From ebeac5cb89aa0fca23abe203e4714218c8b4ee7c Mon Sep 17 00:00:00 2001 From: Chandler Carruth Date: Sat, 14 Sep 2013 09:28:14 +0000 Subject: [PATCH] Remove the long, long defunct IR block placement pass. This pass was based on the previous (essentially unused) profiling infrastructure and the assumption that by ordering the basic blocks at the IR level in a particular way, the correct layout would happen in the end. This sometimes worked, and mostly didn't. It also was a really naive implementation of the classical paper that dates from when branch predictors were primarily directional and when loop structure wasn't commonly available. It also didn't factor into the equation non-fallthrough branches and other machine level details. Anyways, for all of these reasons and more, I wrote MachineBlockPlacement, which completely supercedes this pass. It both uses modern profile information infrastructure, and actually works. =] llvm-svn: 190748 --- llvm/include/llvm/InitializePasses.h | 1 - llvm/include/llvm/LinkAllPasses.h | 1 - llvm/include/llvm/Transforms/Scalar.h | 7 - .../Transforms/Scalar/BasicBlockPlacement.cpp | 152 ------------------ llvm/lib/Transforms/Scalar/CMakeLists.txt | 1 - llvm/lib/Transforms/Scalar/Scalar.cpp | 1 - .../Transforms/BlockPlacement/basictest.ll | 15 -- 7 files changed, 178 deletions(-) delete mode 100644 llvm/lib/Transforms/Scalar/BasicBlockPlacement.cpp delete mode 100644 llvm/test/Transforms/BlockPlacement/basictest.ll diff --git a/llvm/include/llvm/InitializePasses.h b/llvm/include/llvm/InitializePasses.h index aa06eca9b291..1b50bb22654d 100644 --- a/llvm/include/llvm/InitializePasses.h +++ b/llvm/include/llvm/InitializePasses.h @@ -76,7 +76,6 @@ void initializeBasicCallGraphPass(PassRegistry&); void initializeBasicTTIPass(PassRegistry&); void initializeBlockExtractorPassPass(PassRegistry&); void initializeBlockFrequencyInfoPass(PassRegistry&); -void initializeBlockPlacementPass(PassRegistry&); void initializeBoundsCheckingPass(PassRegistry&); void initializeBranchFolderPassPass(PassRegistry&); void initializeBranchProbabilityInfoPass(PassRegistry&); diff --git a/llvm/include/llvm/LinkAllPasses.h b/llvm/include/llvm/LinkAllPasses.h index ec1ca49b4fa0..0639ed1dad82 100644 --- a/llvm/include/llvm/LinkAllPasses.h +++ b/llvm/include/llvm/LinkAllPasses.h @@ -56,7 +56,6 @@ namespace { (void) llvm::createLibCallAliasAnalysisPass(0); (void) llvm::createScalarEvolutionAliasAnalysisPass(); (void) llvm::createTypeBasedAliasAnalysisPass(); - (void) llvm::createBlockPlacementPass(); (void) llvm::createBoundsCheckingPass(); (void) llvm::createBreakCriticalEdgesPass(); (void) llvm::createCallGraphPrinterPass(); diff --git a/llvm/include/llvm/Transforms/Scalar.h b/llvm/include/llvm/Transforms/Scalar.h index eec9e591ee52..51aeba4a3617 100644 --- a/llvm/include/llvm/Transforms/Scalar.h +++ b/llvm/include/llvm/Transforms/Scalar.h @@ -265,13 +265,6 @@ FunctionPass *createLowerInvokePass(const TargetMachine *TM = 0, bool useExpensiveEHSupport = false); extern char &LowerInvokePassID; -//===----------------------------------------------------------------------===// -// -// BlockPlacement - This pass reorders basic blocks in order to increase the -// number of fall-through conditional branches. -// -FunctionPass *createBlockPlacementPass(); - //===----------------------------------------------------------------------===// // // LCSSA - This pass inserts phi nodes at loop boundaries to simplify other loop diff --git a/llvm/lib/Transforms/Scalar/BasicBlockPlacement.cpp b/llvm/lib/Transforms/Scalar/BasicBlockPlacement.cpp deleted file mode 100644 index e755008808f6..000000000000 --- a/llvm/lib/Transforms/Scalar/BasicBlockPlacement.cpp +++ /dev/null @@ -1,152 +0,0 @@ -//===-- BasicBlockPlacement.cpp - Basic Block Code Layout optimization ----===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements a very simple profile guided basic block placement -// algorithm. The idea is to put frequently executed blocks together at the -// start of the function, and hopefully increase the number of fall-through -// conditional branches. If there is no profile information for a particular -// function, this pass basically orders blocks in depth-first order -// -// The algorithm implemented here is basically "Algo1" from "Profile Guided Code -// Positioning" by Pettis and Hansen, except that it uses basic block counts -// instead of edge counts. This should be improved in many ways, but is very -// simple for now. -// -// Basically we "place" the entry block, then loop over all successors in a DFO, -// placing the most frequently executed successor until we run out of blocks. I -// told you this was _extremely_ simplistic. :) This is also much slower than it -// could be. When it becomes important, this pass will be rewritten to use a -// better algorithm, and then we can worry about efficiency. -// -//===----------------------------------------------------------------------===// - -#define DEBUG_TYPE "block-placement" -#include "llvm/Transforms/Scalar.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/ProfileInfo.h" -#include "llvm/IR/Function.h" -#include "llvm/Pass.h" -#include "llvm/Support/CFG.h" -#include -using namespace llvm; - -STATISTIC(NumMoved, "Number of basic blocks moved"); - -namespace { - struct BlockPlacement : public FunctionPass { - static char ID; // Pass identification, replacement for typeid - BlockPlacement() : FunctionPass(ID) { - initializeBlockPlacementPass(*PassRegistry::getPassRegistry()); - } - - virtual bool runOnFunction(Function &F); - - virtual void getAnalysisUsage(AnalysisUsage &AU) const { - AU.setPreservesCFG(); - AU.addRequired(); - //AU.addPreserved(); // Does this work? - } - private: - /// PI - The profile information that is guiding us. - /// - ProfileInfo *PI; - - /// NumMovedBlocks - Every time we move a block, increment this counter. - /// - unsigned NumMovedBlocks; - - /// PlacedBlocks - Every time we place a block, remember it so we don't get - /// into infinite loops. - std::set PlacedBlocks; - - /// InsertPos - This an iterator to the next place we want to insert a - /// block. - Function::iterator InsertPos; - - /// PlaceBlocks - Recursively place the specified blocks and any unplaced - /// successors. - void PlaceBlocks(BasicBlock *BB); - }; -} - -char BlockPlacement::ID = 0; -INITIALIZE_PASS_BEGIN(BlockPlacement, "block-placement", - "Profile Guided Basic Block Placement", false, false) -INITIALIZE_AG_DEPENDENCY(ProfileInfo) -INITIALIZE_PASS_END(BlockPlacement, "block-placement", - "Profile Guided Basic Block Placement", false, false) - -FunctionPass *llvm::createBlockPlacementPass() { return new BlockPlacement(); } - -bool BlockPlacement::runOnFunction(Function &F) { - PI = &getAnalysis(); - - NumMovedBlocks = 0; - InsertPos = F.begin(); - - // Recursively place all blocks. - PlaceBlocks(F.begin()); - - PlacedBlocks.clear(); - NumMoved += NumMovedBlocks; - return NumMovedBlocks != 0; -} - - -/// PlaceBlocks - Recursively place the specified blocks and any unplaced -/// successors. -void BlockPlacement::PlaceBlocks(BasicBlock *BB) { - assert(!PlacedBlocks.count(BB) && "Already placed this block!"); - PlacedBlocks.insert(BB); - - // Place the specified block. - if (&*InsertPos != BB) { - // Use splice to move the block into the right place. This avoids having to - // remove the block from the function then readd it, which causes a bunch of - // symbol table traffic that is entirely pointless. - Function::BasicBlockListType &Blocks = BB->getParent()->getBasicBlockList(); - Blocks.splice(InsertPos, Blocks, BB); - - ++NumMovedBlocks; - } else { - // This block is already in the right place, we don't have to do anything. - ++InsertPos; - } - - // Keep placing successors until we run out of ones to place. Note that this - // loop is very inefficient (N^2) for blocks with many successors, like switch - // statements. FIXME! - while (1) { - // Okay, now place any unplaced successors. - succ_iterator SI = succ_begin(BB), E = succ_end(BB); - - // Scan for the first unplaced successor. - for (; SI != E && PlacedBlocks.count(*SI); ++SI) - /*empty*/; - if (SI == E) return; // No more successors to place. - - double MaxExecutionCount = PI->getExecutionCount(*SI); - BasicBlock *MaxSuccessor = *SI; - - // Scan for more frequently executed successors - for (; SI != E; ++SI) - if (!PlacedBlocks.count(*SI)) { - double Count = PI->getExecutionCount(*SI); - if (Count > MaxExecutionCount || - // Prefer to not disturb the code. - (Count == MaxExecutionCount && *SI == &*InsertPos)) { - MaxExecutionCount = Count; - MaxSuccessor = *SI; - } - } - - // Now that we picked the maximally executed successor, place it. - PlaceBlocks(MaxSuccessor); - } -} diff --git a/llvm/lib/Transforms/Scalar/CMakeLists.txt b/llvm/lib/Transforms/Scalar/CMakeLists.txt index 7fa7807990df..3b89fd4cfd89 100644 --- a/llvm/lib/Transforms/Scalar/CMakeLists.txt +++ b/llvm/lib/Transforms/Scalar/CMakeLists.txt @@ -1,6 +1,5 @@ add_llvm_library(LLVMScalarOpts ADCE.cpp - BasicBlockPlacement.cpp CodeGenPrepare.cpp ConstantProp.cpp CorrelatedValuePropagation.cpp diff --git a/llvm/lib/Transforms/Scalar/Scalar.cpp b/llvm/lib/Transforms/Scalar/Scalar.cpp index 952811b22b54..0c3ffbc98310 100644 --- a/llvm/lib/Transforms/Scalar/Scalar.cpp +++ b/llvm/lib/Transforms/Scalar/Scalar.cpp @@ -28,7 +28,6 @@ using namespace llvm; /// ScalarOpts library. void llvm::initializeScalarOpts(PassRegistry &Registry) { initializeADCEPass(Registry); - initializeBlockPlacementPass(Registry); initializeCodeGenPreparePass(Registry); initializeConstantPropagationPass(Registry); initializeCorrelatedValuePropagationPass(Registry); diff --git a/llvm/test/Transforms/BlockPlacement/basictest.ll b/llvm/test/Transforms/BlockPlacement/basictest.ll deleted file mode 100644 index 47b507903bce..000000000000 --- a/llvm/test/Transforms/BlockPlacement/basictest.ll +++ /dev/null @@ -1,15 +0,0 @@ -; RUN: opt < %s -block-placement -disable-output -print-function 2> /dev/null - -define i32 @test() { - br i1 true, label %X, label %Y - -A: ; preds = %Y, %X - ret i32 0 - -X: ; preds = %0 - br label %A - -Y: ; preds = %0 - br label %A -} -