forked from OSchip/llvm-project
[mlir][sparse] Add F16 and BF16.
This is the first PR to add `F16` and `BF16` support to the sparse codegen. There are still problems in supporting these two data types, such as `BF16` is not quite working yet. Add tests cases. Reviewed By: aartbik Differential Revision: https://reviews.llvm.org/D127010
This commit is contained in:
parent
9a76337fee
commit
ea8ed5cbcf
|
@ -0,0 +1,39 @@
|
|||
//===--- Float16bits.h - supports 2-byte floats ---------------------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements f16 and bf16 to support the compilation and execution
|
||||
// of programs using these types.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef MLIR_EXECUTIONENGINE_FLOAT16BITS_H_
|
||||
#define MLIR_EXECUTIONENGINE_FLOAT16BITS_H_
|
||||
|
||||
#include <cstdint>
|
||||
#include <iostream>
|
||||
|
||||
// Implements half precision and bfloat with f16 and bf16, using the MLIR type
|
||||
// names. These data types are also used for c-interface runtime routines.
|
||||
extern "C" {
|
||||
struct f16 {
|
||||
f16(float f = 0);
|
||||
uint16_t bits;
|
||||
};
|
||||
|
||||
struct bf16 {
|
||||
bf16(float f = 0);
|
||||
uint16_t bits;
|
||||
};
|
||||
}
|
||||
|
||||
// Outputs a half precision value.
|
||||
std::ostream &operator<<(std::ostream &os, const f16 &f);
|
||||
// Outputs a bfloat value.
|
||||
std::ostream &operator<<(std::ostream &os, const bf16 &d);
|
||||
|
||||
#endif // MLIR_EXECUTIONENGINE_FLOAT16BITS_H_
|
|
@ -15,6 +15,7 @@
|
|||
#define MLIR_EXECUTIONENGINE_SPARSETENSORUTILS_H_
|
||||
|
||||
#include "mlir/ExecutionEngine/CRunnerUtils.h"
|
||||
#include "mlir/ExecutionEngine/Float16bits.h"
|
||||
|
||||
#include <cinttypes>
|
||||
#include <complex>
|
||||
|
@ -77,12 +78,14 @@ using complex32 = std::complex<float>;
|
|||
enum class PrimaryType : uint32_t {
|
||||
kF64 = 1,
|
||||
kF32 = 2,
|
||||
kI64 = 3,
|
||||
kI32 = 4,
|
||||
kI16 = 5,
|
||||
kI8 = 6,
|
||||
kC64 = 7,
|
||||
kC32 = 8
|
||||
kF16 = 3,
|
||||
kBF16 = 4,
|
||||
kI64 = 5,
|
||||
kI32 = 6,
|
||||
kI16 = 7,
|
||||
kI8 = 8,
|
||||
kC64 = 9,
|
||||
kC32 = 10
|
||||
};
|
||||
|
||||
// This x-macro only specifies the non-complex `V` types, because the ABI
|
||||
|
@ -97,6 +100,8 @@ enum class PrimaryType : uint32_t {
|
|||
#define FOREVERY_SIMPLEX_V(DO) \
|
||||
DO(F64, double) \
|
||||
DO(F32, float) \
|
||||
DO(F16, f16) \
|
||||
DO(BF16, bf16) \
|
||||
DO(I64, int64_t) \
|
||||
DO(I32, int32_t) \
|
||||
DO(I16, int16_t) \
|
||||
|
|
|
@ -104,6 +104,10 @@ PrimaryType mlir::sparse_tensor::primaryTypeEncoding(Type elemTp) {
|
|||
return PrimaryType::kF64;
|
||||
if (elemTp.isF32())
|
||||
return PrimaryType::kF32;
|
||||
if (elemTp.isF16())
|
||||
return PrimaryType::kF16;
|
||||
if (elemTp.isBF16())
|
||||
return PrimaryType::kBF16;
|
||||
if (elemTp.isInteger(64))
|
||||
return PrimaryType::kI64;
|
||||
if (elemTp.isInteger(32))
|
||||
|
|
|
@ -7,6 +7,7 @@ set(LLVM_OPTIONAL_SOURCES
|
|||
CudaRuntimeWrappers.cpp
|
||||
SparseTensorUtils.cpp
|
||||
ExecutionEngine.cpp
|
||||
Float16bits.cpp
|
||||
RocmRuntimeWrappers.cpp
|
||||
RunnerUtils.cpp
|
||||
OptUtils.cpp
|
||||
|
@ -121,6 +122,7 @@ add_mlir_library(MLIRJitRunner
|
|||
add_mlir_library(mlir_c_runner_utils
|
||||
SHARED
|
||||
CRunnerUtils.cpp
|
||||
Float16bits.cpp
|
||||
SparseTensorUtils.cpp
|
||||
|
||||
EXCLUDE_FROM_LIBMLIR
|
||||
|
|
|
@ -0,0 +1,143 @@
|
|||
//===--- Float16bits.cpp - supports 2-byte floats ------------------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements f16 and bf16 to support the compilation and execution
|
||||
// of programs using these types.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "mlir/ExecutionEngine/Float16bits.h"
|
||||
|
||||
namespace {
|
||||
|
||||
// Union used to make the int/float aliasing explicit so we can access the raw
|
||||
// bits.
|
||||
union Float32Bits {
|
||||
uint32_t u;
|
||||
float f;
|
||||
};
|
||||
|
||||
const uint32_t kF32MantiBits = 23;
|
||||
const uint32_t kF32HalfMantiBitDiff = 13;
|
||||
const uint32_t kF32HalfBitDiff = 16;
|
||||
const Float32Bits kF32Magic = {113 << kF32MantiBits};
|
||||
const uint32_t kF32HalfExpAdjust = (127 - 15) << kF32MantiBits;
|
||||
|
||||
// Constructs the 16 bit representation for a half precision value from a float
|
||||
// value. This implementation is adapted from Eigen.
|
||||
uint16_t float2half(float floatValue) {
|
||||
const Float32Bits inf = {255 << kF32MantiBits};
|
||||
const Float32Bits f16max = {(127 + 16) << kF32MantiBits};
|
||||
const Float32Bits denormMagic = {((127 - 15) + (kF32MantiBits - 10) + 1)
|
||||
<< kF32MantiBits};
|
||||
uint32_t signMask = 0x80000000u;
|
||||
uint16_t halfValue = static_cast<uint16_t>(0x0u);
|
||||
Float32Bits f;
|
||||
f.f = floatValue;
|
||||
uint32_t sign = f.u & signMask;
|
||||
f.u ^= sign;
|
||||
|
||||
if (f.u >= f16max.u) {
|
||||
const uint32_t halfQnan = 0x7e00;
|
||||
const uint32_t halfInf = 0x7c00;
|
||||
// Inf or NaN (all exponent bits set).
|
||||
halfValue = (f.u > inf.u) ? halfQnan : halfInf; // NaN->qNaN and Inf->Inf
|
||||
} else {
|
||||
// (De)normalized number or zero.
|
||||
if (f.u < kF32Magic.u) {
|
||||
// The resulting FP16 is subnormal or zero.
|
||||
//
|
||||
// Use a magic value to align our 10 mantissa bits at the bottom of the
|
||||
// float. As long as FP addition is round-to-nearest-even this works.
|
||||
f.f += denormMagic.f;
|
||||
|
||||
halfValue = static_cast<uint16_t>(f.u - denormMagic.u);
|
||||
} else {
|
||||
uint32_t mantOdd =
|
||||
(f.u >> kF32HalfMantiBitDiff) & 1; // Resulting mantissa is odd.
|
||||
|
||||
// Update exponent, rounding bias part 1. The following expressions are
|
||||
// equivalent to `f.u += ((unsigned int)(15 - 127) << kF32MantiBits) +
|
||||
// 0xfff`, but without arithmetic overflow.
|
||||
f.u += 0xc8000fffU;
|
||||
// Rounding bias part 2.
|
||||
f.u += mantOdd;
|
||||
halfValue = static_cast<uint16_t>(f.u >> kF32HalfMantiBitDiff);
|
||||
}
|
||||
}
|
||||
|
||||
halfValue |= static_cast<uint16_t>(sign >> kF32HalfBitDiff);
|
||||
return halfValue;
|
||||
}
|
||||
|
||||
// Converts the 16 bit representation of a half precision value to a float
|
||||
// value. This implementation is adapted from Eigen.
|
||||
float half2float(uint16_t halfValue) {
|
||||
const uint32_t shiftedExp =
|
||||
0x7c00 << kF32HalfMantiBitDiff; // Exponent mask after shift.
|
||||
|
||||
// Initialize the float representation with the exponent/mantissa bits.
|
||||
Float32Bits f = {
|
||||
static_cast<uint32_t>((halfValue & 0x7fff) << kF32HalfMantiBitDiff)};
|
||||
const uint32_t exp = shiftedExp & f.u;
|
||||
f.u += kF32HalfExpAdjust; // Adjust the exponent
|
||||
|
||||
// Handle exponent special cases.
|
||||
if (exp == shiftedExp) {
|
||||
// Inf/NaN
|
||||
f.u += kF32HalfExpAdjust;
|
||||
} else if (exp == 0) {
|
||||
// Zero/Denormal?
|
||||
f.u += 1 << kF32MantiBits;
|
||||
f.f -= kF32Magic.f;
|
||||
}
|
||||
|
||||
f.u |= (halfValue & 0x8000) << kF32HalfBitDiff; // Sign bit.
|
||||
return f.f;
|
||||
}
|
||||
|
||||
const uint32_t kF32BfMantiBitDiff = 16;
|
||||
|
||||
// Constructs the 16 bit representation for a bfloat value from a float value.
|
||||
// This implementation is adapted from Eigen.
|
||||
uint16_t float2bfloat(float floatValue) {
|
||||
Float32Bits floatBits;
|
||||
floatBits.f = floatValue;
|
||||
uint16_t bfloatBits;
|
||||
|
||||
// Least significant bit of resulting bfloat.
|
||||
uint32_t lsb = (floatBits.u >> kF32BfMantiBitDiff) & 1;
|
||||
uint32_t rounding_bias = 0x7fff + lsb;
|
||||
floatBits.u += rounding_bias;
|
||||
bfloatBits = static_cast<uint16_t>(floatBits.u >> kF32BfMantiBitDiff);
|
||||
return bfloatBits;
|
||||
}
|
||||
|
||||
// Converts the 16 bit representation of a bfloat value to a float value. This
|
||||
// implementation is adapted from Eigen.
|
||||
float bfloat2float(uint16_t bfloatBits) {
|
||||
Float32Bits floatBits;
|
||||
floatBits.u = static_cast<uint32_t>(bfloatBits) << kF32BfMantiBitDiff;
|
||||
return floatBits.f;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
f16::f16(float f) : bits(float2half(f)) {}
|
||||
|
||||
bf16::bf16(float f) : bits(float2bfloat(f)) {}
|
||||
|
||||
std::ostream &operator<<(std::ostream &os, const f16 &f) {
|
||||
os << half2float(f.bits);
|
||||
return os;
|
||||
}
|
||||
|
||||
std::ostream &operator<<(std::ostream &os, const bf16 &d) {
|
||||
os << bfloat2float(d.bits);
|
||||
return os;
|
||||
}
|
|
@ -1567,6 +1567,16 @@ _mlir_ciface_newSparseTensor(StridedMemRefType<DimLevelType, 1> *aref, // NOLINT
|
|||
CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF32, uint8_t,
|
||||
uint8_t, float);
|
||||
|
||||
// Two-byte floats with both overheads of the same type.
|
||||
CASE_SECSAME(OverheadType::kU64, PrimaryType::kF16, uint64_t, f16);
|
||||
CASE_SECSAME(OverheadType::kU64, PrimaryType::kBF16, uint64_t, bf16);
|
||||
CASE_SECSAME(OverheadType::kU32, PrimaryType::kF16, uint32_t, f16);
|
||||
CASE_SECSAME(OverheadType::kU32, PrimaryType::kBF16, uint32_t, bf16);
|
||||
CASE_SECSAME(OverheadType::kU16, PrimaryType::kF16, uint16_t, f16);
|
||||
CASE_SECSAME(OverheadType::kU16, PrimaryType::kBF16, uint16_t, bf16);
|
||||
CASE_SECSAME(OverheadType::kU8, PrimaryType::kF16, uint8_t, f16);
|
||||
CASE_SECSAME(OverheadType::kU8, PrimaryType::kBF16, uint8_t, bf16);
|
||||
|
||||
// Integral matrices with both overheads of the same type.
|
||||
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI64, uint64_t, int64_t);
|
||||
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI32, uint64_t, int32_t);
|
||||
|
|
|
@ -28,9 +28,8 @@
|
|||
// CHECK-DAG: %[[PermD:.*]] = memref.cast %[[PermS]] : memref<1xindex> to memref<?xindex>
|
||||
// CHECK-DAG: memref.store %[[I0]], %[[PermS]][%[[I0]]] : memref<1xindex>
|
||||
// CHECK-DAG: %[[zeroI32:.*]] = arith.constant 0 : i32
|
||||
// CHECK-DAG: %[[ElemTp:.*]] = arith.constant 4 : i32
|
||||
// CHECK-DAG: %[[ActionToIter:.*]] = arith.constant 6 : i32
|
||||
// CHECK-DAG: %[[Iter:.*]] = call @newSparseTensor(%[[AttrsD]], %[[SizesD]], %[[PermD]], %[[zeroI32]], %[[zeroI32]], %[[ElemTp]], %[[ActionToIter]], %[[Arg]]) : (memref<?xi8>, memref<?xindex>, memref<?xindex>, i32, i32, i32, i32, !llvm.ptr<i8>) -> !llvm.ptr<i8>
|
||||
// CHECK-DAG: %[[ElemTpActionToIter:.*]] = arith.constant 6 : i32
|
||||
// CHECK-DAG: %[[Iter:.*]] = call @newSparseTensor(%[[AttrsD]], %[[SizesD]], %[[PermD]], %[[zeroI32]], %[[zeroI32]], %[[ElemTpActionToIter]], %[[ElemTpActionToIter]], %[[Arg]]) : (memref<?xi8>, memref<?xindex>, memref<?xindex>, i32, i32, i32, i32, !llvm.ptr<i8>) -> !llvm.ptr<i8>
|
||||
// CHECK-DAG: %[[IndS:.*]] = memref.alloca() : memref<1xindex>
|
||||
// CHECK-DAG: %[[IndD:.*]] = memref.cast %[[IndS]] : memref<1xindex> to memref<?xindex>
|
||||
// CHECK-DAG: %[[ElemBuffer:.*]] = memref.alloca() : memref<i32>
|
||||
|
@ -67,9 +66,8 @@ func.func @sparse_convert_1d(%arg0: tensor<13xi32, #SparseVector>) -> tensor<13x
|
|||
// CHECK-DAG: %[[PermD:.*]] = memref.cast %[[PermS]] : memref<1xindex> to memref<?xindex>
|
||||
// CHECK-DAG: memref.store %[[I0]], %[[PermS]][%[[I0]]] : memref<1xindex>
|
||||
// CHECK-DAG: %[[zeroI32:.*]] = arith.constant 0 : i32
|
||||
// CHECK-DAG: %[[ElemTp:.*]] = arith.constant 4 : i32
|
||||
// CHECK-DAG: %[[ActionToIter:.*]] = arith.constant 6 : i32
|
||||
// CHECK-DAG: %[[Iter:.*]] = call @newSparseTensor(%[[AttrsD]], %[[SizesD]], %[[PermD]], %[[zeroI32]], %[[zeroI32]], %[[ElemTp]], %[[ActionToIter]], %[[Arg]]) : (memref<?xi8>, memref<?xindex>, memref<?xindex>, i32, i32, i32, i32, !llvm.ptr<i8>) -> !llvm.ptr<i8>
|
||||
// CHECK-DAG: %[[ElemTpActionToIter:.*]] = arith.constant 6 : i32
|
||||
// CHECK-DAG: %[[Iter:.*]] = call @newSparseTensor(%[[AttrsD]], %[[SizesD]], %[[PermD]], %[[zeroI32]], %[[zeroI32]], %[[ElemTpActionToIter]], %[[ElemTpActionToIter]], %[[Arg]]) : (memref<?xi8>, memref<?xindex>, memref<?xindex>, i32, i32, i32, i32, !llvm.ptr<i8>) -> !llvm.ptr<i8>
|
||||
// CHECK-DAG: %[[IndS:.*]] = memref.alloca() : memref<1xindex>
|
||||
// CHECK-DAG: %[[IndD:.*]] = memref.cast %[[IndS]] : memref<1xindex> to memref<?xindex>
|
||||
// CHECK-DAG: %[[ElemBuffer:.*]] = memref.alloca() : memref<i32>
|
||||
|
|
|
@ -0,0 +1,90 @@
|
|||
// RUN: mlir-opt %s --sparse-compiler | \
|
||||
// RUN: mlir-cpu-runner \
|
||||
// RUN: -e entry -entry-point-result=void \
|
||||
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
|
||||
// RUN: FileCheck %s
|
||||
|
||||
#SparseVector = #sparse_tensor.encoding<{dimLevelType = ["compressed"]}>
|
||||
#DenseVector = #sparse_tensor.encoding<{dimLevelType = ["dense"]}>
|
||||
|
||||
#trait_vec_op = {
|
||||
indexing_maps = [
|
||||
affine_map<(i) -> (i)>, // a (in)
|
||||
affine_map<(i) -> (i)>, // b (in)
|
||||
affine_map<(i) -> (i)> // x (out)
|
||||
],
|
||||
iterator_types = ["parallel"]
|
||||
}
|
||||
|
||||
module {
|
||||
// Creates a dense vector using the minimum values from two input sparse vectors.
|
||||
// When there is no overlap, include the present value in the output.
|
||||
func.func @vector_min(%arga: tensor<?xf16, #SparseVector>,
|
||||
%argb: tensor<?xf16, #SparseVector>) -> tensor<?xf16, #DenseVector> {
|
||||
%c = arith.constant 0 : index
|
||||
%d = tensor.dim %arga, %c : tensor<?xf16, #SparseVector>
|
||||
%xv = bufferization.alloc_tensor (%d) : tensor<?xf16, #DenseVector>
|
||||
%0 = linalg.generic #trait_vec_op
|
||||
ins(%arga, %argb: tensor<?xf16, #SparseVector>, tensor<?xf16, #SparseVector>)
|
||||
outs(%xv: tensor<?xf16, #DenseVector>) {
|
||||
^bb(%a: f16, %b: f16, %x: f16):
|
||||
%1 = sparse_tensor.binary %a, %b : f16, f16 to f16
|
||||
overlap={
|
||||
^bb0(%a0: f16, %b0: f16):
|
||||
%cmp = arith.cmpf "olt", %a0, %b0 : f16
|
||||
%2 = arith.select %cmp, %a0, %b0: f16
|
||||
sparse_tensor.yield %2 : f16
|
||||
}
|
||||
left=identity
|
||||
right=identity
|
||||
linalg.yield %1 : f16
|
||||
} -> tensor<?xf16, #DenseVector>
|
||||
return %0 : tensor<?xf16, #DenseVector>
|
||||
}
|
||||
|
||||
// Dumps a dense vector of type f16.
|
||||
func.func @dump_vec(%arg0: tensor<?xf16, #DenseVector>) {
|
||||
// Dump the values array to verify only sparse contents are stored.
|
||||
%c0 = arith.constant 0 : index
|
||||
%d0 = arith.constant -1.0 : f16
|
||||
%0 = sparse_tensor.values %arg0 : tensor<?xf16, #DenseVector> to memref<?xf16>
|
||||
%1 = vector.transfer_read %0[%c0], %d0: memref<?xf16>, vector<32xf16>
|
||||
%f1 = arith.extf %1: vector<32xf16> to vector<32xf32>
|
||||
vector.print %f1 : vector<32xf32>
|
||||
return
|
||||
}
|
||||
|
||||
// Driver method to call and verify the kernel.
|
||||
func.func @entry() {
|
||||
%c0 = arith.constant 0 : index
|
||||
|
||||
// Setup sparse vectors.
|
||||
%v1 = arith.constant sparse<
|
||||
[ [0], [3], [11], [17], [20], [21], [28], [29], [31] ],
|
||||
[ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 ]
|
||||
> : tensor<32xf16>
|
||||
%v2 = arith.constant sparse<
|
||||
[ [1], [3], [4], [10], [16], [18], [21], [28], [29], [31] ],
|
||||
[11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0 ]
|
||||
> : tensor<32xf16>
|
||||
%sv1 = sparse_tensor.convert %v1 : tensor<32xf16> to tensor<?xf16, #SparseVector>
|
||||
%sv2 = sparse_tensor.convert %v2 : tensor<32xf16> to tensor<?xf16, #SparseVector>
|
||||
|
||||
// Call the sparse vector kernel.
|
||||
%0 = call @vector_min(%sv1, %sv2)
|
||||
: (tensor<?xf16, #SparseVector>,
|
||||
tensor<?xf16, #SparseVector>) -> tensor<?xf16, #DenseVector>
|
||||
|
||||
//
|
||||
// Verify the result.
|
||||
//
|
||||
// CHECK: ( 1, 11, 0, 2, 13, 0, 0, 0, 0, 0, 14, 3, 0, 0, 0, 0, 15, 4, 16, 0, 5, 6, 0, 0, 0, 0, 0, 0, 7, 8, 0, 9 )
|
||||
call @dump_vec(%0) : (tensor<?xf16, #DenseVector>) -> ()
|
||||
|
||||
// Release the resources.
|
||||
sparse_tensor.release %sv1 : tensor<?xf16, #SparseVector>
|
||||
sparse_tensor.release %sv2 : tensor<?xf16, #SparseVector>
|
||||
sparse_tensor.release %0 : tensor<?xf16, #DenseVector>
|
||||
return
|
||||
}
|
||||
}
|
|
@ -0,0 +1,78 @@
|
|||
// RUN: mlir-opt %s --sparse-compiler | \
|
||||
// RUN: mlir-cpu-runner \
|
||||
// RUN: -e entry -entry-point-result=void \
|
||||
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
|
||||
// RUN: FileCheck %s
|
||||
|
||||
!Filename = !llvm.ptr<i8>
|
||||
|
||||
#SparseMatrix = #sparse_tensor.encoding<{
|
||||
dimLevelType = [ "compressed", "compressed" ]
|
||||
}>
|
||||
|
||||
#trait_sum_reduce = {
|
||||
indexing_maps = [
|
||||
affine_map<(i,j) -> (i,j)>, // A
|
||||
affine_map<(i,j) -> ()> // x (out)
|
||||
],
|
||||
iterator_types = ["reduction", "reduction"],
|
||||
doc = "x += A(i,j)"
|
||||
}
|
||||
|
||||
module {
|
||||
//
|
||||
// A kernel that sum-reduces a matrix to a single scalar.
|
||||
//
|
||||
func.func @kernel_sum_reduce(%arga: tensor<?x?xf16, #SparseMatrix>,
|
||||
%argx: tensor<f16> {linalg.inplaceable = true}) -> tensor<f16> {
|
||||
%0 = linalg.generic #trait_sum_reduce
|
||||
ins(%arga: tensor<?x?xf16, #SparseMatrix>)
|
||||
outs(%argx: tensor<f16>) {
|
||||
^bb(%a: f16, %x: f16):
|
||||
%0 = arith.addf %x, %a : f16
|
||||
linalg.yield %0 : f16
|
||||
} -> tensor<f16>
|
||||
return %0 : tensor<f16>
|
||||
}
|
||||
|
||||
func.func private @getTensorFilename(index) -> (!Filename)
|
||||
|
||||
//
|
||||
// Main driver that reads matrix from file and calls the sparse kernel.
|
||||
//
|
||||
func.func @entry() {
|
||||
// Setup input sparse matrix from compressed constant.
|
||||
%d = arith.constant dense <[
|
||||
[ 1.1, 1.2, 0.0, 1.4 ],
|
||||
[ 0.0, 0.0, 0.0, 0.0 ],
|
||||
[ 3.1, 0.0, 3.3, 3.4 ]
|
||||
]> : tensor<3x4xf16>
|
||||
%a = sparse_tensor.convert %d : tensor<3x4xf16> to tensor<?x?xf16, #SparseMatrix>
|
||||
|
||||
%d0 = arith.constant 0.0 : f16
|
||||
// Setup memory for a single reduction scalar,
|
||||
// initialized to zero.
|
||||
%xdata = memref.alloc() : memref<f16>
|
||||
memref.store %d0, %xdata[] : memref<f16>
|
||||
%x = bufferization.to_tensor %xdata : memref<f16>
|
||||
|
||||
// Call the kernel.
|
||||
%0 = call @kernel_sum_reduce(%a, %x)
|
||||
: (tensor<?x?xf16, #SparseMatrix>, tensor<f16>) -> tensor<f16>
|
||||
|
||||
// Print the result for verification.
|
||||
//
|
||||
// CHECK: 13.5
|
||||
//
|
||||
%m = bufferization.to_memref %0 : memref<f16>
|
||||
%v = memref.load %m[] : memref<f16>
|
||||
%vf = arith.extf %v: f16 to f32
|
||||
vector.print %vf : f32
|
||||
|
||||
// Release the resources.
|
||||
memref.dealloc %xdata : memref<f16>
|
||||
sparse_tensor.release %a : tensor<?x?xf16, #SparseMatrix>
|
||||
|
||||
return
|
||||
}
|
||||
}
|
|
@ -6415,10 +6415,12 @@ cc_library(
|
|||
name = "mlir_c_runner_utils",
|
||||
srcs = [
|
||||
"lib/ExecutionEngine/CRunnerUtils.cpp",
|
||||
"lib/ExecutionEngine/Float16bits.cpp",
|
||||
"lib/ExecutionEngine/SparseTensorUtils.cpp",
|
||||
],
|
||||
hdrs = [
|
||||
"include/mlir/ExecutionEngine/CRunnerUtils.h",
|
||||
"include/mlir/ExecutionEngine/Float16bits.h",
|
||||
"include/mlir/ExecutionEngine/Msan.h",
|
||||
"include/mlir/ExecutionEngine/SparseTensorUtils.h",
|
||||
],
|
||||
|
|
Loading…
Reference in New Issue