[mlir][tosa] Add tosa.reverse lowering to linalg.generic

Reverse lowers to a linalg.generic op by reversing the read order
in the index map.

Differential Revision: https://reviews.llvm.org/D98997
This commit is contained in:
Rob Suderman 2021-03-19 17:47:39 -07:00
parent 6c9cac5da1
commit e990fa2170
2 changed files with 78 additions and 5 deletions

View File

@ -585,7 +585,7 @@ public:
}
};
class ReshapeOpConverter : public OpConversionPattern<tosa::ReshapeOp> {
class ReshapeConverter : public OpConversionPattern<tosa::ReshapeOp> {
public:
using OpConversionPattern<tosa::ReshapeOp>::OpConversionPattern;
@ -727,7 +727,7 @@ public:
}
};
class RescaleOpConverter : public OpRewritePattern<tosa::RescaleOp> {
class RescaleConverter : public OpRewritePattern<tosa::RescaleOp> {
public:
using OpRewritePattern<tosa::RescaleOp>::OpRewritePattern;
@ -889,7 +889,7 @@ public:
}
};
struct ConcatOpConversion : public OpConversionPattern<tosa::ConcatOp> {
struct ConcatConverter : public OpConversionPattern<tosa::ConcatOp> {
using OpConversionPattern<tosa::ConcatOp>::OpConversionPattern;
LogicalResult
@ -936,6 +936,56 @@ struct ConcatOpConversion : public OpConversionPattern<tosa::ConcatOp> {
}
};
class ReverseConverter : public OpRewritePattern<tosa::ReverseOp> {
public:
using OpRewritePattern<tosa::ReverseOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tosa::ReverseOp op,
PatternRewriter &rewriter) const final {
auto loc = op.getLoc();
Value input = op.input();
auto inputTy = input.getType().template cast<ShapedType>();
auto resultTy = op.getType().template cast<ShapedType>();
auto rank = resultTy.getRank();
auto axis = op.axis();
if (!inputTy.hasStaticShape())
return rewriter.notifyMatchFailure(
op, "No initial value found for reduction operation");
// First fill the output buffer with the init value.
auto initTensor = rewriter
.create<linalg::InitTensorOp>(
loc, ArrayRef<Value>({}), inputTy.getShape(),
inputTy.getElementType())
.result();
SmallVector<AffineExpr, 2> inputExprs;
inputExprs.resize(resultTy.getRank());
for (int i = 0; i < rank; i++)
inputExprs[i] = rewriter.getAffineDimExpr(i);
inputExprs[axis] =
rewriter.getAffineConstantExpr(inputTy.getDimSize(axis) - 1) -
inputExprs[axis];
SmallVector<AffineMap, 2> affineMaps = {
AffineMap::get(resultTy.getRank(), /*symbolCount=*/0, inputExprs,
rewriter.getContext()),
rewriter.getMultiDimIdentityMap(resultTy.getRank())};
rewriter.replaceOpWithNewOp<linalg::GenericOp>(
op, resultTy, op.input(), ValueRange{initTensor}, affineMaps,
getNParallelLoopsAttrs(resultTy.getRank()),
[&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) {
nestedBuilder.create<linalg::YieldOp>(op.getLoc(), *args.begin());
});
return success();
}
};
} // namespace
void mlir::tosa::populateTosaToLinalgOnTensorsConversionPatterns(
@ -963,6 +1013,6 @@ void mlir::tosa::populateTosaToLinalgOnTensorsConversionPatterns(
IdentityNConverter<tosa::IdentityOp>,
IdentityNConverter<tosa::IdentityNOp>, ReduceConverter<tosa::ReduceMinOp>,
ReduceConverter<tosa::ReduceMaxOp>, ReduceConverter<tosa::ReduceSumOp>,
ReduceConverter<tosa::ReduceProdOp>, ConcatOpConversion,
ReshapeOpConverter, TransposeConverter, RescaleOpConverter>(context);
ReduceConverter<tosa::ReduceProdOp>, ConcatConverter, ReshapeConverter,
RescaleConverter, ReverseConverter, TransposeConverter>(context);
}

View File

@ -598,3 +598,26 @@ func @rescaleUnnecessaryDoubleRound(%arg0 : tensor<1xi8>) -> (tensor<1xi8>) {
%0 = "tosa.rescale"(%arg0) {input_zp = 243 : i32, output_zp = 252 : i32, multiplier = [19689 : i32], shift = [15 : i32], scale32 = true, double_round = true, per_channel = false} : (tensor<1xi8>) -> (tensor<1xi8>)
return %0 : tensor<1xi8>
}
// -----
// CHECK: #[[$MAP0:.*]] = affine_map<(d0, d1) -> (-d0 + 4, d1)>
// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1) -> (d0, d1)>
// CHECK: #[[$MAP2:.*]] = affine_map<(d0, d1) -> (d0, -d1 + 3)>
// CHECK-LABEL: @reverse
func @reverse(%arg0: tensor<5x4xi32>) -> () {
// CHECK: [[INIT:%.+]] = linalg.init_tensor [5, 4]
// CHECK: [[GENERIC:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%arg0 : tensor<5x4xi32>) outs([[INIT]] : tensor<5x4xi32>) {
// CHECK: ^bb0(%arg1: i32, %arg2: i32):
// CHECK: linalg.yield %arg1 : i32
%0 = "tosa.reverse"(%arg0) {axis = 0 : i64} : (tensor<5x4xi32>) -> tensor<5x4xi32>
// CHECK: [[INIT:%.+]] = linalg.init_tensor [5, 4]
// CHECK: [[GENERIC:%.+]] = linalg.generic {indexing_maps = [#[[$MAP2]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%arg0 : tensor<5x4xi32>) outs([[INIT]] : tensor<5x4xi32>) {
// CHECK: ^bb0(%arg1: i32, %arg2: i32):
// CHECK: linalg.yield %arg1 : i32
%1 = "tosa.reverse"(%arg0) {axis = 1 : i64} : (tensor<5x4xi32>) -> tensor<5x4xi32>
return
}