forked from OSchip/llvm-project
[mlir][sparse] integration test for all-dense annotated "sparse" output
Reviewed By: gussmith23 Differential Revision: https://reviews.llvm.org/D104277
This commit is contained in:
parent
479c3577fb
commit
ec8910c4ad
|
@ -45,6 +45,7 @@ if (MLIR_INCLUDE_INTEGRATION_TESTS)
|
|||
file(COPY ${CMAKE_CURRENT_SOURCE_DIR}/Integration/data/test.mtx
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/Integration/data/test.tns
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/Integration/data/wide.mtx
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/Integration/data/zero.mtx
|
||||
DESTINATION ${MLIR_INTEGRATION_TEST_DIR}/data/)
|
||||
endif()
|
||||
|
||||
|
|
|
@ -0,0 +1,100 @@
|
|||
// RUN: mlir-opt %s \
|
||||
// RUN: --sparsification --sparse-tensor-conversion \
|
||||
// RUN: --convert-linalg-to-loops --convert-vector-to-scf --convert-scf-to-std \
|
||||
// RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \
|
||||
// RUN: --std-bufferize --finalizing-bufferize \
|
||||
// RUN: --convert-vector-to-llvm --convert-std-to-llvm | \
|
||||
// RUN: TENSOR0="%mlir_integration_test_dir/data/test.mtx" \
|
||||
// RUN: TENSOR1="%mlir_integration_test_dir/data/zero.mtx" \
|
||||
// RUN: mlir-cpu-runner \
|
||||
// RUN: -e entry -entry-point-result=void \
|
||||
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
|
||||
// RUN: FileCheck %s
|
||||
|
||||
!Filename = type !llvm.ptr<i8>
|
||||
|
||||
#DenseMatrix = #sparse_tensor.encoding<{
|
||||
dimLevelType = [ "dense", "dense" ],
|
||||
dimOrdering = affine_map<(i,j) -> (i,j)>
|
||||
}>
|
||||
|
||||
#SparseMatrix = #sparse_tensor.encoding<{
|
||||
dimLevelType = [ "dense", "compressed" ],
|
||||
dimOrdering = affine_map<(i,j) -> (i,j)>
|
||||
}>
|
||||
|
||||
#trait_assign = {
|
||||
indexing_maps = [
|
||||
affine_map<(i,j) -> (i,j)>, // A
|
||||
affine_map<(i,j) -> (i,j)> // X (out)
|
||||
],
|
||||
iterator_types = ["parallel", "parallel"],
|
||||
doc = "X(i,j) = A(i,j)"
|
||||
}
|
||||
|
||||
//
|
||||
// Integration test that demonstrates assigning a sparse tensor
|
||||
// to an all-dense annotated "sparse" tensor, which effectively
|
||||
// result in inserting the nonzero elements into a linearized array.
|
||||
//
|
||||
// Note that there is a subtle difference between a non-annotated
|
||||
// tensor and an all-dense annotated tensor. Both tensors are assumed
|
||||
// dense, but the former remains an n-dimensional memref whereas the
|
||||
// latter is linearized into a one-dimensional memref that is further
|
||||
// lowered into a storage scheme that is backed by the runtime support
|
||||
// library.
|
||||
module {
|
||||
//
|
||||
// A kernel that assigns elements from A to an initially zero X.
|
||||
//
|
||||
func @dense_output(%arga: tensor<?x?xf64, #SparseMatrix>,
|
||||
%argx: tensor<?x?xf64, #DenseMatrix>
|
||||
{linalg.inplaceable = true})
|
||||
-> tensor<?x?xf64, #DenseMatrix> {
|
||||
%0 = linalg.generic #trait_assign
|
||||
ins(%arga: tensor<?x?xf64, #SparseMatrix>)
|
||||
outs(%argx: tensor<?x?xf64, #DenseMatrix>) {
|
||||
^bb(%a: f64, %x: f64):
|
||||
linalg.yield %a : f64
|
||||
} -> tensor<?x?xf64, #DenseMatrix>
|
||||
return %0 : tensor<?x?xf64, #DenseMatrix>
|
||||
}
|
||||
|
||||
func private @getTensorFilename(index) -> (!Filename)
|
||||
|
||||
//
|
||||
// Main driver that reads matrix from file and calls the kernel.
|
||||
//
|
||||
func @entry() {
|
||||
%d0 = constant 0.0 : f64
|
||||
%c0 = constant 0 : index
|
||||
%c1 = constant 1 : index
|
||||
|
||||
// Read the sparse matrix from file, construct sparse storage.
|
||||
%fileName = call @getTensorFilename(%c0) : (index) -> (!Filename)
|
||||
%a = sparse_tensor.new %fileName
|
||||
: !llvm.ptr<i8> to tensor<?x?xf64, #SparseMatrix>
|
||||
|
||||
// Initialize all-dense annotated "sparse" matrix to all zeros.
|
||||
%fileZero = call @getTensorFilename(%c1) : (index) -> (!Filename)
|
||||
%x = sparse_tensor.new %fileZero
|
||||
: !llvm.ptr<i8> to tensor<?x?xf64, #DenseMatrix>
|
||||
|
||||
// Call the kernel.
|
||||
%0 = call @dense_output(%a, %x)
|
||||
: (tensor<?x?xf64, #SparseMatrix>,
|
||||
tensor<?x?xf64, #DenseMatrix>) -> tensor<?x?xf64, #DenseMatrix>
|
||||
|
||||
//
|
||||
// Print the linearized 5x5 result for verification.
|
||||
//
|
||||
// CHECK: ( 1, 0, 0, 1.4, 0, 0, 2, 0, 0, 2.5, 0, 0, 3, 0, 0, 4.1, 0, 0, 4, 0, 0, 5.2, 0, 0, 5 )
|
||||
//
|
||||
%m = sparse_tensor.values %0
|
||||
: tensor<?x?xf64, #DenseMatrix> to memref<?xf64>
|
||||
%v = vector.load %m[%c0] : memref<?xf64>, vector<25xf64>
|
||||
vector.print %v : vector<25xf64>
|
||||
|
||||
return
|
||||
}
|
||||
}
|
|
@ -0,0 +1,6 @@
|
|||
%%MatrixMarket matrix coordinate real general
|
||||
%
|
||||
% This is a test sparse matrix in Matrix Market Exchange Format.
|
||||
% see https://math.nist.gov/MatrixMarket
|
||||
%
|
||||
5 5 0
|
Loading…
Reference in New Issue