forked from OSchip/llvm-project
[SCEV] Use a SmallPtrSet as a temporary union predicate; NFC
Summary: Instead of creating and destroying SCEVUnionPredicate instances (which internally creates and destroys a DenseMap), use temporary SmallPtrSet instances of remember the set of predicates that will get reified into a SCEVUnionPredicate. Reviewers: silviu.baranga, sbaranga Subscribers: sanjoy, mcrosier, llvm-commits, mzolotukhin Differential Revision: https://reviews.llvm.org/D25000 llvm-svn: 282606
This commit is contained in:
parent
386236509e
commit
f0022125e0
|
@ -551,19 +551,36 @@ private:
|
|||
const SCEV *ExactNotTaken;
|
||||
const SCEV *MaxNotTaken;
|
||||
|
||||
/// A predicate union guard for this ExitLimit. The result is only
|
||||
/// valid if this predicate evaluates to 'true' at run-time.
|
||||
SCEVUnionPredicate Predicate;
|
||||
/// A set of predicate guards for this ExitLimit. The result is only valid
|
||||
/// if all of the predicates in \c Predicates evaluate to 'true' at
|
||||
/// run-time.
|
||||
SmallPtrSet<const SCEVPredicate *, 4> Predicates;
|
||||
|
||||
void addPredicate(const SCEVPredicate *P) {
|
||||
assert(!isa<SCEVUnionPredicate>(P) && "Only add leaf predicates here!");
|
||||
Predicates.insert(P);
|
||||
}
|
||||
|
||||
/*implicit*/ ExitLimit(const SCEV *E) : ExactNotTaken(E), MaxNotTaken(E) {}
|
||||
|
||||
ExitLimit(const SCEV *E, const SCEV *M, SCEVUnionPredicate &P)
|
||||
: ExactNotTaken(E), MaxNotTaken(M), Predicate(P) {
|
||||
ExitLimit(
|
||||
const SCEV *E, const SCEV *M,
|
||||
ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
|
||||
: ExactNotTaken(E), MaxNotTaken(M) {
|
||||
assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
|
||||
!isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
|
||||
"Exact is not allowed to be less precise than Max");
|
||||
for (auto *PredSet : PredSetList)
|
||||
for (auto *P : *PredSet)
|
||||
addPredicate(P);
|
||||
}
|
||||
|
||||
ExitLimit(const SCEV *E, const SCEV *M,
|
||||
const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
|
||||
: ExitLimit(E, M, {&PredSet}) {}
|
||||
|
||||
ExitLimit(const SCEV *E, const SCEV *M) : ExitLimit(E, M, None) {}
|
||||
|
||||
/// Test whether this ExitLimit contains any computed information, or
|
||||
/// whether it's all SCEVCouldNotCompute values.
|
||||
bool hasAnyInfo() const {
|
||||
|
@ -1581,9 +1598,9 @@ public:
|
|||
SCEVUnionPredicate &A);
|
||||
/// Tries to convert the \p S expression to an AddRec expression,
|
||||
/// adding additional predicates to \p Preds as required.
|
||||
const SCEVAddRecExpr *
|
||||
convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L,
|
||||
SCEVUnionPredicate &Preds);
|
||||
const SCEVAddRecExpr *convertSCEVToAddRecWithPredicates(
|
||||
const SCEV *S, const Loop *L,
|
||||
SmallPtrSetImpl<const SCEVPredicate *> &Preds);
|
||||
|
||||
private:
|
||||
/// Compute the backedge taken count knowing the interval difference, the
|
||||
|
|
|
@ -5656,11 +5656,14 @@ ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
|
|||
[&](const EdgeExitInfo &EEI) {
|
||||
BasicBlock *ExitBB = EEI.first;
|
||||
const ExitLimit &EL = EEI.second;
|
||||
if (EL.Predicate.isAlwaysTrue())
|
||||
if (EL.Predicates.empty())
|
||||
return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr);
|
||||
return ExitNotTakenInfo(
|
||||
ExitBB, EL.ExactNotTaken,
|
||||
llvm::make_unique<SCEVUnionPredicate>(std::move(EL.Predicate)));
|
||||
|
||||
std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
|
||||
for (auto *Pred : EL.Predicates)
|
||||
Predicate->add(Pred);
|
||||
|
||||
return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate));
|
||||
});
|
||||
}
|
||||
|
||||
|
@ -5691,7 +5694,7 @@ ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
|
|||
BasicBlock *ExitBB = ExitingBlocks[i];
|
||||
ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
|
||||
|
||||
assert((AllowPredicates || EL.Predicate.isAlwaysTrue()) &&
|
||||
assert((AllowPredicates || EL.Predicates.empty()) &&
|
||||
"Predicated exit limit when predicates are not allowed!");
|
||||
|
||||
// 1. For each exit that can be computed, add an entry to ExitCounts.
|
||||
|
@ -5861,9 +5864,6 @@ ScalarEvolution::computeExitLimitFromCond(const Loop *L,
|
|||
BECount = EL0.ExactNotTaken;
|
||||
}
|
||||
|
||||
SCEVUnionPredicate NP;
|
||||
NP.add(&EL0.Predicate);
|
||||
NP.add(&EL1.Predicate);
|
||||
// There are cases (e.g. PR26207) where computeExitLimitFromCond is able
|
||||
// to be more aggressive when computing BECount than when computing
|
||||
// MaxBECount. In these cases it is possible for EL0.ExactNotTaken and
|
||||
|
@ -5873,7 +5873,7 @@ ScalarEvolution::computeExitLimitFromCond(const Loop *L,
|
|||
!isa<SCEVCouldNotCompute>(BECount))
|
||||
MaxBECount = BECount;
|
||||
|
||||
return ExitLimit(BECount, MaxBECount, NP);
|
||||
return ExitLimit(BECount, MaxBECount, {&EL0.Predicates, &EL1.Predicates});
|
||||
}
|
||||
if (BO->getOpcode() == Instruction::Or) {
|
||||
// Recurse on the operands of the or.
|
||||
|
@ -5912,10 +5912,7 @@ ScalarEvolution::computeExitLimitFromCond(const Loop *L,
|
|||
BECount = EL0.ExactNotTaken;
|
||||
}
|
||||
|
||||
SCEVUnionPredicate NP;
|
||||
NP.add(&EL0.Predicate);
|
||||
NP.add(&EL1.Predicate);
|
||||
return ExitLimit(BECount, MaxBECount, NP);
|
||||
return ExitLimit(BECount, MaxBECount, {&EL0.Predicates, &EL1.Predicates});
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -6300,8 +6297,7 @@ ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
|
|||
unsigned BitWidth = getTypeSizeInBits(RHS->getType());
|
||||
const SCEV *UpperBound =
|
||||
getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
|
||||
SCEVUnionPredicate P;
|
||||
return ExitLimit(getCouldNotCompute(), UpperBound, P);
|
||||
return ExitLimit(getCouldNotCompute(), UpperBound);
|
||||
}
|
||||
|
||||
return getCouldNotCompute();
|
||||
|
@ -7062,7 +7058,7 @@ ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
|
|||
// effectively V != 0. We know and take advantage of the fact that this
|
||||
// expression only being used in a comparison by zero context.
|
||||
|
||||
SCEVUnionPredicate P;
|
||||
SmallPtrSet<const SCEVPredicate *, 4> Predicates;
|
||||
// If the value is a constant
|
||||
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
|
||||
// If the value is already zero, the branch will execute zero times.
|
||||
|
@ -7075,7 +7071,7 @@ ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
|
|||
// Try to make this an AddRec using runtime tests, in the first X
|
||||
// iterations of this loop, where X is the SCEV expression found by the
|
||||
// algorithm below.
|
||||
AddRec = convertSCEVToAddRecWithPredicates(V, L, P);
|
||||
AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
|
||||
|
||||
if (!AddRec || AddRec->getLoop() != L)
|
||||
return getCouldNotCompute();
|
||||
|
@ -7097,7 +7093,7 @@ ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
|
|||
// should not accept a root of 2.
|
||||
const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
|
||||
if (Val->isZero())
|
||||
return ExitLimit(R1, R1, P); // We found a quadratic root!
|
||||
return ExitLimit(R1, R1, Predicates); // We found a quadratic root!
|
||||
}
|
||||
}
|
||||
return getCouldNotCompute();
|
||||
|
@ -7154,7 +7150,7 @@ ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
|
|||
else
|
||||
MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
|
||||
: -CR.getUnsignedMin());
|
||||
return ExitLimit(Distance, MaxBECount, P);
|
||||
return ExitLimit(Distance, MaxBECount, Predicates);
|
||||
}
|
||||
|
||||
// As a special case, handle the instance where Step is a positive power of
|
||||
|
@ -7209,7 +7205,7 @@ ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
|
|||
|
||||
const SCEV *Limit =
|
||||
getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
|
||||
return ExitLimit(Limit, Limit, P);
|
||||
return ExitLimit(Limit, Limit, Predicates);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -7222,14 +7218,14 @@ ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
|
|||
loopHasNoAbnormalExits(AddRec->getLoop())) {
|
||||
const SCEV *Exact =
|
||||
getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
|
||||
return ExitLimit(Exact, Exact, P);
|
||||
return ExitLimit(Exact, Exact, Predicates);
|
||||
}
|
||||
|
||||
// Then, try to solve the above equation provided that Start is constant.
|
||||
if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
|
||||
const SCEV *E = SolveLinEquationWithOverflow(
|
||||
StepC->getValue()->getValue(), -StartC->getValue()->getValue(), *this);
|
||||
return ExitLimit(E, E, P);
|
||||
return ExitLimit(E, E, Predicates);
|
||||
}
|
||||
return getCouldNotCompute();
|
||||
}
|
||||
|
@ -8634,7 +8630,7 @@ ScalarEvolution::ExitLimit
|
|||
ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
|
||||
const Loop *L, bool IsSigned,
|
||||
bool ControlsExit, bool AllowPredicates) {
|
||||
SCEVUnionPredicate P;
|
||||
SmallPtrSet<const SCEVPredicate *, 4> Predicates;
|
||||
// We handle only IV < Invariant
|
||||
if (!isLoopInvariant(RHS, L))
|
||||
return getCouldNotCompute();
|
||||
|
@ -8646,7 +8642,7 @@ ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
|
|||
// Try to make this an AddRec using runtime tests, in the first X
|
||||
// iterations of this loop, where X is the SCEV expression found by the
|
||||
// algorithm below.
|
||||
IV = convertSCEVToAddRecWithPredicates(LHS, L, P);
|
||||
IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
|
||||
PredicatedIV = true;
|
||||
}
|
||||
|
||||
|
@ -8762,14 +8758,14 @@ ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
|
|||
if (isa<SCEVCouldNotCompute>(MaxBECount))
|
||||
MaxBECount = BECount;
|
||||
|
||||
return ExitLimit(BECount, MaxBECount, P);
|
||||
return ExitLimit(BECount, MaxBECount, Predicates);
|
||||
}
|
||||
|
||||
ScalarEvolution::ExitLimit
|
||||
ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
|
||||
const Loop *L, bool IsSigned,
|
||||
bool ControlsExit, bool AllowPredicates) {
|
||||
SCEVUnionPredicate P;
|
||||
SmallPtrSet<const SCEVPredicate *, 4> Predicates;
|
||||
// We handle only IV > Invariant
|
||||
if (!isLoopInvariant(RHS, L))
|
||||
return getCouldNotCompute();
|
||||
|
@ -8779,7 +8775,7 @@ ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
|
|||
// Try to make this an AddRec using runtime tests, in the first X
|
||||
// iterations of this loop, where X is the SCEV expression found by the
|
||||
// algorithm below.
|
||||
IV = convertSCEVToAddRecWithPredicates(LHS, L, P);
|
||||
IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
|
||||
|
||||
// Avoid weird loops
|
||||
if (!IV || IV->getLoop() != L || !IV->isAffine())
|
||||
|
@ -8839,7 +8835,7 @@ ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
|
|||
if (isa<SCEVCouldNotCompute>(MaxBECount))
|
||||
MaxBECount = BECount;
|
||||
|
||||
return ExitLimit(BECount, MaxBECount, P);
|
||||
return ExitLimit(BECount, MaxBECount, Predicates);
|
||||
}
|
||||
|
||||
const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
|
||||
|
@ -10161,25 +10157,34 @@ namespace {
|
|||
|
||||
class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
|
||||
public:
|
||||
// Rewrites \p S in the context of a loop L and the predicate A.
|
||||
// If Assume is true, rewrite is free to add further predicates to A
|
||||
// such that the result will be an AddRecExpr.
|
||||
/// Rewrites \p S in the context of a loop L and the SCEV predication
|
||||
/// infrastructure.
|
||||
///
|
||||
/// If \p Pred is non-null, the SCEV expression is rewritten to respect the
|
||||
/// equivalences present in \p Pred.
|
||||
///
|
||||
/// If \p NewPreds is non-null, rewrite is free to add further predicates to
|
||||
/// \p NewPreds such that the result will be an AddRecExpr.
|
||||
static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
|
||||
SCEVUnionPredicate &A, bool Assume) {
|
||||
SCEVPredicateRewriter Rewriter(L, SE, A, Assume);
|
||||
SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
|
||||
SCEVUnionPredicate *Pred) {
|
||||
SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
|
||||
return Rewriter.visit(S);
|
||||
}
|
||||
|
||||
SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
|
||||
SCEVUnionPredicate &P, bool Assume)
|
||||
: SCEVRewriteVisitor(SE), P(P), L(L), Assume(Assume) {}
|
||||
SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
|
||||
SCEVUnionPredicate *Pred)
|
||||
: SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
|
||||
|
||||
const SCEV *visitUnknown(const SCEVUnknown *Expr) {
|
||||
auto ExprPreds = P.getPredicatesForExpr(Expr);
|
||||
for (auto *Pred : ExprPreds)
|
||||
if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
|
||||
if (IPred->getLHS() == Expr)
|
||||
return IPred->getRHS();
|
||||
if (Pred) {
|
||||
auto ExprPreds = Pred->getPredicatesForExpr(Expr);
|
||||
for (auto *Pred : ExprPreds)
|
||||
if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
|
||||
if (IPred->getLHS() == Expr)
|
||||
return IPred->getRHS();
|
||||
}
|
||||
|
||||
return Expr;
|
||||
}
|
||||
|
@ -10220,32 +10225,31 @@ private:
|
|||
bool addOverflowAssumption(const SCEVAddRecExpr *AR,
|
||||
SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
|
||||
auto *A = SE.getWrapPredicate(AR, AddedFlags);
|
||||
if (!Assume) {
|
||||
if (!NewPreds) {
|
||||
// Check if we've already made this assumption.
|
||||
if (P.implies(A))
|
||||
return true;
|
||||
return false;
|
||||
return Pred && Pred->implies(A);
|
||||
}
|
||||
P.add(A);
|
||||
NewPreds->insert(A);
|
||||
return true;
|
||||
}
|
||||
|
||||
SCEVUnionPredicate &P;
|
||||
SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
|
||||
SCEVUnionPredicate *Pred;
|
||||
const Loop *L;
|
||||
bool Assume;
|
||||
};
|
||||
} // end anonymous namespace
|
||||
|
||||
const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
|
||||
SCEVUnionPredicate &Preds) {
|
||||
return SCEVPredicateRewriter::rewrite(S, L, *this, Preds, false);
|
||||
return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
|
||||
}
|
||||
|
||||
const SCEVAddRecExpr *
|
||||
ScalarEvolution::convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L,
|
||||
SCEVUnionPredicate &Preds) {
|
||||
SCEVUnionPredicate TransformPreds;
|
||||
S = SCEVPredicateRewriter::rewrite(S, L, *this, TransformPreds, true);
|
||||
const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
|
||||
const SCEV *S, const Loop *L,
|
||||
SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
|
||||
|
||||
SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
|
||||
S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
|
||||
auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
|
||||
|
||||
if (!AddRec)
|
||||
|
@ -10253,7 +10257,9 @@ ScalarEvolution::convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L,
|
|||
|
||||
// Since the transformation was successful, we can now transfer the SCEV
|
||||
// predicates.
|
||||
Preds.add(&TransformPreds);
|
||||
for (auto *P : TransformPreds)
|
||||
Preds.insert(P);
|
||||
|
||||
return AddRec;
|
||||
}
|
||||
|
||||
|
@ -10480,11 +10486,15 @@ bool PredicatedScalarEvolution::hasNoOverflow(
|
|||
|
||||
const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
|
||||
const SCEV *Expr = this->getSCEV(V);
|
||||
auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, Preds);
|
||||
SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
|
||||
auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
|
||||
|
||||
if (!New)
|
||||
return nullptr;
|
||||
|
||||
for (auto *P : NewPreds)
|
||||
Preds.add(P);
|
||||
|
||||
updateGeneration();
|
||||
RewriteMap[SE.getSCEV(V)] = {Generation, New};
|
||||
return New;
|
||||
|
|
Loading…
Reference in New Issue