Refactor the PDB HashTable class.

It previously only worked when the key and value types were
both 4 byte integers.  We now have a use case for a non trivial
value type, so we need to extend it to support arbitrary value
types, which means templatizing it.

llvm-svn: 327647
This commit is contained in:
Zachary Turner 2018-03-15 17:38:26 +00:00
parent ca587fe0b4
commit ebf03f6c46
8 changed files with 320 additions and 313 deletions

View File

@ -12,6 +12,7 @@
#include "llvm/ADT/SparseBitVector.h"
#include "llvm/ADT/iterator.h"
#include "llvm/DebugInfo/PDB/Native/RawError.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include <cstdint>
@ -26,73 +27,196 @@ class BinaryStreamWriter;
namespace pdb {
class HashTable;
template <typename ValueT, typename TraitsT> class HashTable;
template <typename ValueT, typename TraitsT>
class HashTableIterator
: public iterator_facade_base<HashTableIterator, std::forward_iterator_tag,
std::pair<uint32_t, uint32_t>> {
friend HashTable;
: public iterator_facade_base<HashTableIterator<ValueT, TraitsT>,
std::forward_iterator_tag,
std::pair<uint32_t, ValueT>> {
friend HashTable<ValueT, TraitsT>;
HashTableIterator(const HashTable &Map, uint32_t Index, bool IsEnd);
HashTableIterator(const HashTable<ValueT, TraitsT> &Map, uint32_t Index,
bool IsEnd)
: Map(&Map), Index(Index), IsEnd(IsEnd) {}
public:
HashTableIterator(const HashTable &Map);
HashTableIterator(const HashTable<ValueT, TraitsT> &Map) : Map(&Map) {
int I = Map.Present.find_first();
if (I == -1) {
Index = 0;
IsEnd = true;
} else {
Index = static_cast<uint32_t>(I);
IsEnd = false;
}
}
HashTableIterator &operator=(const HashTableIterator &R);
bool operator==(const HashTableIterator &R) const;
const std::pair<uint32_t, uint32_t> &operator*() const;
HashTableIterator &operator++();
HashTableIterator &operator=(const HashTableIterator &R) {
Map = R.Map;
return *this;
}
bool operator==(const HashTableIterator &R) const {
if (IsEnd && R.IsEnd)
return true;
if (IsEnd != R.IsEnd)
return false;
return (Map == R.Map) && (Index == R.Index);
}
const std::pair<uint32_t, ValueT> &operator*() const {
assert(Map->Present.test(Index));
return Map->Buckets[Index];
}
HashTableIterator &operator++() {
while (Index < Map->Buckets.size()) {
++Index;
if (Map->Present.test(Index))
return *this;
}
IsEnd = true;
return *this;
}
private:
bool isEnd() const { return IsEnd; }
uint32_t index() const { return Index; }
const HashTable *Map;
const HashTable<ValueT, TraitsT> *Map;
uint32_t Index;
bool IsEnd;
};
template <typename T> struct PdbHashTraits {};
template <> struct PdbHashTraits<uint32_t> {
uint32_t hashLookupKey(uint32_t N) const { return N; }
uint32_t storageKeyToLookupKey(uint32_t N) const { return N; }
uint32_t lookupKeyToStorageKey(uint32_t N) { return N; }
};
template <typename ValueT, typename TraitsT = PdbHashTraits<ValueT>>
class HashTable {
friend class HashTableIterator;
using iterator = HashTableIterator<ValueT, TraitsT>;
friend iterator;
struct Header {
support::ulittle32_t Size;
support::ulittle32_t Capacity;
};
using BucketList = std::vector<std::pair<uint32_t, uint32_t>>;
using BucketList = std::vector<std::pair<uint32_t, ValueT>>;
public:
HashTable();
explicit HashTable(uint32_t Capacity);
HashTable() { Buckets.resize(8); }
Error load(BinaryStreamReader &Stream);
explicit HashTable(TraitsT Traits) : HashTable(8, std::move(Traits)) {}
HashTable(uint32_t Capacity, TraitsT Traits) : Traits(Traits) {
Buckets.resize(Capacity);
}
uint32_t calculateSerializedLength() const;
Error commit(BinaryStreamWriter &Writer) const;
Error load(BinaryStreamReader &Stream) {
const Header *H;
if (auto EC = Stream.readObject(H))
return EC;
if (H->Capacity == 0)
return make_error<RawError>(raw_error_code::corrupt_file,
"Invalid Hash Table Capacity");
if (H->Size > maxLoad(H->Capacity))
return make_error<RawError>(raw_error_code::corrupt_file,
"Invalid Hash Table Size");
void clear();
Buckets.resize(H->Capacity);
uint32_t capacity() const;
uint32_t size() const;
if (auto EC = readSparseBitVector(Stream, Present))
return EC;
if (Present.count() != H->Size)
return make_error<RawError>(raw_error_code::corrupt_file,
"Present bit vector does not match size!");
HashTableIterator begin() const;
HashTableIterator end() const;
if (auto EC = readSparseBitVector(Stream, Deleted))
return EC;
if (Present.intersects(Deleted))
return make_error<RawError>(raw_error_code::corrupt_file,
"Present bit vector interesects deleted!");
/// Find the entry with the specified key value.
HashTableIterator find(uint32_t K) const;
for (uint32_t P : Present) {
if (auto EC = Stream.readInteger(Buckets[P].first))
return EC;
const ValueT *Value;
if (auto EC = Stream.readObject(Value))
return EC;
Buckets[P].second = *Value;
}
return Error::success();
}
uint32_t calculateSerializedLength() const {
uint32_t Size = sizeof(Header);
int NumBitsP = Present.find_last() + 1;
int NumBitsD = Deleted.find_last() + 1;
// Present bit set number of words, followed by that many actual words.
Size += sizeof(uint32_t);
Size += alignTo(NumBitsP, sizeof(uint32_t));
// Deleted bit set number of words, followed by that many actual words.
Size += sizeof(uint32_t);
Size += alignTo(NumBitsD, sizeof(uint32_t));
// One (Key, ValueT) pair for each entry Present.
Size += (sizeof(uint32_t) + sizeof(ValueT)) * size();
return Size;
}
Error commit(BinaryStreamWriter &Writer) const {
Header H;
H.Size = size();
H.Capacity = capacity();
if (auto EC = Writer.writeObject(H))
return EC;
if (auto EC = writeSparseBitVector(Writer, Present))
return EC;
if (auto EC = writeSparseBitVector(Writer, Deleted))
return EC;
for (const auto &Entry : *this) {
if (auto EC = Writer.writeInteger(Entry.first))
return EC;
if (auto EC = Writer.writeObject(Entry.second))
return EC;
}
return Error::success();
}
void clear() {
Buckets.resize(8);
Present.clear();
Deleted.clear();
}
uint32_t capacity() const { return Buckets.size(); }
uint32_t size() const { return Present.count(); }
iterator begin() const { return iterator(*this); }
iterator end() const { return iterator(*this, 0, true); }
/// Find the entry whose key has the specified hash value, using the specified
/// traits defining hash function and equality.
template <typename Traits, typename Key, typename Context>
HashTableIterator find_as(const Key &K, const Context &Ctx) const {
uint32_t H = Traits::hash(K, Ctx) % capacity();
template <typename Key> iterator find_as(const Key &K) const {
uint32_t H = Traits.hashLookupKey(K) % capacity();
uint32_t I = H;
Optional<uint32_t> FirstUnused;
do {
if (isPresent(I)) {
if (Traits::realKey(Buckets[I].first, Ctx) == K)
return HashTableIterator(*this, I, false);
if (Traits.storageKeyToLookupKey(Buckets[I].first) == K)
return iterator(*this, I, false);
} else {
if (!FirstUnused)
FirstUnused = I;
@ -111,40 +235,26 @@ public:
// table were Present. But this would violate the load factor constraints
// that we impose, so it should never happen.
assert(FirstUnused);
return HashTableIterator(*this, *FirstUnused, true);
return iterator(*this, *FirstUnused, true);
}
/// Set the entry with the specified key to the specified value.
void set(uint32_t K, uint32_t V);
/// Set the entry using a key type that the specified Traits can convert
/// from a real key to an internal key.
template <typename Traits, typename Key, typename Context>
bool set_as(const Key &K, uint32_t V, Context &Ctx) {
return set_as_internal<Traits, Key, Context>(K, V, None, Ctx);
template <typename Key> bool set_as(const Key &K, ValueT V) {
return set_as_internal(K, std::move(V), None);
}
void remove(uint32_t K);
template <typename Traits, typename Key, typename Context>
void remove_as(const Key &K, Context &Ctx) {
auto Iter = find_as<Traits, Key, Context>(K, Ctx);
// It wasn't here to begin with, just exit.
if (Iter == end())
return;
assert(Present.test(Iter.index()));
assert(!Deleted.test(Iter.index()));
Deleted.set(Iter.index());
Present.reset(Iter.index());
template <typename Key> ValueT get(const Key &K) const {
auto Iter = find_as(K);
assert(Iter != end());
return (*Iter).second;
}
uint32_t get(uint32_t K);
protected:
bool isPresent(uint32_t K) const { return Present.test(K); }
bool isDeleted(uint32_t K) const { return Deleted.test(K); }
TraitsT Traits;
BucketList Buckets;
mutable SparseBitVector<> Present;
mutable SparseBitVector<> Deleted;
@ -152,13 +262,12 @@ protected:
private:
/// Set the entry using a key type that the specified Traits can convert
/// from a real key to an internal key.
template <typename Traits, typename Key, typename Context>
bool set_as_internal(const Key &K, uint32_t V, Optional<uint32_t> InternalKey,
Context &Ctx) {
auto Entry = find_as<Traits, Key, Context>(K, Ctx);
template <typename Key>
bool set_as_internal(const Key &K, ValueT V, Optional<uint32_t> InternalKey) {
auto Entry = find_as(K);
if (Entry != end()) {
assert(isPresent(Entry.index()));
assert(Traits::realKey(Buckets[Entry.index()].first, Ctx) == K);
assert(Traits.storageKeyToLookupKey(Buckets[Entry.index()].first) == K);
// We're updating, no need to do anything special.
Buckets[Entry.index()].second = V;
return false;
@ -167,21 +276,20 @@ private:
auto &B = Buckets[Entry.index()];
assert(!isPresent(Entry.index()));
assert(Entry.isEnd());
B.first = InternalKey ? *InternalKey : Traits::lowerKey(K, Ctx);
B.first = InternalKey ? *InternalKey : Traits.lookupKeyToStorageKey(K);
B.second = V;
Present.set(Entry.index());
Deleted.reset(Entry.index());
grow<Traits, Key, Context>(Ctx);
grow();
assert((find_as<Traits, Key, Context>(K, Ctx)) != end());
assert((find_as(K)) != end());
return true;
}
static uint32_t maxLoad(uint32_t capacity);
static uint32_t maxLoad(uint32_t capacity) { return capacity * 2 / 3 + 1; }
template <typename Traits, typename Key, typename Context>
void grow(Context &Ctx) {
void grow() {
uint32_t S = size();
if (S < maxLoad(capacity()))
return;
@ -193,11 +301,10 @@ private:
// Growing requires rebuilding the table and re-hashing every item. Make a
// copy with a larger capacity, insert everything into the copy, then swap
// it in.
HashTable NewMap(NewCapacity);
HashTable NewMap(NewCapacity, Traits);
for (auto I : Present) {
auto RealKey = Traits::realKey(Buckets[I].first, Ctx);
NewMap.set_as_internal<Traits, Key, Context>(RealKey, Buckets[I].second,
Buckets[I].first, Ctx);
auto LookupKey = Traits.storageKeyToLookupKey(Buckets[I].first);
NewMap.set_as_internal(LookupKey, Buckets[I].second, Buckets[I].first);
}
Buckets.swap(NewMap.Buckets);
@ -206,13 +313,11 @@ private:
assert(capacity() == NewCapacity);
assert(size() == S);
}
static Error readSparseBitVector(BinaryStreamReader &Stream,
SparseBitVector<> &V);
static Error writeSparseBitVector(BinaryStreamWriter &Writer,
SparseBitVector<> &Vec);
};
Error readSparseBitVector(BinaryStreamReader &Stream, SparseBitVector<> &V);
Error writeSparseBitVector(BinaryStreamWriter &Writer, SparseBitVector<> &Vec);
} // end namespace pdb
} // end namespace llvm

View File

@ -25,6 +25,17 @@ class BinaryStreamWriter;
namespace pdb {
class NamedStreamMap;
struct NamedStreamMapTraits {
NamedStreamMap *NS;
explicit NamedStreamMapTraits(NamedStreamMap &NS);
uint16_t hashLookupKey(StringRef S) const;
StringRef storageKeyToLookupKey(uint32_t Offset) const;
uint32_t lookupKeyToStorageKey(StringRef S);
};
class NamedStreamMap {
friend class NamedStreamMapBuilder;
@ -46,9 +57,10 @@ public:
StringMap<uint32_t> entries() const;
private:
NamedStreamMapTraits HashTraits;
/// Closed hash table from Offset -> StreamNumber, where Offset is the offset
/// of the stream name in NamesBuffer.
HashTable OffsetIndexMap;
HashTable<support::ulittle32_t, NamedStreamMapTraits> OffsetIndexMap;
/// Buffer of string data.
std::vector<char> NamesBuffer;

View File

@ -51,7 +51,7 @@ public:
uint32_t getNumHashBuckets() const;
FixedStreamArray<support::ulittle32_t> getHashValues() const;
FixedStreamArray<codeview::TypeIndexOffset> getTypeIndexOffsets() const;
HashTable &getHashAdjusters();
HashTable<support::ulittle32_t> &getHashAdjusters();
codeview::CVTypeRange types(bool *HadError) const;
const codeview::CVTypeArray &typeArray() const { return TypeRecords; }
@ -75,7 +75,7 @@ private:
std::unique_ptr<BinaryStream> HashStream;
FixedStreamArray<support::ulittle32_t> HashValues;
FixedStreamArray<codeview::TypeIndexOffset> TypeIndexOffsets;
HashTable HashAdjusters;
HashTable<support::ulittle32_t> HashAdjusters;
const TpiStreamHeader *Header;
};

View File

@ -22,130 +22,7 @@
using namespace llvm;
using namespace llvm::pdb;
namespace {
struct IdentityTraits {
static uint32_t hash(uint32_t K, const HashTable &Ctx) { return K; }
static uint32_t realKey(uint32_t K, const HashTable &Ctx) { return K; }
static uint32_t lowerKey(uint32_t K, const HashTable &Ctx) { return K; }
};
} // namespace
HashTable::HashTable() : HashTable(8) {}
HashTable::HashTable(uint32_t Capacity) { Buckets.resize(Capacity); }
Error HashTable::load(BinaryStreamReader &Stream) {
const Header *H;
if (auto EC = Stream.readObject(H))
return EC;
if (H->Capacity == 0)
return make_error<RawError>(raw_error_code::corrupt_file,
"Invalid Hash Table Capacity");
if (H->Size > maxLoad(H->Capacity))
return make_error<RawError>(raw_error_code::corrupt_file,
"Invalid Hash Table Size");
Buckets.resize(H->Capacity);
if (auto EC = readSparseBitVector(Stream, Present))
return EC;
if (Present.count() != H->Size)
return make_error<RawError>(raw_error_code::corrupt_file,
"Present bit vector does not match size!");
if (auto EC = readSparseBitVector(Stream, Deleted))
return EC;
if (Present.intersects(Deleted))
return make_error<RawError>(raw_error_code::corrupt_file,
"Present bit vector interesects deleted!");
for (uint32_t P : Present) {
if (auto EC = Stream.readInteger(Buckets[P].first))
return EC;
if (auto EC = Stream.readInteger(Buckets[P].second))
return EC;
}
return Error::success();
}
uint32_t HashTable::calculateSerializedLength() const {
uint32_t Size = sizeof(Header);
int NumBitsP = Present.find_last() + 1;
int NumBitsD = Deleted.find_last() + 1;
// Present bit set number of words, followed by that many actual words.
Size += sizeof(uint32_t);
Size += alignTo(NumBitsP, sizeof(uint32_t));
// Deleted bit set number of words, followed by that many actual words.
Size += sizeof(uint32_t);
Size += alignTo(NumBitsD, sizeof(uint32_t));
// One (Key, Value) pair for each entry Present.
Size += 2 * sizeof(uint32_t) * size();
return Size;
}
Error HashTable::commit(BinaryStreamWriter &Writer) const {
Header H;
H.Size = size();
H.Capacity = capacity();
if (auto EC = Writer.writeObject(H))
return EC;
if (auto EC = writeSparseBitVector(Writer, Present))
return EC;
if (auto EC = writeSparseBitVector(Writer, Deleted))
return EC;
for (const auto &Entry : *this) {
if (auto EC = Writer.writeInteger(Entry.first))
return EC;
if (auto EC = Writer.writeInteger(Entry.second))
return EC;
}
return Error::success();
}
void HashTable::clear() {
Buckets.resize(8);
Present.clear();
Deleted.clear();
}
uint32_t HashTable::capacity() const { return Buckets.size(); }
uint32_t HashTable::size() const { return Present.count(); }
HashTableIterator HashTable::begin() const { return HashTableIterator(*this); }
HashTableIterator HashTable::end() const {
return HashTableIterator(*this, 0, true);
}
HashTableIterator HashTable::find(uint32_t K) const {
return find_as<IdentityTraits>(K, *this);
}
void HashTable::set(uint32_t K, uint32_t V) {
set_as<IdentityTraits, uint32_t>(K, V, *this);
}
void HashTable::remove(uint32_t K) { remove_as<IdentityTraits>(K, *this); }
uint32_t HashTable::get(uint32_t K) {
auto I = find(K);
assert(I != end());
return (*I).second;
}
uint32_t HashTable::maxLoad(uint32_t capacity) { return capacity * 2 / 3 + 1; }
Error HashTable::readSparseBitVector(BinaryStreamReader &Stream,
Error llvm::pdb::readSparseBitVector(BinaryStreamReader &Stream,
SparseBitVector<> &V) {
uint32_t NumWords;
if (auto EC = Stream.readInteger(NumWords))
@ -167,7 +44,7 @@ Error HashTable::readSparseBitVector(BinaryStreamReader &Stream,
return Error::success();
}
Error HashTable::writeSparseBitVector(BinaryStreamWriter &Writer,
Error llvm::pdb::writeSparseBitVector(BinaryStreamWriter &Writer,
SparseBitVector<> &Vec) {
int ReqBits = Vec.find_last() + 1;
uint32_t NumWords = alignTo(ReqBits, sizeof(uint32_t)) / sizeof(uint32_t);
@ -191,48 +68,3 @@ Error HashTable::writeSparseBitVector(BinaryStreamWriter &Writer,
}
return Error::success();
}
HashTableIterator::HashTableIterator(const HashTable &Map, uint32_t Index,
bool IsEnd)
: Map(&Map), Index(Index), IsEnd(IsEnd) {}
HashTableIterator::HashTableIterator(const HashTable &Map) : Map(&Map) {
int I = Map.Present.find_first();
if (I == -1) {
Index = 0;
IsEnd = true;
} else {
Index = static_cast<uint32_t>(I);
IsEnd = false;
}
}
HashTableIterator &HashTableIterator::operator=(const HashTableIterator &R) {
Map = R.Map;
return *this;
}
bool HashTableIterator::operator==(const HashTableIterator &R) const {
if (IsEnd && R.IsEnd)
return true;
if (IsEnd != R.IsEnd)
return false;
return (Map == R.Map) && (Index == R.Index);
}
const std::pair<uint32_t, uint32_t> &HashTableIterator::operator*() const {
assert(Map->Present.test(Index));
return Map->Buckets[Index];
}
HashTableIterator &HashTableIterator::operator++() {
while (Index < Map->Buckets.size()) {
++Index;
if (Map->Present.test(Index))
return *this;
}
IsEnd = true;
return *this;
}

View File

@ -27,26 +27,27 @@
using namespace llvm;
using namespace llvm::pdb;
namespace {
struct NamedStreamMapTraits {
static uint16_t hash(StringRef S, const NamedStreamMap &NS) {
// In the reference implementation, this uses
// HASH Hasher<ULONG*, USHORT*>::hashPbCb(PB pb, size_t cb, ULONG ulMod).
// Here, the type HASH is a typedef of unsigned short.
// ** It is not a bug that we truncate the result of hashStringV1, in fact
// it is a bug if we do not! **
return static_cast<uint16_t>(hashStringV1(S));
}
static StringRef realKey(uint32_t Offset, const NamedStreamMap &NS) {
return NS.getString(Offset);
}
static uint32_t lowerKey(StringRef S, NamedStreamMap &NS) {
return NS.appendStringData(S);
}
};
} // namespace
NamedStreamMapTraits::NamedStreamMapTraits(NamedStreamMap &NS) : NS(&NS) {}
NamedStreamMap::NamedStreamMap() {}
uint16_t NamedStreamMapTraits::hashLookupKey(StringRef S) const {
// In the reference implementation, this uses
// HASH Hasher<ULONG*, USHORT*>::hashPbCb(PB pb, size_t cb, ULONG ulMod).
// Here, the type HASH is a typedef of unsigned short.
// ** It is not a bug that we truncate the result of hashStringV1, in fact
// it is a bug if we do not! **
return static_cast<uint16_t>(hashStringV1(S));
}
StringRef NamedStreamMapTraits::storageKeyToLookupKey(uint32_t Offset) const {
return NS->getString(Offset);
}
uint32_t NamedStreamMapTraits::lookupKeyToStorageKey(StringRef S) {
return NS->appendStringData(S);
}
NamedStreamMap::NamedStreamMap()
: HashTraits(*this), OffsetIndexMap(HashTraits) {}
Error NamedStreamMap::load(BinaryStreamReader &Stream) {
uint32_t StringBufferSize;
@ -98,7 +99,7 @@ uint32_t NamedStreamMap::hashString(uint32_t Offset) const {
}
bool NamedStreamMap::get(StringRef Stream, uint32_t &StreamNo) const {
auto Iter = OffsetIndexMap.find_as<NamedStreamMapTraits>(Stream, *this);
auto Iter = OffsetIndexMap.find_as(Stream);
if (Iter == OffsetIndexMap.end())
return false;
StreamNo = (*Iter).second;
@ -122,5 +123,5 @@ uint32_t NamedStreamMap::appendStringData(StringRef S) {
}
void NamedStreamMap::set(StringRef Stream, uint32_t StreamNo) {
OffsetIndexMap.set_as<NamedStreamMapTraits>(Stream, StreamNo, *this);
OffsetIndexMap.set_as(Stream, support::ulittle32_t(StreamNo));
}

View File

@ -152,7 +152,9 @@ FixedStreamArray<TypeIndexOffset> TpiStream::getTypeIndexOffsets() const {
return TypeIndexOffsets;
}
HashTable &TpiStream::getHashAdjusters() { return HashAdjusters; }
HashTable<support::ulittle32_t> &TpiStream::getHashAdjusters() {
return HashAdjusters;
}
CVTypeRange TpiStream::types(bool *HadError) const {
return make_range(TypeRecords.begin(HadError), TypeRecords.end());

View File

@ -125,7 +125,7 @@ Error AnalysisStyle::dump() {
const auto &Collisions = CollisionsIter->second;
outs() << TypeName << "\n";
outs() << formatv(" [HEAD] {0:x} {1} {2}\n", A.second,
outs() << formatv(" [HEAD] {0:x} {1} {2}\n", uint32_t(A.second),
getLeafTypeName(HeadRecord.Type), TypeName);
for (const auto &Chain : Collisions) {
if (Chain.TI == TI)

View File

@ -8,10 +8,14 @@
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/PDB/Native/HashTable.h"
#include "llvm/DebugInfo/PDB/Native/Hash.h"
#include "llvm/DebugInfo/PDB/Native/NamedStreamMap.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/BinaryByteStream.h"
#include "llvm/Support/BinaryStreamReader.h"
#include "llvm/Support/BinaryStreamWriter.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Testing/Support/Error.h"
#include "gtest/gtest.h"
@ -23,7 +27,8 @@ using namespace llvm::pdb;
using namespace llvm::support;
namespace {
class HashTableInternals : public HashTable {
class HashTableInternals : public HashTable<uint32_t> {
public:
using HashTable::Buckets;
using HashTable::Present;
@ -32,18 +37,18 @@ public:
}
TEST(HashTableTest, TestSimple) {
HashTable Table;
HashTableInternals Table;
EXPECT_EQ(0u, Table.size());
EXPECT_GT(Table.capacity(), 0u);
Table.set(3, 7);
Table.set_as(3, 7);
EXPECT_EQ(1u, Table.size());
ASSERT_NE(Table.end(), Table.find(3));
ASSERT_NE(Table.end(), Table.find_as(3));
EXPECT_EQ(7u, Table.get(3));
}
TEST(HashTableTest, TestCollision) {
HashTable Table;
HashTableInternals Table;
EXPECT_EQ(0u, Table.size());
EXPECT_GT(Table.capacity(), 0u);
@ -53,39 +58,33 @@ TEST(HashTableTest, TestCollision) {
uint32_t N1 = Table.capacity() + 1;
uint32_t N2 = 2 * N1;
Table.set(N1, 7);
Table.set(N2, 12);
Table.set_as(N1, 7);
Table.set_as(N2, 12);
EXPECT_EQ(2u, Table.size());
ASSERT_NE(Table.end(), Table.find(N1));
ASSERT_NE(Table.end(), Table.find(N2));
ASSERT_NE(Table.end(), Table.find_as(N1));
ASSERT_NE(Table.end(), Table.find_as(N2));
EXPECT_EQ(7u, Table.get(N1));
EXPECT_EQ(12u, Table.get(N2));
}
TEST(HashTableTest, TestRemove) {
HashTable Table;
HashTableInternals Table;
EXPECT_EQ(0u, Table.size());
EXPECT_GT(Table.capacity(), 0u);
Table.set(1, 2);
Table.set(3, 4);
Table.set_as(1, 2);
Table.set_as(3, 4);
EXPECT_EQ(2u, Table.size());
ASSERT_NE(Table.end(), Table.find(1));
ASSERT_NE(Table.end(), Table.find(3));
ASSERT_NE(Table.end(), Table.find_as(1));
ASSERT_NE(Table.end(), Table.find_as(3));
EXPECT_EQ(2u, Table.get(1));
EXPECT_EQ(4u, Table.get(3));
Table.remove(1u);
EXPECT_EQ(1u, Table.size());
EXPECT_EQ(Table.end(), Table.find(1));
ASSERT_NE(Table.end(), Table.find(3));
EXPECT_EQ(4u, Table.get(3));
}
TEST(HashTableTest, TestCollisionAfterMultipleProbes) {
HashTable Table;
HashTableInternals Table;
EXPECT_EQ(0u, Table.size());
EXPECT_GT(Table.capacity(), 0u);
@ -96,31 +95,17 @@ TEST(HashTableTest, TestCollisionAfterMultipleProbes) {
uint32_t N2 = N1 + 1;
uint32_t N3 = 2 * N1;
Table.set(N1, 7);
Table.set(N2, 11);
Table.set(N3, 13);
Table.set_as(N1, 7);
Table.set_as(N2, 11);
Table.set_as(N3, 13);
EXPECT_EQ(3u, Table.size());
ASSERT_NE(Table.end(), Table.find(N1));
ASSERT_NE(Table.end(), Table.find(N2));
ASSERT_NE(Table.end(), Table.find(N3));
ASSERT_NE(Table.end(), Table.find_as(N1));
ASSERT_NE(Table.end(), Table.find_as(N2));
ASSERT_NE(Table.end(), Table.find_as(N3));
EXPECT_EQ(7u, Table.get(N1));
EXPECT_EQ(11u, Table.get(N2));
EXPECT_EQ(13u, Table.get(N3));
// Remove the one that had been filled in the middle, then insert another one
// with a collision. It should fill the newly emptied slot.
Table.remove(N2);
uint32_t N4 = N1 * 3;
Table.set(N4, 17);
EXPECT_EQ(3u, Table.size());
ASSERT_NE(Table.end(), Table.find(N1));
ASSERT_NE(Table.end(), Table.find(N3));
ASSERT_NE(Table.end(), Table.find(N4));
EXPECT_EQ(7u, Table.get(N1));
EXPECT_EQ(13u, Table.get(N3));
EXPECT_EQ(17u, Table.get(N4));
}
TEST(HashTableTest, Grow) {
@ -128,15 +113,15 @@ TEST(HashTableTest, Grow) {
// guaranteed to trigger a grow. Then verify that the size is the same, the
// capacity is larger, and all the original items are still in the table.
HashTable Table;
HashTableInternals Table;
uint32_t OldCapacity = Table.capacity();
for (uint32_t I = 0; I < OldCapacity; ++I) {
Table.set(OldCapacity + I * 2 + 1, I * 2 + 3);
Table.set_as(OldCapacity + I * 2 + 1, I * 2 + 3);
}
EXPECT_EQ(OldCapacity, Table.size());
EXPECT_GT(Table.capacity(), OldCapacity);
for (uint32_t I = 0; I < OldCapacity; ++I) {
ASSERT_NE(Table.end(), Table.find(OldCapacity + I * 2 + 1));
ASSERT_NE(Table.end(), Table.find_as(OldCapacity + I * 2 + 1));
EXPECT_EQ(I * 2 + 3, Table.get(OldCapacity + I * 2 + 1));
}
}
@ -145,7 +130,7 @@ TEST(HashTableTest, Serialization) {
HashTableInternals Table;
uint32_t Cap = Table.capacity();
for (uint32_t I = 0; I < Cap; ++I) {
Table.set(Cap + I * 2 + 1, I * 2 + 3);
Table.set_as(Cap + I * 2 + 1, I * 2 + 3);
}
std::vector<uint8_t> Buffer(Table.calculateSerializedLength());
@ -207,3 +192,73 @@ TEST(HashTableTest, NamedStreamMap) {
EXPECT_EQ(7U, N);
} while (std::next_permutation(Streams.begin(), Streams.end()));
}
namespace {
struct FooBar {
std::string S;
uint32_t X;
uint32_t Y;
double Z;
};
} // namespace
namespace llvm {
namespace pdb {
template <> struct PdbHashTraits<FooBar> {
std::vector<char> Buffer;
PdbHashTraits() { Buffer.push_back(0); }
uint32_t hashLookupKey(StringRef S) const {
return llvm::pdb::hashStringV1(S);
}
StringRef storageKeyToLookupKey(uint32_t N) const {
if (N >= Buffer.size())
return StringRef();
return StringRef(Buffer.data() + N);
}
uint32_t lookupKeyToStorageKey(StringRef S) {
uint32_t N = Buffer.size();
Buffer.insert(Buffer.end(), S.begin(), S.end());
Buffer.push_back('\0');
return N;
}
};
} // namespace pdb
} // namespace llvm
TEST(HashTableTest, NonTrivialValueType) {
HashTable<FooBar> Table;
uint32_t Cap = Table.capacity();
for (uint32_t I = 0; I < Cap; ++I) {
FooBar F;
F.S = utostr(I);
F.X = I;
F.Y = I + 1;
F.Z = static_cast<double>(I + 2);
Table.set_as(utostr(I), F);
}
std::vector<uint8_t> Buffer(Table.calculateSerializedLength());
MutableBinaryByteStream Stream(Buffer, little);
BinaryStreamWriter Writer(Stream);
EXPECT_THAT_ERROR(Table.commit(Writer), Succeeded());
// We should have written precisely the number of bytes we calculated earlier.
EXPECT_EQ(Buffer.size(), Writer.getOffset());
HashTable<FooBar> Table2;
BinaryStreamReader Reader(Stream);
EXPECT_THAT_ERROR(Table2.load(Reader), Succeeded());
// We should have read precisely the number of bytes we calculated earlier.
EXPECT_EQ(Buffer.size(), Reader.getOffset());
EXPECT_EQ(Table.size(), Table2.size());
EXPECT_EQ(Table.capacity(), Table2.capacity());
// EXPECT_EQ(Table.Buckets, Table2.Buckets);
// EXPECT_EQ(Table.Present, Table2.Present);
// EXPECT_EQ(Table.Deleted, Table2.Deleted);
}