forked from OSchip/llvm-project
Updated APFloat's comments to fit the LLVM style guide.
Also added a few more method comments and performed some copy editing. llvm-svn: 183063
This commit is contained in:
parent
a4bc5e1201
commit
f033431862
|
@ -6,102 +6,14 @@
|
|||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file declares a class to represent arbitrary precision floating
|
||||
// point values and provide a variety of arithmetic operations on them.
|
||||
//
|
||||
///
|
||||
/// \file
|
||||
/// \brief
|
||||
/// This file declares a class to represent arbitrary precision floating point
|
||||
/// values and provide a variety of arithmetic operations on them.
|
||||
///
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
/* A self-contained host- and target-independent arbitrary-precision
|
||||
floating-point software implementation. It uses bignum integer
|
||||
arithmetic as provided by static functions in the APInt class.
|
||||
The library will work with bignum integers whose parts are any
|
||||
unsigned type at least 16 bits wide, but 64 bits is recommended.
|
||||
|
||||
Written for clarity rather than speed, in particular with a view
|
||||
to use in the front-end of a cross compiler so that target
|
||||
arithmetic can be correctly performed on the host. Performance
|
||||
should nonetheless be reasonable, particularly for its intended
|
||||
use. It may be useful as a base implementation for a run-time
|
||||
library during development of a faster target-specific one.
|
||||
|
||||
All 5 rounding modes in the IEEE-754R draft are handled correctly
|
||||
for all implemented operations. Currently implemented operations
|
||||
are add, subtract, multiply, divide, fused-multiply-add,
|
||||
conversion-to-float, conversion-to-integer and
|
||||
conversion-from-integer. New rounding modes (e.g. away from zero)
|
||||
can be added with three or four lines of code.
|
||||
|
||||
Four formats are built-in: IEEE single precision, double
|
||||
precision, quadruple precision, and x87 80-bit extended double
|
||||
(when operating with full extended precision). Adding a new
|
||||
format that obeys IEEE semantics only requires adding two lines of
|
||||
code: a declaration and definition of the format.
|
||||
|
||||
All operations return the status of that operation as an exception
|
||||
bit-mask, so multiple operations can be done consecutively with
|
||||
their results or-ed together. The returned status can be useful
|
||||
for compiler diagnostics; e.g., inexact, underflow and overflow
|
||||
can be easily diagnosed on constant folding, and compiler
|
||||
optimizers can determine what exceptions would be raised by
|
||||
folding operations and optimize, or perhaps not optimize,
|
||||
accordingly.
|
||||
|
||||
At present, underflow tininess is detected after rounding; it
|
||||
should be straight forward to add support for the before-rounding
|
||||
case too.
|
||||
|
||||
The library reads hexadecimal floating point numbers as per C99,
|
||||
and correctly rounds if necessary according to the specified
|
||||
rounding mode. Syntax is required to have been validated by the
|
||||
caller. It also converts floating point numbers to hexadecimal
|
||||
text as per the C99 %a and %A conversions. The output precision
|
||||
(or alternatively the natural minimal precision) can be specified;
|
||||
if the requested precision is less than the natural precision the
|
||||
output is correctly rounded for the specified rounding mode.
|
||||
|
||||
It also reads decimal floating point numbers and correctly rounds
|
||||
according to the specified rounding mode.
|
||||
|
||||
Conversion to decimal text is not currently implemented.
|
||||
|
||||
Non-zero finite numbers are represented internally as a sign bit,
|
||||
a 16-bit signed exponent, and the significand as an array of
|
||||
integer parts. After normalization of a number of precision P the
|
||||
exponent is within the range of the format, and if the number is
|
||||
not denormal the P-th bit of the significand is set as an explicit
|
||||
integer bit. For denormals the most significant bit is shifted
|
||||
right so that the exponent is maintained at the format's minimum,
|
||||
so that the smallest denormal has just the least significant bit
|
||||
of the significand set. The sign of zeroes and infinities is
|
||||
significant; the exponent and significand of such numbers is not
|
||||
stored, but has a known implicit (deterministic) value: 0 for the
|
||||
significands, 0 for zero exponent, all 1 bits for infinity
|
||||
exponent. For NaNs the sign and significand are deterministic,
|
||||
although not really meaningful, and preserved in non-conversion
|
||||
operations. The exponent is implicitly all 1 bits.
|
||||
|
||||
APFloat does not provide any exception handling beyond default exception
|
||||
handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
|
||||
by encoding Signaling NaNs with the first bit of its trailing significand as
|
||||
0.
|
||||
|
||||
TODO
|
||||
====
|
||||
|
||||
Some features that may or may not be worth adding:
|
||||
|
||||
Binary to decimal conversion (hard).
|
||||
|
||||
Optional ability to detect underflow tininess before rounding.
|
||||
|
||||
New formats: x87 in single and double precision mode (IEEE apart
|
||||
from extended exponent range) (hard).
|
||||
|
||||
New operations: sqrt, IEEE remainder, C90 fmod, nextafter,
|
||||
nexttoward.
|
||||
*/
|
||||
|
||||
#ifndef LLVM_ADT_APFLOAT_H
|
||||
#define LLVM_ADT_APFLOAT_H
|
||||
|
||||
|
@ -110,16 +22,17 @@
|
|||
|
||||
namespace llvm {
|
||||
|
||||
/* Exponents are stored as signed numbers. */
|
||||
/// A signed type to represent a floating point numbers unbiased exponent.
|
||||
typedef signed short exponent_t;
|
||||
|
||||
struct fltSemantics;
|
||||
class APSInt;
|
||||
class StringRef;
|
||||
|
||||
/* When bits of a floating point number are truncated, this enum is
|
||||
used to indicate what fraction of the LSB those bits represented.
|
||||
It essentially combines the roles of guard and sticky bits. */
|
||||
/// Enum that represents what fraction of the LSB truncated bits of an fp number
|
||||
/// represent.
|
||||
///
|
||||
/// This essentially combines the roles of guard and sticky bits.
|
||||
enum lostFraction { // Example of truncated bits:
|
||||
lfExactlyZero, // 000000
|
||||
lfLessThanHalf, // 0xxxxx x's not all zero
|
||||
|
@ -127,23 +40,109 @@ enum lostFraction { // Example of truncated bits:
|
|||
lfMoreThanHalf // 1xxxxx x's not all zero
|
||||
};
|
||||
|
||||
/// \brief A self-contained host- and target-independent arbitrary-precision
|
||||
/// floating-point software implementation.
|
||||
///
|
||||
/// APFloat uses bignum integer arithmetic as provided by static functions in
|
||||
/// the APInt class. The library will work with bignum integers whose parts are
|
||||
/// any unsigned type at least 16 bits wide, but 64 bits is recommended.
|
||||
///
|
||||
/// Written for clarity rather than speed, in particular with a view to use in
|
||||
/// the front-end of a cross compiler so that target arithmetic can be correctly
|
||||
/// performed on the host. Performance should nonetheless be reasonable,
|
||||
/// particularly for its intended use. It may be useful as a base
|
||||
/// implementation for a run-time library during development of a faster
|
||||
/// target-specific one.
|
||||
///
|
||||
/// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
|
||||
/// implemented operations. Currently implemented operations are add, subtract,
|
||||
/// multiply, divide, fused-multiply-add, conversion-to-float,
|
||||
/// conversion-to-integer and conversion-from-integer. New rounding modes
|
||||
/// (e.g. away from zero) can be added with three or four lines of code.
|
||||
///
|
||||
/// Four formats are built-in: IEEE single precision, double precision,
|
||||
/// quadruple precision, and x87 80-bit extended double (when operating with
|
||||
/// full extended precision). Adding a new format that obeys IEEE semantics
|
||||
/// only requires adding two lines of code: a declaration and definition of the
|
||||
/// format.
|
||||
///
|
||||
/// All operations return the status of that operation as an exception bit-mask,
|
||||
/// so multiple operations can be done consecutively with their results or-ed
|
||||
/// together. The returned status can be useful for compiler diagnostics; e.g.,
|
||||
/// inexact, underflow and overflow can be easily diagnosed on constant folding,
|
||||
/// and compiler optimizers can determine what exceptions would be raised by
|
||||
/// folding operations and optimize, or perhaps not optimize, accordingly.
|
||||
///
|
||||
/// At present, underflow tininess is detected after rounding; it should be
|
||||
/// straight forward to add support for the before-rounding case too.
|
||||
///
|
||||
/// The library reads hexadecimal floating point numbers as per C99, and
|
||||
/// correctly rounds if necessary according to the specified rounding mode.
|
||||
/// Syntax is required to have been validated by the caller. It also converts
|
||||
/// floating point numbers to hexadecimal text as per the C99 %a and %A
|
||||
/// conversions. The output precision (or alternatively the natural minimal
|
||||
/// precision) can be specified; if the requested precision is less than the
|
||||
/// natural precision the output is correctly rounded for the specified rounding
|
||||
/// mode.
|
||||
///
|
||||
/// It also reads decimal floating point numbers and correctly rounds according
|
||||
/// to the specified rounding mode.
|
||||
///
|
||||
/// Conversion to decimal text is not currently implemented.
|
||||
///
|
||||
/// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
|
||||
/// signed exponent, and the significand as an array of integer parts. After
|
||||
/// normalization of a number of precision P the exponent is within the range of
|
||||
/// the format, and if the number is not denormal the P-th bit of the
|
||||
/// significand is set as an explicit integer bit. For denormals the most
|
||||
/// significant bit is shifted right so that the exponent is maintained at the
|
||||
/// format's minimum, so that the smallest denormal has just the least
|
||||
/// significant bit of the significand set. The sign of zeroes and infinities
|
||||
/// is significant; the exponent and significand of such numbers is not stored,
|
||||
/// but has a known implicit (deterministic) value: 0 for the significands, 0
|
||||
/// for zero exponent, all 1 bits for infinity exponent. For NaNs the sign and
|
||||
/// significand are deterministic, although not really meaningful, and preserved
|
||||
/// in non-conversion operations. The exponent is implicitly all 1 bits.
|
||||
///
|
||||
/// APFloat does not provide any exception handling beyond default exception
|
||||
/// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
|
||||
/// by encoding Signaling NaNs with the first bit of its trailing significand as
|
||||
/// 0.
|
||||
///
|
||||
/// TODO
|
||||
/// ====
|
||||
///
|
||||
/// Some features that may or may not be worth adding:
|
||||
///
|
||||
/// Binary to decimal conversion (hard).
|
||||
///
|
||||
/// Optional ability to detect underflow tininess before rounding.
|
||||
///
|
||||
/// New formats: x87 in single and double precision mode (IEEE apart from
|
||||
/// extended exponent range) (hard).
|
||||
///
|
||||
/// New operations: sqrt, IEEE remainder, C90 fmod, nextafter, nexttoward.
|
||||
///
|
||||
class APFloat {
|
||||
public:
|
||||
|
||||
/* We support the following floating point semantics. */
|
||||
/// \name Floating Point Semantics.
|
||||
/// @{
|
||||
|
||||
static const fltSemantics IEEEhalf;
|
||||
static const fltSemantics IEEEsingle;
|
||||
static const fltSemantics IEEEdouble;
|
||||
static const fltSemantics IEEEquad;
|
||||
static const fltSemantics PPCDoubleDouble;
|
||||
static const fltSemantics x87DoubleExtended;
|
||||
/* And this pseudo, used to construct APFloats that cannot
|
||||
conflict with anything real. */
|
||||
|
||||
/// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
|
||||
/// anything real.
|
||||
static const fltSemantics Bogus;
|
||||
|
||||
static unsigned int semanticsPrecision(const fltSemantics &);
|
||||
|
||||
/* Floating point numbers have a four-state comparison relation. */
|
||||
/// IEEE-754R 5.11: Floating Point Comparison Relations.
|
||||
enum cmpResult {
|
||||
cmpLessThan,
|
||||
cmpEqual,
|
||||
|
@ -151,7 +150,7 @@ public:
|
|||
cmpUnordered
|
||||
};
|
||||
|
||||
/* IEEE-754R gives five rounding modes. */
|
||||
/// IEEE-754R 4.3: Rounding-direction attributes.
|
||||
enum roundingMode {
|
||||
rmNearestTiesToEven,
|
||||
rmTowardPositive,
|
||||
|
@ -160,8 +159,9 @@ public:
|
|||
rmNearestTiesToAway
|
||||
};
|
||||
|
||||
// Operation status. opUnderflow or opOverflow are always returned
|
||||
// or-ed with opInexact.
|
||||
/// IEEE-754R 7: Default exception handling.
|
||||
///
|
||||
/// opUnderflow or opOverflow are always returned or-ed with opInexact.
|
||||
enum opStatus {
|
||||
opOK = 0x00,
|
||||
opInvalidOp = 0x01,
|
||||
|
@ -171,7 +171,7 @@ public:
|
|||
opInexact = 0x10
|
||||
};
|
||||
|
||||
// Category of internally-represented number.
|
||||
/// Category of internally-represented number.
|
||||
enum fltCategory {
|
||||
fcInfinity,
|
||||
fcNaN,
|
||||
|
@ -179,11 +179,14 @@ public:
|
|||
fcZero
|
||||
};
|
||||
|
||||
/// Convenience enum used to construct an uninitialized APFloat.
|
||||
enum uninitializedTag {
|
||||
uninitialized
|
||||
};
|
||||
|
||||
// Constructors.
|
||||
/// \name Constructors
|
||||
/// @{
|
||||
|
||||
APFloat(const fltSemantics &); // Default construct to 0.0
|
||||
APFloat(const fltSemantics &, StringRef);
|
||||
APFloat(const fltSemantics &, integerPart);
|
||||
|
@ -195,7 +198,11 @@ public:
|
|||
APFloat(const APFloat &);
|
||||
~APFloat();
|
||||
|
||||
// Convenience "constructors"
|
||||
/// @}
|
||||
|
||||
/// \name Convenience "constructors"
|
||||
/// @{
|
||||
|
||||
static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
|
||||
return APFloat(Sem, fcZero, Negative);
|
||||
}
|
||||
|
@ -203,7 +210,7 @@ public:
|
|||
return APFloat(Sem, fcInfinity, Negative);
|
||||
}
|
||||
|
||||
/// getNaN - Factory for QNaN values.
|
||||
/// Factory for QNaN values.
|
||||
///
|
||||
/// \param Negative - True iff the NaN generated should be negative.
|
||||
/// \param type - The unspecified fill bits for creating the NaN, 0 by
|
||||
|
@ -218,75 +225,82 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
/// getQNan - Factory for QNaN values.
|
||||
/// Factory for QNaN values.
|
||||
static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
|
||||
const APInt *payload = 0) {
|
||||
return makeNaN(Sem, false, Negative, payload);
|
||||
}
|
||||
|
||||
/// getSNan - Factory for SNaN values.
|
||||
/// Factory for SNaN values.
|
||||
static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
|
||||
const APInt *payload = 0) {
|
||||
return makeNaN(Sem, true, Negative, payload);
|
||||
}
|
||||
|
||||
/// getLargest - Returns the largest finite number in the given
|
||||
/// semantics.
|
||||
/// Returns the largest finite number in the given semantics.
|
||||
///
|
||||
/// \param Negative - True iff the number should be negative
|
||||
static APFloat getLargest(const fltSemantics &Sem, bool Negative = false);
|
||||
|
||||
/// getSmallest - Returns the smallest (by magnitude) finite number
|
||||
/// in the given semantics. Might be denormalized, which implies a
|
||||
/// relative loss of precision.
|
||||
/// Returns the smallest (by magnitude) finite number in the given semantics.
|
||||
/// Might be denormalized, which implies a relative loss of precision.
|
||||
///
|
||||
/// \param Negative - True iff the number should be negative
|
||||
static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false);
|
||||
|
||||
/// getSmallestNormalized - Returns the smallest (by magnitude)
|
||||
/// normalized finite number in the given semantics.
|
||||
/// Returns the smallest (by magnitude) normalized finite number in the given
|
||||
/// semantics.
|
||||
///
|
||||
/// \param Negative - True iff the number should be negative
|
||||
static APFloat getSmallestNormalized(const fltSemantics &Sem,
|
||||
bool Negative = false);
|
||||
|
||||
/// getAllOnesValue - Returns a float which is bitcasted from
|
||||
/// an all one value int.
|
||||
/// Returns a float which is bitcasted from an all one value int.
|
||||
///
|
||||
/// \param BitWidth - Select float type
|
||||
/// \param isIEEE - If 128 bit number, select between PPC and IEEE
|
||||
static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE = false);
|
||||
|
||||
/// Profile - Used to insert APFloat objects, or objects that contain
|
||||
/// APFloat objects, into FoldingSets.
|
||||
/// @}
|
||||
|
||||
/// Used to insert APFloat objects, or objects that contain APFloat objects,
|
||||
/// into FoldingSets.
|
||||
void Profile(FoldingSetNodeID &NID) const;
|
||||
|
||||
/// @brief Used by the Bitcode serializer to emit APInts to Bitcode.
|
||||
/// \brief Used by the Bitcode serializer to emit APInts to Bitcode.
|
||||
void Emit(Serializer &S) const;
|
||||
|
||||
/// @brief Used by the Bitcode deserializer to deserialize APInts.
|
||||
/// \brief Used by the Bitcode deserializer to deserialize APInts.
|
||||
static APFloat ReadVal(Deserializer &D);
|
||||
|
||||
/* Arithmetic. */
|
||||
/// \name Arithmetic
|
||||
/// @{
|
||||
|
||||
opStatus add(const APFloat &, roundingMode);
|
||||
opStatus subtract(const APFloat &, roundingMode);
|
||||
opStatus multiply(const APFloat &, roundingMode);
|
||||
opStatus divide(const APFloat &, roundingMode);
|
||||
/* IEEE remainder. */
|
||||
/// IEEE remainder.
|
||||
opStatus remainder(const APFloat &);
|
||||
/* C fmod, or llvm frem. */
|
||||
/// C fmod, or llvm frem.
|
||||
opStatus mod(const APFloat &, roundingMode);
|
||||
opStatus fusedMultiplyAdd(const APFloat &, const APFloat &, roundingMode);
|
||||
opStatus roundToIntegral(roundingMode);
|
||||
/// IEEE-754R 5.3.1: nextUp/nextDown.
|
||||
opStatus next(bool nextDown);
|
||||
|
||||
/* Sign operations. */
|
||||
/// \name Sign operations.
|
||||
/// @{
|
||||
|
||||
void changeSign();
|
||||
void clearSign();
|
||||
void copySign(const APFloat &);
|
||||
|
||||
/* Conversions. */
|
||||
/// @}
|
||||
|
||||
/// \name Conversions
|
||||
/// @{
|
||||
|
||||
opStatus convert(const fltSemantics &, roundingMode, bool *);
|
||||
opStatus convertToInteger(integerPart *, unsigned int, bool, roundingMode,
|
||||
bool *) const;
|
||||
|
@ -301,26 +315,29 @@ public:
|
|||
double convertToDouble() const;
|
||||
float convertToFloat() const;
|
||||
|
||||
/* The definition of equality is not straightforward for floating point,
|
||||
so we won't use operator==. Use one of the following, or write
|
||||
whatever it is you really mean. */
|
||||
/// @}
|
||||
|
||||
/// The definition of equality is not straightforward for floating point, so
|
||||
/// we won't use operator==. Use one of the following, or write whatever it
|
||||
/// is you really mean.
|
||||
bool operator==(const APFloat &) const LLVM_DELETED_FUNCTION;
|
||||
|
||||
/* IEEE comparison with another floating point number (NaNs
|
||||
compare unordered, 0==-0). */
|
||||
/// IEEE comparison with another floating point number (NaNs compare
|
||||
/// unordered, 0==-0).
|
||||
cmpResult compare(const APFloat &) const;
|
||||
|
||||
/* Bitwise comparison for equality (QNaNs compare equal, 0!=-0). */
|
||||
/// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
|
||||
bool bitwiseIsEqual(const APFloat &) const;
|
||||
|
||||
/* Write out a hexadecimal representation of the floating point
|
||||
value to DST, which must be of sufficient size, in the C99 form
|
||||
[-]0xh.hhhhp[+-]d. Return the number of characters written,
|
||||
excluding the terminating NUL. */
|
||||
/// Write out a hexadecimal representation of the floating point value to DST,
|
||||
/// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
|
||||
/// Return the number of characters written, excluding the terminating NUL.
|
||||
unsigned int convertToHexString(char *dst, unsigned int hexDigits,
|
||||
bool upperCase, roundingMode) const;
|
||||
|
||||
/* Simple queries. */
|
||||
/// \name Simple Queries
|
||||
/// @{
|
||||
|
||||
fltCategory getCategory() const { return category; }
|
||||
const fltSemantics &getSemantics() const { return *semantics; }
|
||||
bool isZero() const { return category == fcZero; }
|
||||
|
@ -335,6 +352,8 @@ public:
|
|||
/// IEEE-754R 5.7.2: isSignaling. Returns true if this is a signaling NaN.
|
||||
bool isSignaling() const;
|
||||
|
||||
/// @}
|
||||
|
||||
APFloat &operator=(const APFloat &);
|
||||
|
||||
/// \brief Overload to compute a hash code for an APFloat value.
|
||||
|
@ -371,18 +390,24 @@ public:
|
|||
void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
|
||||
unsigned FormatMaxPadding = 3) const;
|
||||
|
||||
/// getExactInverse - If this value has an exact multiplicative inverse,
|
||||
/// store it in inv and return true.
|
||||
/// If this value has an exact multiplicative inverse, store it in inv and
|
||||
/// return true.
|
||||
bool getExactInverse(APFloat *inv) const;
|
||||
|
||||
private:
|
||||
|
||||
/* Trivial queries. */
|
||||
/// \name Simple Queries
|
||||
/// @{
|
||||
|
||||
integerPart *significandParts();
|
||||
const integerPart *significandParts() const;
|
||||
unsigned int partCount() const;
|
||||
|
||||
/* Significand operations. */
|
||||
/// @}
|
||||
|
||||
/// \name Significand operations.
|
||||
/// @{
|
||||
|
||||
integerPart addSignificand(const APFloat &);
|
||||
integerPart subtractSignificand(const APFloat &, integerPart);
|
||||
lostFraction addOrSubtractSignificand(const APFloat &, bool subtract);
|
||||
|
@ -400,19 +425,29 @@ private:
|
|||
/// Return true if the significand excluding the integral bit is all zeros.
|
||||
bool isSignificandAllZeros() const;
|
||||
|
||||
/* Arithmetic on special values. */
|
||||
/// @}
|
||||
|
||||
/// \name Arithmetic on special values.
|
||||
/// @{
|
||||
|
||||
opStatus addOrSubtractSpecials(const APFloat &, bool subtract);
|
||||
opStatus divideSpecials(const APFloat &);
|
||||
opStatus multiplySpecials(const APFloat &);
|
||||
opStatus modSpecials(const APFloat &);
|
||||
|
||||
/* Set to special values. */
|
||||
/// @}
|
||||
|
||||
/// \name Special value setters.
|
||||
/// @{
|
||||
|
||||
void makeLargest(bool Neg = false);
|
||||
void makeSmallest(bool Neg = false);
|
||||
void makeNaN(bool SNaN = false, bool Neg = false, const APInt *fill = 0);
|
||||
static APFloat makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
|
||||
const APInt *fill);
|
||||
|
||||
/// @}
|
||||
|
||||
/// \name Special value queries only useful internally to APFloat
|
||||
/// @{
|
||||
|
||||
|
@ -425,7 +460,9 @@ private:
|
|||
|
||||
/// @}
|
||||
|
||||
/* Miscellany. */
|
||||
/// \name Miscellany
|
||||
/// @{
|
||||
|
||||
opStatus normalize(roundingMode, lostFraction);
|
||||
opStatus addOrSubtract(const APFloat &, roundingMode, bool subtract);
|
||||
cmpResult compareAbsoluteValue(const APFloat &) const;
|
||||
|
@ -442,6 +479,8 @@ private:
|
|||
opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
|
||||
roundingMode);
|
||||
|
||||
/// @}
|
||||
|
||||
APInt convertHalfAPFloatToAPInt() const;
|
||||
APInt convertFloatAPFloatToAPInt() const;
|
||||
APInt convertDoubleAPFloatToAPInt() const;
|
||||
|
@ -460,31 +499,35 @@ private:
|
|||
void copySignificand(const APFloat &);
|
||||
void freeSignificand();
|
||||
|
||||
/* What kind of semantics does this value obey? */
|
||||
/// The semantics that this value obeys.
|
||||
const fltSemantics *semantics;
|
||||
|
||||
/* Significand - the fraction with an explicit integer bit. Must be
|
||||
at least one bit wider than the target precision. */
|
||||
/// A binary fraction with an explicit integer bit.
|
||||
///
|
||||
/// The significand must be at least one bit wider than the target precision.
|
||||
union Significand {
|
||||
integerPart part;
|
||||
integerPart *parts;
|
||||
} significand;
|
||||
|
||||
/* The exponent - a signed number. */
|
||||
/// The signed unbiased exponent of the value.
|
||||
exponent_t exponent;
|
||||
|
||||
/* What kind of floating point number this is. */
|
||||
/* Only 2 bits are required, but VisualStudio incorrectly sign extends
|
||||
it. Using the extra bit keeps it from failing under VisualStudio */
|
||||
/// What kind of floating point number this is.
|
||||
///
|
||||
/// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
|
||||
/// Using the extra bit keeps it from failing under VisualStudio.
|
||||
fltCategory category : 3;
|
||||
|
||||
/* The sign bit of this number. */
|
||||
/// Sign bit of the number.
|
||||
unsigned int sign : 1;
|
||||
};
|
||||
|
||||
// See friend declaration above. This additional declaration is required in
|
||||
// order to compile LLVM with IBM xlC compiler.
|
||||
/// See friend declaration above.
|
||||
///
|
||||
/// This additional declaration is required in order to compile LLVM with IBM
|
||||
/// xlC compiler.
|
||||
hash_code hash_value(const APFloat &Arg);
|
||||
} /* namespace llvm */
|
||||
} // namespace llvm
|
||||
|
||||
#endif /* LLVM_ADT_APFLOAT_H */
|
||||
#endif // LLVM_ADT_APFLOAT_H
|
||||
|
|
Loading…
Reference in New Issue