[NVPTX] enable SpeculativeExecution in NVPTX

Summary:
SpeculativeExecution enables a series straight line optimizations (such
as SLSR and NaryReassociate) on conditional code. For example,

  if (...)
    ... b * s ...
  if (...)
    ... (b + 1) * s ...

speculative execution can hoist b * s and (b + 1) * s from then-blocks,
so that we have

  ... b * s ...
  if (...)
    ...
  ... (b + 1) * s ...
  if (...)
    ...

Then, SLSR can rewrite (b + 1) * s to (b * s + s) because after
speculative execution b * s dominates (b + 1) * s.

The performance impact of this change is significant. It speeds up the
benchmarks running EigenFloatContractionKernelInternal16x16
(ba68f42fa6/unsupported/Eigen/CXX11/src/Tensor/TensorContractionCuda.h?at=default#cl-526)
by roughly 2%. Some internal benchmarks that have the above code pattern
are improved by up to 40%. No significant slowdowns are observed on
Eigen CUDA microbenchmarks.

Reviewers: jholewinski, broune, eliben

Subscribers: llvm-commits, jholewinski

Differential Revision: http://reviews.llvm.org/D11201

llvm-svn: 242437
This commit is contained in:
Jingyue Wu 2015-07-16 20:13:48 +00:00
parent af7d7709d6
commit e7981cee24
2 changed files with 72 additions and 0 deletions

View File

@ -181,6 +181,7 @@ void NVPTXPassConfig::addIRPasses() {
// requires manual work and might be error-prone.
addPass(createDeadCodeEliminationPass());
addPass(createSeparateConstOffsetFromGEPPass());
addPass(createSpeculativeExecutionPass());
// ReassociateGEPs exposes more opportunites for SLSR. See
// the example in reassociate-geps-and-slsr.ll.
addPass(createStraightLineStrengthReducePass());

View File

@ -0,0 +1,71 @@
; RUN: llc < %s -march=nvptx64 -mcpu=sm_35 | FileCheck %s
target datalayout = "e-i64:64-v16:16-v32:32-n16:32:64"
target triple = "nvptx64-nvidia-cuda"
; CUDA code
; __global__ void foo(int b, int s) {
; #pragma unroll
; for (int i = 0; i < 4; ++i) {
; if (cond(i))
; use((b + i) * s);
; }
; }
define void @foo(i32 %b, i32 %s) {
; CHECK-LABEL: .visible .entry foo(
entry:
; CHECK: ld.param.u32 [[s:%r[0-9]+]], [foo_param_1];
; CHECK: ld.param.u32 [[b:%r[0-9]+]], [foo_param_0];
%call = tail call zeroext i1 @cond(i32 0)
br i1 %call, label %if.then, label %for.inc
if.then: ; preds = %entry
%mul = mul nsw i32 %b, %s
; CHECK: mul.lo.s32 [[a0:%r[0-9]+]], [[b]], [[s]]
tail call void @use(i32 %mul)
br label %for.inc
for.inc: ; preds = %entry, %if.then
%call.1 = tail call zeroext i1 @cond(i32 1)
br i1 %call.1, label %if.then.1, label %for.inc.1
if.then.1: ; preds = %for.inc
%add.1 = add nsw i32 %b, 1
%mul.1 = mul nsw i32 %add.1, %s
; CHECK: add.s32 [[a1:%r[0-9]+]], [[a0]], [[s]]
tail call void @use(i32 %mul.1)
br label %for.inc.1
for.inc.1: ; preds = %if.then.1, %for.inc
%call.2 = tail call zeroext i1 @cond(i32 2)
br i1 %call.2, label %if.then.2, label %for.inc.2
if.then.2: ; preds = %for.inc.1
%add.2 = add nsw i32 %b, 2
%mul.2 = mul nsw i32 %add.2, %s
; CHECK: add.s32 [[a2:%r[0-9]+]], [[a1]], [[s]]
tail call void @use(i32 %mul.2)
br label %for.inc.2
for.inc.2: ; preds = %if.then.2, %for.inc.1
%call.3 = tail call zeroext i1 @cond(i32 3)
br i1 %call.3, label %if.then.3, label %for.inc.3
if.then.3: ; preds = %for.inc.2
%add.3 = add nsw i32 %b, 3
%mul.3 = mul nsw i32 %add.3, %s
; CHECK: add.s32 [[a3:%r[0-9]+]], [[a2]], [[s]]
tail call void @use(i32 %mul.3)
br label %for.inc.3
for.inc.3: ; preds = %if.then.3, %for.inc.2
ret void
}
declare zeroext i1 @cond(i32)
declare void @use(i32)
!nvvm.annotations = !{!0}
!0 = !{void (i32, i32)* @foo, !"kernel", i32 1}