=obj -o %t3
; RUN: llvm-objdump --disassemble-symbols=my_kernel_3.kd %t3 | tail -n +8 \
; RUN: | llvm-mc --triple=amdgcn-amd-amdhsa -mcpu=gfx908 -filetype=obj -o %t3-re-assemble
; RUN: diff %t3 %t3-re-assemble
;--- 1.s
;; Only set next_free_sgpr.
.amdhsa_kernel my_kernel_1
.amdhsa_next_free_vgpr 0
.amdhsa_next_free_sgpr 42
.amdhsa_reserve_flat_scratch 0
.amdhsa_reserve_xnack_mask 0
.amdhsa_reserve_vcc 0
.end_amdhsa_kernel
;--- 2.s
;; Only set other directives.
.amdhsa_kernel my_kernel_2
.amdhsa_next_free_vgpr 0
.amdhsa_next_free_sgpr 0
.amdhsa_reserve_flat_scratch 1
.amdhsa_reserve_xnack_mask 1
.amdhsa_reserve_vcc 1
.end_amdhsa_kernel
;--- 3.s
;; Set all affecting directives.
.amdhsa_kernel my_kernel_3
.amdhsa_next_free_vgpr 0
.amdhsa_next_free_sgpr 35
.amdhsa_reserve_flat_scratch 1
.amdhsa_reserve_xnack_mask 1
.amdhsa_reserve_vcc 1
.end_amdhsa_kernel

View File

@ -1,36 +0,0 @@
;; Test disassembly for GRANULATED_WORKITEM_VGPR_COUNT in the kernel descriptor.
; RUN: split-file %s %t.dir
; RUN: llvm-mc %t.dir/1.s -mattr=+code-object-v3 --triple=amdgcn-amd-amdhsa -mcpu=gfx908 -filetype=obj -o %t1
; RUN: llvm-objdump --disassemble-symbols=my_kernel_1.kd %t1 | tail -n +8 \
; RUN: | llvm-mc --triple=amdgcn-amd-amdhsa -mcpu=gfx908 -filetype=obj -o %t1-re-assemble
; RUN: diff %t1 %t1-re-assemble
; RUN: llvm-mc %t.dir/2.s -mattr=+code-object-v3 --triple=amdgcn-amd-amdhsa -mcpu=gfx908 -filetype=obj -o %t2
; RUN: llvm-objdump --disassemble-symbols=my_kernel_2.kd %t2 | tail -n +8 \
; RUN: | llvm-mc --triple=amdgcn-amd-amdhsa -mcpu=gfx908 -filetype=obj -o %t2-re-assemble
; RUN: diff %t2 %t2-re-assemble
; RUN: llvm-mc %t.dir/3.s -mattr=+code-object-v3 --triple=amdgcn-amd-amdhsa -mcpu=gfx908 -filetype=obj -o %t3
; RUN: llvm-objdump --disassemble-symbols=my_kernel_3.kd %t3 | tail -n +8 \
; RUN: | llvm-mc --triple=amdgcn-amd-amdhsa -mcpu=gfx908 -filetype=obj -o %t3-re-assemble
; RUN: diff %t3 %t3-re-assemble
;--- 1.s
.amdhsa_kernel my_kernel_1
.amdhsa_next_free_vgpr 23
.amdhsa_next_free_sgpr 0
.end_amdhsa_kernel
;--- 2.s
.amdhsa_kernel my_kernel_2
.amdhsa_next_free_vgpr 14
.amdhsa_next_free_sgpr 0
.end_amdhsa_kernel
;--- 3.s
.amdhsa_kernel my_kernel_3
.amdhsa_next_free_vgpr 32
.amdhsa_next_free_sgpr 0
.end_amdhsa_kernel

View File

@ -1,58 +0,0 @@
;; Entirely zeroed kernel descriptor (for GFX10).
; RUN: llvm-mc %s -mattr=+code-object-v3 --triple=amdgcn-amd-amdhsa -mcpu=gfx1010 -filetype=obj -o %t
; RUN: llvm-objdump -s -j .text %t | FileCheck --check-prefix=OBJDUMP %s
;; TODO:
;; This file and kd-zeroed-raw.s should produce the same output for the kernel
;; descriptor - a block of 64 zeroed bytes. But looks like the assembler sets
;; the FWD_PROGRESS bit in COMPUTE_PGM_RSRC1 to 1 even when the directive
;; mentions 0 (see line 36).
;; Check the raw bytes right now.
; OBJDUMP: 0000 00000000 00000000 00000000 00000000
; OBJDUMP-NEXT: 0010 00000000 00000000 00000000 00000000
; OBJDUMP-NEXT: 0020 00000000 00000000 00000000 00000000
; OBJDUMP-NEXT: 0030 01000000 00000000 00000000 00000000
.amdhsa_kernel my_kernel
.amdhsa_group_segment_fixed_size 0
.amdhsa_private_segment_fixed_size 0
.amdhsa_next_free_vgpr 8
.amdhsa_reserve_vcc 0
.amdhsa_reserve_flat_scratch 0
.amdhsa_reserve_xnack_mask 0
.amdhsa_next_free_sgpr 8
.amdhsa_float_round_mode_32 0
.amdhsa_float_round_mode_16_64 0
.amdhsa_float_denorm_mode_32 0
.amdhsa_float_denorm_mode_16_64 0
.amdhsa_dx10_clamp 0
.amdhsa_ieee_mode 0
.amdhsa_fp16_overflow 0
.amdhsa_workgroup_processor_mode 0
.amdhsa_memory_ordered 0
.amdhsa_forward_progress 0
.amdhsa_system_sgpr_private_segment_wavefront_offset 0
.amdhsa_system_sgpr_workgroup_id_x 0
.amdhsa_system_sgpr_workgroup_id_y 0
.amdhsa_system_sgpr_workgroup_id_z 0
.amdhsa_system_sgpr_workgroup_info 0
.amdhsa_system_vgpr_workitem_id 0
.amdhsa_exception_fp_ieee_invalid_op 0
.amdhsa_exception_fp_denorm_src 0
.amdhsa_exception_fp_ieee_div_zero 0
.amdhsa_exception_fp_ieee_overflow 0
.amdhsa_exception_fp_ieee_underflow 0
.amdhsa_exception_fp_ieee_inexact 0
.amdhsa_exception_int_div_zero 0
.amdhsa_user_sgpr_private_segment_buffer 0
.amdhsa_user_sgpr_dispatch_ptr 0
.amdhsa_user_sgpr_queue_ptr 0
.amdhsa_user_sgpr_kernarg_segment_ptr 0
.amdhsa_user_sgpr_dispatch_id 0
.amdhsa_user_sgpr_flat_scratch_init 0
.amdhsa_user_sgpr_private_segment_size 0
.amdhsa_wavefront_size32 0
.end_amdhsa_kernel

View File

@ -1,53 +0,0 @@
;; Entirely zeroed kernel descriptor (for GFX9).
; RUN: llvm-mc %s -mattr=+code-object-v3 --triple=amdgcn-amd-amdhsa -mcpu=gfx908 -filetype=obj -o %t1
; RUN: llvm-objdump --disassemble-symbols=my_kernel.kd %t1 \
; RUN: | tail -n +8 | llvm-mc --triple=amdgcn-amd-amdhsa -mcpu=gfx908 -filetype=obj -o %t2
; RUN: diff %t1 %t2
; RUN: llvm-objdump -s -j .text %t1 | FileCheck --check-prefix=OBJDUMP %s
; OBJDUMP: 0000 00000000 00000000 00000000 00000000
; OBJDUMP-NEXT: 0010 00000000 00000000 00000000 00000000
; OBJDUMP-NEXT: 0020 00000000 00000000 00000000 00000000
; OBJDUMP-NEXT: 0030 00000000 00000000 00000000 00000000
;; This file and kd-zeroed-raw.s produce the same output for the kernel
;; descriptor - a block of 64 zeroed bytes.
.amdhsa_kernel my_kernel
.amdhsa_group_segment_fixed_size 0
.amdhsa_private_segment_fixed_size 0
.amdhsa_next_free_vgpr 0
.amdhsa_reserve_vcc 0
.amdhsa_reserve_flat_scratch 0
.amdhsa_reserve_xnack_mask 0
.amdhsa_next_free_sgpr 0
.amdhsa_float_round_mode_32 0
.amdhsa_float_round_mode_16_64 0
.amdhsa_float_denorm_mode_32 0
.amdhsa_float_denorm_mode_16_64 0
.amdhsa_dx10_clamp 0
.amdhsa_ieee_mode 0
.amdhsa_fp16_overflow 0
.amdhsa_system_sgpr_private_segment_wavefront_offset 0
.amdhsa_system_sgpr_workgroup_id_x 0
.amdhsa_system_sgpr_workgroup_id_y 0
.amdhsa_system_sgpr_workgroup_id_z 0
.amdhsa_system_sgpr_workgroup_info 0
.amdhsa_system_vgpr_workitem_id 0
.amdhsa_exception_fp_ieee_invalid_op 0
.amdhsa_exception_fp_denorm_src 0
.amdhsa_exception_fp_ieee_div_zero 0
.amdhsa_exception_fp_ieee_overflow 0
.amdhsa_exception_fp_ieee_underflow 0
.amdhsa_exception_fp_ieee_inexact 0
.amdhsa_exception_int_div_zero 0
.amdhsa_user_sgpr_private_segment_buffer 0
.amdhsa_user_sgpr_dispatch_ptr 0
.amdhsa_user_sgpr_queue_ptr 0
.amdhsa_user_sgpr_kernarg_segment_ptr 0
.amdhsa_user_sgpr_dispatch_id 0
.amdhsa_user_sgpr_flat_scratch_init 0
.amdhsa_user_sgpr_private_segment_size 0
.end_amdhsa_kernel

View File

@ -1,41 +0,0 @@
; RUN: llvm-mc %s -mattr=+code-object-v3 --triple=amdgcn-amd-amdhsa -mcpu=gfx908 -filetype=obj -o %t1
; RUN: llvm-objdump --disassemble-symbols=my_kernel.kd %t1 \
; RUN: | tail -n +8 | llvm-mc --triple=amdgcn-amd-amdhsa -mcpu=gfx908 -filetype=obj -o %t2
; RUN: llvm-objdump -s -j .text %t2 | FileCheck --check-prefix=OBJDUMP %s
;; Not running lit-test over gfx10 (see kd-zeroed-gfx10.s for details).
;; kd-zeroed-raw.s and kd-zeroed-*.s should produce the same output for the
;; kernel descriptor - a block of 64 zeroed bytes.
;; The disassembly will produce the contents of kd-zeroed-*.s which on being
;; assembled contains additional relocation info. A diff over the entire object
;; will fail in this case. So we check by looking the bytes in .text.
; OBJDUMP: 0000 00000000 00000000 00000000 00000000
; OBJDUMP-NEXT: 0010 00000000 00000000 00000000 00000000
; OBJDUMP-NEXT: 0020 00000000 00000000 00000000 00000000
; OBJDUMP-NEXT: 0030 00000000 00000000 00000000 00000000
;; The entire object is zeroed out.
.type my_kernel.kd, @object
.size my_kernel.kd, 64
my_kernel.kd:
.long 0x00000000 ;; group_segment_fixed_size
.long 0x00000000 ;; private_segment_fixed_size
.quad 0x0000000000000000 ;; reserved bytes.
.quad 0x0000000000000000 ;; kernel_code_entry_byte_offset, any value works.
;; 20 reserved bytes.
.quad 0x0000000000000000
.quad 0x0000000000000000
.long 0x00000000
.long 0x00000000 ;; compute_PGM_RSRC3
.long 0x00000000 ;; compute_PGM_RSRC1
.long 0x00000000 ;; compute_PGM_RSRC2
.short 0x0000 ;; additional fields.
;; 6 reserved bytes.
.long 0x0000000
.short 0x0000

View File

@ -1854,6 +1854,23 @@ static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj,
outs() << SectionName << ":\n";
}
if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
if (Symbols[SI].Type == ELF::STT_AMDGPU_HSA_KERNEL) {
// skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
Start += 256;
}
if (SI == SE - 1 ||
Symbols[SI + 1].Type == ELF::STT_AMDGPU_HSA_KERNEL) {
// cut trailing zeroes at the end of kernel
// cut up to 256 bytes
const uint64_t EndAlign = 256;
const auto Limit = End - (std::min)(EndAlign, End - Start);
while (End > Limit &&
*reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
End -= 4;
}
}
outs() << '\n';
if (!NoLeadingAddr)
outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",