Add WIP prototype of a new buffer overflow

checker based on using raw (symbolic) byte offsets
from a base region.

llvm-svn: 122469
This commit is contained in:
Ted Kremenek 2010-12-23 02:42:43 +00:00
parent 0dfe4b7a46
commit e73571b9cc
8 changed files with 424 additions and 2 deletions

View File

@ -70,6 +70,8 @@ def analysis_WarnIdempotentOps : Flag<"-analyzer-check-idempotent-operations">,
HelpText<"Warn about idempotent operations">;
def analysis_AnalyzerStats : Flag<"-analyzer-stats">,
HelpText<"Emit warnings with analyzer statistics">;
def analysis_WarnBufferOverflows : Flag<"-analyzer-check-buffer-overflows">,
HelpText<"Warn about buffer overflows">;
def analyzer_store : Separate<"-analyzer-store">,
HelpText<"Source Code Analysis - Abstract Memory Store Models">;

View File

@ -68,6 +68,7 @@ public:
unsigned AnalyzerStats : 1;
unsigned EagerlyAssume : 1;
unsigned IdempotentOps : 1;
unsigned BufferOverflows : 1;
unsigned PurgeDead : 1;
unsigned TrimGraph : 1;
unsigned VisualizeEGDot : 1;
@ -89,6 +90,8 @@ public:
AnalyzeNestedBlocks = 0;
AnalyzerStats = 0;
EagerlyAssume = 0;
IdempotentOps = 0;
BufferOverflows = 0;
PurgeDead = 1;
TrimGraph = 0;
VisualizeEGDot = 0;

View File

@ -117,7 +117,9 @@ static void AnalyzerOptsToArgs(const AnalyzerOptions &Opts,
if (Opts.EnableExperimentalInternalChecks)
Res.push_back("-analyzer-experimental-internal-checks");
if (Opts.IdempotentOps)
Res.push_back("-analyzer-check-idempotent-operations");
Res.push_back("-analyzer-check-idempotent-operations");
if (Opts.BufferOverflows)
Res.push_back("-analyzer-check-buffer-overflows");
}
static void CodeGenOptsToArgs(const CodeGenOptions &Opts,
@ -857,6 +859,7 @@ static void ParseAnalyzerArgs(AnalyzerOptions &Opts, ArgList &Args,
Opts.MaxLoop = Args.getLastArgIntValue(OPT_analyzer_max_loop, 4, Diags);
Opts.InlineCall = Args.hasArg(OPT_analyzer_inline_call);
Opts.IdempotentOps = Args.hasArg(OPT_analysis_WarnIdempotentOps);
Opts.BufferOverflows = Args.hasArg(OPT_analysis_WarnBufferOverflows);
}
static void ParseCodeGenArgs(CodeGenOptions &Opts, ArgList &Args, InputKind IK,

View File

@ -354,6 +354,9 @@ static void ActionExprEngine(AnalysisConsumer &C, AnalysisManager& mgr,
if (C.Opts.IdempotentOps || C.Opts.EnableExperimentalChecks
|| C.Opts.EnableExperimentalInternalChecks)
RegisterIdempotentOperationChecker(Eng);
if (C.Opts.BufferOverflows)
RegisterArrayBoundCheckerV2(Eng);
// Enable AnalyzerStatsChecker if it was given as an argument
if (C.Opts.AnalyzerStats)

View File

@ -0,0 +1,277 @@
//== ArrayBoundCheckerV2.cpp ------------------------------------*- C++ -*--==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines ArrayBoundCheckerV2, which is a path-sensitive check
// which looks for an out-of-bound array element access.
//
//===----------------------------------------------------------------------===//
#include "ExprEngineInternalChecks.h"
#include "clang/GR/BugReporter/BugType.h"
#include "clang/GR/PathSensitive/CheckerVisitor.h"
#include "clang/GR/PathSensitive/ExprEngine.h"
#include "clang/AST/CharUnits.h"
using namespace clang;
using namespace GR;
namespace {
class ArrayBoundCheckerV2 :
public CheckerVisitor<ArrayBoundCheckerV2> {
BuiltinBug *BT;
enum OOB_Kind { OOB_Precedes, OOB_Excedes };
void reportOOB(CheckerContext &C, const GRState *errorState,
OOB_Kind kind);
public:
ArrayBoundCheckerV2() : BT(0) {}
static void *getTag() { static int x = 0; return &x; }
void visitLocation(CheckerContext &C, const Stmt *S, SVal l);
};
// FIXME: Eventually replace RegionRawOffset with this class.
class RegionRawOffsetV2 {
private:
const SubRegion *baseRegion;
SVal byteOffset;
RegionRawOffsetV2()
: baseRegion(0), byteOffset(UnknownVal()) {}
public:
RegionRawOffsetV2(const SubRegion* base, SVal offset)
: baseRegion(base), byteOffset(offset) {}
NonLoc getByteOffset() const { return cast<NonLoc>(byteOffset); }
const SubRegion *getRegion() const { return baseRegion; }
static RegionRawOffsetV2 computeOffset(const GRState *state,
SValBuilder &svalBuilder,
SVal location);
void dump() const;
void dumpToStream(llvm::raw_ostream& os) const;
};
}
void GR::RegisterArrayBoundCheckerV2(ExprEngine &Eng) {
Eng.registerCheck(new ArrayBoundCheckerV2());
}
void ArrayBoundCheckerV2::visitLocation(CheckerContext &checkerContext,
const Stmt *S,
SVal location) {
// NOTE: Instead of using GRState::assumeInBound(), we are prototyping
// some new logic here that reasons directly about memory region extents.
// Once that logic is more mature, we can bring it back to assumeInBound()
// for all clients to use.
//
// The algorithm we are using here for bounds checking is to see if the
// memory access is within the extent of the base region. Since we
// have some flexibility in defining the base region, we can achieve
// various levels of conservatism in our buffer overflow checking.
const GRState *state = checkerContext.getState();
const GRState *originalState = state;
SValBuilder &svalBuilder = checkerContext.getSValBuilder();
const RegionRawOffsetV2 &rawOffset =
RegionRawOffsetV2::computeOffset(state, svalBuilder, location);
if (!rawOffset.getRegion())
return;
// CHECK LOWER BOUND: Is byteOffset < 0? If so, we are doing a load/store
// before the first valid offset in the memory region.
SVal lowerBound
= svalBuilder.evalBinOpNN(state, BO_LT, rawOffset.getByteOffset(),
svalBuilder.makeZeroArrayIndex(),
svalBuilder.getConditionType());
NonLoc *lowerBoundToCheck = dyn_cast<NonLoc>(&lowerBound);
if (!lowerBoundToCheck)
return;
const GRState *state_precedesLowerBound, *state_withinLowerBound;
llvm::tie(state_precedesLowerBound, state_withinLowerBound) =
state->assume(*lowerBoundToCheck);
// Are we constrained enough to definitely precede the lower bound?
if (state_precedesLowerBound && !state_withinLowerBound) {
reportOOB(checkerContext, state_precedesLowerBound, OOB_Precedes);
return;
}
// Otherwise, assume the constraint of the lower bound.
assert(state_withinLowerBound);
state = state_withinLowerBound;
do {
// CHECK UPPER BOUND: Is byteOffset >= extent(baseRegion)? If so,
// we are doing a load/store after the last valid offset.
DefinedOrUnknownSVal extentVal =
rawOffset.getRegion()->getExtent(svalBuilder);
if (!isa<NonLoc>(extentVal))
break;
SVal upperbound
= svalBuilder.evalBinOpNN(state, BO_GE, rawOffset.getByteOffset(),
cast<NonLoc>(extentVal),
svalBuilder.getConditionType());
NonLoc *upperboundToCheck = dyn_cast<NonLoc>(&upperbound);
if (!upperboundToCheck)
break;
const GRState *state_exceedsUpperBound, *state_withinUpperBound;
llvm::tie(state_exceedsUpperBound, state_withinUpperBound) =
state->assume(*upperboundToCheck);
// Are we constrained enough to definitely exceed the upper bound?
if (state_exceedsUpperBound && !state_withinUpperBound) {
reportOOB(checkerContext, state_exceedsUpperBound, OOB_Excedes);
return;
}
assert(state_withinUpperBound);
state = state_withinUpperBound;
}
while (false);
if (state != originalState)
checkerContext.generateNode(state);
}
void ArrayBoundCheckerV2::reportOOB(CheckerContext &checkerContext,
const GRState *errorState,
OOB_Kind kind) {
ExplodedNode *errorNode = checkerContext.generateSink(errorState);
if (!errorNode)
return;
if (!BT)
BT = new BuiltinBug("Out-of-bound access");
// FIXME: This diagnostics are preliminary. We should get far better
// diagnostics for explaining buffer overruns.
llvm::SmallString<256> buf;
llvm::raw_svector_ostream os(buf);
os << "Out of bound memory access "
<< (kind == OOB_Precedes ? "(accessed memory precedes memory block)"
: "(access exceeds upper limit of memory block)");
checkerContext.EmitReport(new RangedBugReport(*BT, os.str(), errorNode));
}
void RegionRawOffsetV2::dump() const {
dumpToStream(llvm::errs());
}
void RegionRawOffsetV2::dumpToStream(llvm::raw_ostream& os) const {
os << "raw_offset_v2{" << getRegion() << ',' << getByteOffset() << '}';
}
// FIXME: Merge with the implementation of the same method in Store.cpp
static bool IsCompleteType(ASTContext &Ctx, QualType Ty) {
if (const RecordType *RT = Ty->getAs<RecordType>()) {
const RecordDecl *D = RT->getDecl();
if (!D->getDefinition())
return false;
}
return true;
}
// Lazily computes a value to be used by 'computeOffset'. If 'val'
// is unknown or undefined, we lazily substitute '0'. Otherwise,
// return 'val'.
static inline SVal getValue(SVal val, SValBuilder &svalBuilder) {
return isa<UndefinedVal>(val) ? svalBuilder.makeArrayIndex(0) : val;
}
// Scale a base value by a scaling factor, and return the scaled
// value as an SVal. Used by 'computeOffset'.
static inline SVal scaleValue(const GRState *state,
NonLoc baseVal, CharUnits scaling,
SValBuilder &sb) {
return sb.evalBinOpNN(state, BO_Mul, baseVal,
sb.makeArrayIndex(scaling.getQuantity()),
sb.getArrayIndexType());
}
// Add an SVal to another, treating unknown and undefined values as
// summing to UnknownVal. Used by 'computeOffset'.
static SVal addValue(const GRState *state, SVal x, SVal y,
SValBuilder &svalBuilder) {
// We treat UnknownVals and UndefinedVals the same here because we
// only care about computing offsets.
if (x.isUnknownOrUndef() || y.isUnknownOrUndef())
return UnknownVal();
return svalBuilder.evalBinOpNN(state, BO_Add,
cast<NonLoc>(x), cast<NonLoc>(y),
svalBuilder.getArrayIndexType());
}
/// Compute a raw byte offset from a base region. Used for array bounds
/// checking.
RegionRawOffsetV2 RegionRawOffsetV2::computeOffset(const GRState *state,
SValBuilder &svalBuilder,
SVal location)
{
const MemRegion *region = location.getAsRegion();
SVal offset = UndefinedVal();
while (region) {
switch (region->getKind()) {
default: {
if (const SubRegion *subReg = dyn_cast<SubRegion>(region))
if (!offset.isUnknownOrUndef())
return RegionRawOffsetV2(subReg, offset);
return RegionRawOffsetV2();
}
case MemRegion::ElementRegionKind: {
const ElementRegion *elemReg = cast<ElementRegion>(region);
SVal index = elemReg->getIndex();
if (!isa<NonLoc>(index))
return RegionRawOffsetV2();
QualType elemType = elemReg->getElementType();
// If the element is an incomplete type, go no further.
ASTContext &astContext = svalBuilder.getContext();
if (!IsCompleteType(astContext, elemType))
return RegionRawOffsetV2();
// Update the offset.
offset = addValue(state,
getValue(offset, svalBuilder),
scaleValue(state,
cast<NonLoc>(index),
astContext.getTypeSizeInChars(elemType),
svalBuilder),
svalBuilder);
if (offset.isUnknownOrUndef())
return RegionRawOffsetV2();
region = elemReg->getSuperRegion();
continue;
}
}
}
return RegionRawOffsetV2();
}

View File

@ -2,9 +2,11 @@ add_clang_library(clangGRCheckers
AdjustedReturnValueChecker.cpp
AnalysisConsumer.cpp
ArrayBoundChecker.cpp
ArrayBoundCheckerV2.cpp
AttrNonNullChecker.cpp
BasicObjCFoundationChecks.cpp
BuiltinFunctionChecker.cpp
CStringChecker.cpp
CallAndMessageChecker.cpp
CastSizeChecker.cpp
CastToStructChecker.cpp
@ -14,7 +16,6 @@ add_clang_library(clangGRCheckers
CheckSecuritySyntaxOnly.cpp
CheckSizeofPointer.cpp
ChrootChecker.cpp
CStringChecker.cpp
DereferenceChecker.cpp
DivZeroChecker.cpp
ExprEngine.cpp

View File

@ -24,6 +24,7 @@ class ExprEngine;
// Foundational checks that handle basic semantics.
void RegisterAdjustedReturnValueChecker(ExprEngine &Eng);
void RegisterArrayBoundChecker(ExprEngine &Eng);
void RegisterArrayBoundCheckerV2(ExprEngine &Eng);
void RegisterAttrNonNullChecker(ExprEngine &Eng);
void RegisterBuiltinFunctionChecker(ExprEngine &Eng);
void RegisterCallAndMessageChecker(ExprEngine &Eng);

View File

@ -0,0 +1,132 @@
// RUN: %clang_cc1 -analyze -analyzer-check-objc-mem -analyzer-check-buffer-overflows -verify
// Tests doing an out-of-bounds access after the end of an array using:
// - constant integer index
// - constant integer size for buffer
void test1(int x) {
int buf[100];
buf[100] = 1; // expected-warning{{Out of bound memory access}}
}
void test1_ok(int x) {
int buf[100];
buf[99] = 1; // no-warning
}
// Tests doing an out-of-bounds access after the end of an array using:
// - indirect pointer to buffer
// - constant integer index
// - constant integer size for buffer
void test1_ptr(int x) {
int buf[100];
int *p = buf;
p[101] = 1; // expected-warning{{Out of bound memory access}}
}
void test1_ptr_ok(int x) {
int buf[100];
int *p = buf;
p[99] = 1; // expected-warning{{Out of bound memory access}}
}
// Tests doing an out-of-bounds access before the start of an array using:
// - indirect pointer to buffer, manipulated using simple pointer arithmetic
// - constant integer index
// - constant integer size for buffer
void test1_ptr_arith(int x) {
int buf[100];
int *p = buf;
p = p + 100;
p[0] = 1; // expected-warning{{Out of bound memory access}}
}
void test1_ptr_arith_ok(int x) {
int buf[100];
int *p = buf;
p = p + 99;
p[0] = 1; // no-warning
}
void test1_ptr_arith_bad(int x) {
int buf[100];
int *p = buf;
p = p + 99;
p[1] = 1; // expected-warning{{Out of bound memory access}}
}
void test1_ptr_arith_ok2(int x) {
int buf[100];
int *p = buf;
p = p + 100;
p[-1] = 1; // no-warning
}
// Tests doing an out-of-bounds access before the start of an array using:
// - constant integer index
// - constant integer size for buffer
void test2(int x) {
int buf[100];
buf[-1] = 1; // expected-warning{{Out of bound memory access}}
}
// Tests doing an out-of-bounds access before the start of an array using:
// - indirect pointer to buffer
// - constant integer index
// - constant integer size for buffer
void test2_ptr(int x) {
int buf[100];
int *p = buf;
p[-1] = 1; // expected-warning{{Out of bound memory access}}
}
// Tests doing an out-of-bounds access before the start of an array using:
// - indirect pointer to buffer, manipulated using simple pointer arithmetic
// - constant integer index
// - constant integer size for buffer
void test2_ptr_arith(int x) {
int buf[100];
int *p = buf;
--p;
p[0] = 1; // expected-warning{{Out of bound memory access}}
}
// Tests doing an out-of-bounds access before the start of a multi-dimensional
// array using:
// - constant integer indices
// - constant integer sizes for the array
void test2_multi(int x) {
int buf[100][100];
buf[0][-1] = 1; // expected-warning{{Out of bound memory access}}
}
// Tests doing an out-of-bounds access before the start of a multi-dimensional
// array using:
// - constant integer indices
// - constant integer sizes for the array
void test2_multi_b(int x) {
int buf[100][100];
buf[-1][0] = 1; // expected-warning{{Out of bound memory access}}
}
void test2_multi_ok(int x) {
int buf[100][100];
buf[0][0] = 1; // no-warning
}
// *** FIXME ***
// We don't get a warning here yet because our symbolic constraint solving
// doesn't handle: (symbol * constant) < constant
void test3(int x) {
int buf[100];
if (x < 0)
buf[x] = 1;
}
// *** FIXME ***
// We don't get a warning here yet because our symbolic constraint solving
// doesn't handle: (symbol * constant) < constant
void test4(int x) {
int buf[100];
if (x > 99)
buf[x] = 1;
}