forked from OSchip/llvm-project
parent
a20ec3164e
commit
e7b6a8aa8c
|
@ -215,7 +215,7 @@ def : ProcessorModel<"core-avx-i", SandyBridgeModel,
|
|||
FeatureF16C, FeatureFSGSBase]>;
|
||||
|
||||
// Haswell
|
||||
def : ProcessorModel<"core-avx2", SandyBridgeModel,
|
||||
def : ProcessorModel<"core-avx2", HaswellModel,
|
||||
[FeatureAVX2, FeatureCMPXCHG16B, FeatureFastUAMem,
|
||||
FeaturePOPCNT, FeatureAES, FeaturePCLMUL, FeatureRDRAND,
|
||||
FeatureF16C, FeatureFSGSBase, FeatureMOVBE, FeatureLZCNT,
|
||||
|
|
|
@ -0,0 +1,126 @@
|
|||
//=- X86SchedHaswell.td - X86 Haswell Scheduling -------------*- tablegen -*-=//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file defines the machine model for Haswell to support instruction
|
||||
// scheduling and other instruction cost heuristics.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
def HaswellModel : SchedMachineModel {
|
||||
// All x86 instructions are modeled as a single micro-op, and HW can decode 4
|
||||
// instructions per cycle.
|
||||
let IssueWidth = 4;
|
||||
let MinLatency = 0; // 0 = Out-of-order execution.
|
||||
let LoadLatency = 4;
|
||||
let ILPWindow = 40;
|
||||
let MispredictPenalty = 16;
|
||||
}
|
||||
|
||||
let SchedModel = HaswellModel in {
|
||||
|
||||
// Haswell can issue micro-ops to 8 different ports in one cycle.
|
||||
|
||||
// Ports 0, 1, 5, 6 and 7 handle all computation.
|
||||
// Port 4 gets the data half of stores. Store data can be available later than
|
||||
// the store address, but since we don't model the latency of stores, we can
|
||||
// ignore that.
|
||||
// Ports 2 and 3 are identical. They handle loads and the address half of
|
||||
// stores. Port 7 can handle address calculations.
|
||||
def HWPort0 : ProcResource<1>;
|
||||
def HWPort1 : ProcResource<1>;
|
||||
def HWPort2 : ProcResource<1>;
|
||||
def HWPort3 : ProcResource<1>;
|
||||
def HWPort4 : ProcResource<1>;
|
||||
def HWPort5 : ProcResource<1>;
|
||||
def HWPort6 : ProcResource<1>;
|
||||
def HWPort7 : ProcResource<1>;
|
||||
|
||||
// Many micro-ops are capable of issuing on multiple ports.
|
||||
def HWPort23 : ProcResGroup<[HWPort2, HWPort3]>;
|
||||
def HWPort237 : ProcResGroup<[HWPort2, HWPort3, HWPort7]>;
|
||||
def HWPort05 : ProcResGroup<[HWPort0, HWPort5]>;
|
||||
def HWPort056 : ProcResGroup<[HWPort0, HWPort5, HWPort6]>;
|
||||
def HWPort15 : ProcResGroup<[HWPort1, HWPort5]>;
|
||||
def HWPort015 : ProcResGroup<[HWPort0, HWPort1, HWPort5]>;
|
||||
def HWPort0156: ProcResGroup<[HWPort0, HWPort1, HWPort5, HWPort6]>;
|
||||
|
||||
// Integer division issued on port 0, but uses the non-pipelined divider.
|
||||
def HWDivider : ProcResource<1> { let Buffered = 0; }
|
||||
|
||||
// Loads are 4 cycles, so ReadAfterLd registers needn't be available until 4
|
||||
// cycles after the memory operand.
|
||||
def : ReadAdvance<ReadAfterLd, 4>;
|
||||
|
||||
// Many SchedWrites are defined in pairs with and without a folded load.
|
||||
// Instructions with folded loads are usually micro-fused, so they only appear
|
||||
// as two micro-ops when queued in the reservation station.
|
||||
// This multiclass defines the resource usage for variants with and without
|
||||
// folded loads.
|
||||
multiclass HWWriteResPair<X86FoldableSchedWrite SchedRW,
|
||||
ProcResourceKind ExePort,
|
||||
int Lat> {
|
||||
// Register variant is using a single cycle on ExePort.
|
||||
def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; }
|
||||
|
||||
// Memory variant also uses a cycle on port 2/3 and adds 4 cycles to the
|
||||
// latency.
|
||||
def : WriteRes<SchedRW.Folded, [HWPort23, ExePort]> {
|
||||
let Latency = !add(Lat, 4);
|
||||
}
|
||||
}
|
||||
|
||||
// A folded store needs a cycle on port 4 for the store data, but it does not
|
||||
// need an extra port 2/3 cycle to recompute the address.
|
||||
def : WriteRes<WriteRMW, [HWPort4]>;
|
||||
|
||||
def : WriteRes<WriteStore, [HWPort237, HWPort4]>;
|
||||
def : WriteRes<WriteLoad, [HWPort23]> { let Latency = 4; }
|
||||
def : WriteRes<WriteMove, [HWPort0156]>;
|
||||
def : WriteRes<WriteZero, []>;
|
||||
|
||||
defm : HWWriteResPair<WriteALU, HWPort0156, 1>;
|
||||
defm : HWWriteResPair<WriteIMul, HWPort1, 3>;
|
||||
defm : HWWriteResPair<WriteShift, HWPort056, 1>;
|
||||
defm : HWWriteResPair<WriteJump, HWPort5, 1>;
|
||||
|
||||
// This is for simple LEAs with one or two input operands.
|
||||
// The complex ones can only execute on port 1, and they require two cycles on
|
||||
// the port to read all inputs. We don't model that.
|
||||
def : WriteRes<WriteLEA, [HWPort15]>;
|
||||
|
||||
// This is quite rough, latency depends on the dividend.
|
||||
def : WriteRes<WriteIDiv, [HWPort0, HWDivider]> {
|
||||
let Latency = 25;
|
||||
let ResourceCycles = [1, 10];
|
||||
}
|
||||
def : WriteRes<WriteIDivLd, [HWPort23, HWPort0, HWDivider]> {
|
||||
let Latency = 29;
|
||||
let ResourceCycles = [1, 1, 10];
|
||||
}
|
||||
|
||||
// Scalar and vector floating point.
|
||||
defm : HWWriteResPair<WriteFAdd, HWPort1, 3>;
|
||||
defm : HWWriteResPair<WriteFMul, HWPort0, 5>;
|
||||
defm : HWWriteResPair<WriteFDiv, HWPort0, 12>; // 10-14 cycles.
|
||||
defm : HWWriteResPair<WriteFRcp, HWPort0, 5>;
|
||||
defm : HWWriteResPair<WriteFSqrt, HWPort0, 15>;
|
||||
defm : HWWriteResPair<WriteCvtF2I, HWPort1, 3>;
|
||||
defm : HWWriteResPair<WriteCvtI2F, HWPort1, 4>;
|
||||
defm : HWWriteResPair<WriteCvtF2F, HWPort1, 3>;
|
||||
|
||||
// Vector integer operations.
|
||||
defm : HWWriteResPair<WriteVecShift, HWPort05, 1>;
|
||||
defm : HWWriteResPair<WriteVecLogic, HWPort015, 1>;
|
||||
defm : HWWriteResPair<WriteVecALU, HWPort15, 1>;
|
||||
defm : HWWriteResPair<WriteVecIMul, HWPort0, 5>;
|
||||
defm : HWWriteResPair<WriteShuffle, HWPort15, 1>;
|
||||
|
||||
def : WriteRes<WriteSystem, [HWPort0156]> { let Latency = 100; }
|
||||
def : WriteRes<WriteMicrocoded, [HWPort0156]> { let Latency = 100; }
|
||||
} // SchedModel
|
|
@ -566,3 +566,4 @@ def GenericModel : SchedMachineModel {
|
|||
|
||||
include "X86ScheduleAtom.td"
|
||||
include "X86SchedSandyBridge.td"
|
||||
include "X86SchedHaswell.td"
|
||||
|
|
Loading…
Reference in New Issue