forked from OSchip/llvm-project
Now that we have a basic if-conversion infrastructure we can rename the
"single basic block loop vectorizer" to "innermost loop vectorizer". llvm-svn: 169158
This commit is contained in:
parent
e26658d372
commit
eee203d885
|
@ -20,7 +20,7 @@
|
|||
// 1. The main loop pass that drives the different parts.
|
||||
// 2. LoopVectorizationLegality - A unit that checks for the legality
|
||||
// of the vectorization.
|
||||
// 3. SingleBlockLoopVectorizer - A unit that performs the actual
|
||||
// 3. InnerLoopVectorizer - A unit that performs the actual
|
||||
// widening of instructions.
|
||||
// 4. LoopVectorizationCostModel - A unit that checks for the profitability
|
||||
// of vectorization. It decides on the optimal vector width, which
|
||||
|
@ -100,7 +100,7 @@ namespace {
|
|||
class LoopVectorizationLegality;
|
||||
class LoopVectorizationCostModel;
|
||||
|
||||
/// SingleBlockLoopVectorizer vectorizes loops which contain only one basic
|
||||
/// InnerLoopVectorizer vectorizes loops which contain only one basic
|
||||
/// block to a specified vectorization factor (VF).
|
||||
/// This class performs the widening of scalars into vectors, or multiple
|
||||
/// scalars. This class also implements the following features:
|
||||
|
@ -109,15 +109,15 @@ class LoopVectorizationCostModel;
|
|||
/// * It handles the code generation for reduction variables.
|
||||
/// * Scalarization (implementation using scalars) of un-vectorizable
|
||||
/// instructions.
|
||||
/// SingleBlockLoopVectorizer does not perform any vectorization-legality
|
||||
/// InnerLoopVectorizer does not perform any vectorization-legality
|
||||
/// checks, and relies on the caller to check for the different legality
|
||||
/// aspects. The SingleBlockLoopVectorizer relies on the
|
||||
/// aspects. The InnerLoopVectorizer relies on the
|
||||
/// LoopVectorizationLegality class to provide information about the induction
|
||||
/// and reduction variables that were found to a given vectorization factor.
|
||||
class SingleBlockLoopVectorizer {
|
||||
class InnerLoopVectorizer {
|
||||
public:
|
||||
/// Ctor.
|
||||
SingleBlockLoopVectorizer(Loop *Orig, ScalarEvolution *Se, LoopInfo *Li,
|
||||
InnerLoopVectorizer(Loop *Orig, ScalarEvolution *Se, LoopInfo *Li,
|
||||
DominatorTree *Dt, DataLayout *Dl,
|
||||
unsigned VecWidth):
|
||||
OrigLoop(Orig), SE(Se), LI(Li), DT(Dt), DL(Dl), VF(VecWidth),
|
||||
|
@ -226,8 +226,8 @@ private:
|
|||
/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
|
||||
/// checks for a number of different conditions, such as the availability of a
|
||||
/// single induction variable, that all types are supported and vectorize-able,
|
||||
/// etc. This code reflects the capabilities of SingleBlockLoopVectorizer.
|
||||
/// This class is also used by SingleBlockLoopVectorizer for identifying
|
||||
/// etc. This code reflects the capabilities of InnerLoopVectorizer.
|
||||
/// This class is also used by InnerLoopVectorizer for identifying
|
||||
/// induction variable and the different reduction variables.
|
||||
class LoopVectorizationLegality {
|
||||
public:
|
||||
|
@ -511,7 +511,7 @@ struct LoopVectorize : public LoopPass {
|
|||
"\n");
|
||||
|
||||
// If we decided that it is *legal* to vectorizer the loop then do it.
|
||||
SingleBlockLoopVectorizer LB(L, SE, LI, DT, DL, VF);
|
||||
InnerLoopVectorizer LB(L, SE, LI, DT, DL, VF);
|
||||
LB.vectorize(&LVL);
|
||||
|
||||
DEBUG(verifyFunction(*L->getHeader()->getParent()));
|
||||
|
@ -531,7 +531,7 @@ struct LoopVectorize : public LoopPass {
|
|||
|
||||
};
|
||||
|
||||
Value *SingleBlockLoopVectorizer::getBroadcastInstrs(Value *V) {
|
||||
Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
|
||||
// Create the types.
|
||||
LLVMContext &C = V->getContext();
|
||||
Type *VTy = VectorType::get(V->getType(), VF);
|
||||
|
@ -563,7 +563,7 @@ Value *SingleBlockLoopVectorizer::getBroadcastInstrs(Value *V) {
|
|||
return Shuf;
|
||||
}
|
||||
|
||||
Value *SingleBlockLoopVectorizer::getConsecutiveVector(Value* Val) {
|
||||
Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val) {
|
||||
assert(Val->getType()->isVectorTy() && "Must be a vector");
|
||||
assert(Val->getType()->getScalarType()->isIntegerTy() &&
|
||||
"Elem must be an integer");
|
||||
|
@ -622,7 +622,7 @@ bool LoopVectorizationLegality::isUniform(Value *V) {
|
|||
return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
|
||||
}
|
||||
|
||||
Value *SingleBlockLoopVectorizer::getVectorValue(Value *V) {
|
||||
Value *InnerLoopVectorizer::getVectorValue(Value *V) {
|
||||
assert(V != Induction && "The new induction variable should not be used.");
|
||||
assert(!V->getType()->isVectorTy() && "Can't widen a vector");
|
||||
// If we saved a vectorized copy of V, use it.
|
||||
|
@ -637,11 +637,11 @@ Value *SingleBlockLoopVectorizer::getVectorValue(Value *V) {
|
|||
}
|
||||
|
||||
Constant*
|
||||
SingleBlockLoopVectorizer::getUniformVector(unsigned Val, Type* ScalarTy) {
|
||||
InnerLoopVectorizer::getUniformVector(unsigned Val, Type* ScalarTy) {
|
||||
return ConstantVector::getSplat(VF, ConstantInt::get(ScalarTy, Val, true));
|
||||
}
|
||||
|
||||
void SingleBlockLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
|
||||
void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
|
||||
assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
|
||||
// Holds vector parameters or scalars, in case of uniform vals.
|
||||
SmallVector<Value*, 8> Params;
|
||||
|
@ -712,7 +712,7 @@ void SingleBlockLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
|
|||
}
|
||||
|
||||
Value*
|
||||
SingleBlockLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
|
||||
InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
|
||||
Instruction *Loc) {
|
||||
LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
|
||||
Legal->getRuntimePointerCheck();
|
||||
|
@ -773,7 +773,7 @@ SingleBlockLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
|
|||
}
|
||||
|
||||
void
|
||||
SingleBlockLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
|
||||
InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
|
||||
/*
|
||||
In this function we generate a new loop. The new loop will contain
|
||||
the vectorized instructions while the old loop will continue to run the
|
||||
|
@ -1037,7 +1037,7 @@ getReductionIdentity(LoopVectorizationLegality::ReductionKind K) {
|
|||
}
|
||||
|
||||
void
|
||||
SingleBlockLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
|
||||
InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
|
||||
//===------------------------------------------------===//
|
||||
//
|
||||
// Notice: any optimization or new instruction that go
|
||||
|
@ -1427,7 +1427,7 @@ SingleBlockLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
|
|||
}// end of for each redux variable.
|
||||
}
|
||||
|
||||
void SingleBlockLoopVectorizer::updateAnalysis() {
|
||||
void InnerLoopVectorizer::updateAnalysis() {
|
||||
// Forget the original basic block.
|
||||
SE->forgetLoop(OrigLoop);
|
||||
|
||||
|
|
Loading…
Reference in New Issue