forked from OSchip/llvm-project
[IndVars][NFC] Refactor to make modifications of Changed transparent
IndVarSimplify's design is somewhat odd in the way how it reports that some transform has made a change. It has a `Changed` field which can be set from within any function, which makes it hard to track whether or not it was set properly after a transform was made. It leads to oversights in setting this flag where needed, see example in PR38855. This patch removes the `Changed` field, turns it into a local and unifies the signatures of all relevant transform functions to return boolean value which designates whether or not this transform has made a change. Differential Revision: https://reviews.llvm.org/D51850 Reviewed By: skatkov llvm-svn: 341893
This commit is contained in:
parent
1f52e38e8e
commit
e6413919ce
|
@ -134,21 +134,20 @@ class IndVarSimplify {
|
|||
const TargetTransformInfo *TTI;
|
||||
|
||||
SmallVector<WeakTrackingVH, 16> DeadInsts;
|
||||
bool Changed = false;
|
||||
|
||||
bool isValidRewrite(Value *FromVal, Value *ToVal);
|
||||
|
||||
void handleFloatingPointIV(Loop *L, PHINode *PH);
|
||||
void rewriteNonIntegerIVs(Loop *L);
|
||||
bool handleFloatingPointIV(Loop *L, PHINode *PH);
|
||||
bool rewriteNonIntegerIVs(Loop *L);
|
||||
|
||||
void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
|
||||
bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
|
||||
|
||||
bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
|
||||
void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
|
||||
bool rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
|
||||
bool rewriteFirstIterationLoopExitValues(Loop *L);
|
||||
|
||||
Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
|
||||
PHINode *IndVar, SCEVExpander &Rewriter);
|
||||
bool linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
|
||||
PHINode *IndVar, SCEVExpander &Rewriter);
|
||||
|
||||
bool sinkUnusedInvariants(Loop *L);
|
||||
|
||||
|
@ -281,7 +280,7 @@ static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
|
|||
/// is converted into
|
||||
/// for(int i = 0; i < 10000; ++i)
|
||||
/// bar((double)i);
|
||||
void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
|
||||
bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
|
||||
unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
|
||||
unsigned BackEdge = IncomingEdge^1;
|
||||
|
||||
|
@ -290,12 +289,12 @@ void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
|
|||
|
||||
int64_t InitValue;
|
||||
if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
|
||||
return;
|
||||
return false;
|
||||
|
||||
// Check IV increment. Reject this PN if increment operation is not
|
||||
// an add or increment value can not be represented by an integer.
|
||||
auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
|
||||
if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return;
|
||||
if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
|
||||
|
||||
// If this is not an add of the PHI with a constantfp, or if the constant fp
|
||||
// is not an integer, bail out.
|
||||
|
@ -303,15 +302,15 @@ void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
|
|||
int64_t IncValue;
|
||||
if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
|
||||
!ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
|
||||
return;
|
||||
return false;
|
||||
|
||||
// Check Incr uses. One user is PN and the other user is an exit condition
|
||||
// used by the conditional terminator.
|
||||
Value::user_iterator IncrUse = Incr->user_begin();
|
||||
Instruction *U1 = cast<Instruction>(*IncrUse++);
|
||||
if (IncrUse == Incr->user_end()) return;
|
||||
if (IncrUse == Incr->user_end()) return false;
|
||||
Instruction *U2 = cast<Instruction>(*IncrUse++);
|
||||
if (IncrUse != Incr->user_end()) return;
|
||||
if (IncrUse != Incr->user_end()) return false;
|
||||
|
||||
// Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
|
||||
// only used by a branch, we can't transform it.
|
||||
|
@ -320,7 +319,7 @@ void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
|
|||
Compare = dyn_cast<FCmpInst>(U2);
|
||||
if (!Compare || !Compare->hasOneUse() ||
|
||||
!isa<BranchInst>(Compare->user_back()))
|
||||
return;
|
||||
return false;
|
||||
|
||||
BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
|
||||
|
||||
|
@ -332,7 +331,7 @@ void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
|
|||
if (!L->contains(TheBr->getParent()) ||
|
||||
(L->contains(TheBr->getSuccessor(0)) &&
|
||||
L->contains(TheBr->getSuccessor(1))))
|
||||
return;
|
||||
return false;
|
||||
|
||||
// If it isn't a comparison with an integer-as-fp (the exit value), we can't
|
||||
// transform it.
|
||||
|
@ -340,12 +339,12 @@ void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
|
|||
int64_t ExitValue;
|
||||
if (ExitValueVal == nullptr ||
|
||||
!ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
|
||||
return;
|
||||
return false;
|
||||
|
||||
// Find new predicate for integer comparison.
|
||||
CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
|
||||
switch (Compare->getPredicate()) {
|
||||
default: return; // Unknown comparison.
|
||||
default: return false; // Unknown comparison.
|
||||
case CmpInst::FCMP_OEQ:
|
||||
case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
|
||||
case CmpInst::FCMP_ONE:
|
||||
|
@ -368,24 +367,24 @@ void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
|
|||
|
||||
// The start/stride/exit values must all fit in signed i32.
|
||||
if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
|
||||
return;
|
||||
return false;
|
||||
|
||||
// If not actually striding (add x, 0.0), avoid touching the code.
|
||||
if (IncValue == 0)
|
||||
return;
|
||||
return false;
|
||||
|
||||
// Positive and negative strides have different safety conditions.
|
||||
if (IncValue > 0) {
|
||||
// If we have a positive stride, we require the init to be less than the
|
||||
// exit value.
|
||||
if (InitValue >= ExitValue)
|
||||
return;
|
||||
return false;
|
||||
|
||||
uint32_t Range = uint32_t(ExitValue-InitValue);
|
||||
// Check for infinite loop, either:
|
||||
// while (i <= Exit) or until (i > Exit)
|
||||
if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
|
||||
if (++Range == 0) return; // Range overflows.
|
||||
if (++Range == 0) return false; // Range overflows.
|
||||
}
|
||||
|
||||
unsigned Leftover = Range % uint32_t(IncValue);
|
||||
|
@ -395,23 +394,23 @@ void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
|
|||
// around and do things the fp IV wouldn't.
|
||||
if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
|
||||
Leftover != 0)
|
||||
return;
|
||||
return false;
|
||||
|
||||
// If the stride would wrap around the i32 before exiting, we can't
|
||||
// transform the IV.
|
||||
if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
|
||||
return;
|
||||
return false;
|
||||
} else {
|
||||
// If we have a negative stride, we require the init to be greater than the
|
||||
// exit value.
|
||||
if (InitValue <= ExitValue)
|
||||
return;
|
||||
return false;
|
||||
|
||||
uint32_t Range = uint32_t(InitValue-ExitValue);
|
||||
// Check for infinite loop, either:
|
||||
// while (i >= Exit) or until (i < Exit)
|
||||
if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
|
||||
if (++Range == 0) return; // Range overflows.
|
||||
if (++Range == 0) return false; // Range overflows.
|
||||
}
|
||||
|
||||
unsigned Leftover = Range % uint32_t(-IncValue);
|
||||
|
@ -421,12 +420,12 @@ void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
|
|||
// around and do things the fp IV wouldn't.
|
||||
if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
|
||||
Leftover != 0)
|
||||
return;
|
||||
return false;
|
||||
|
||||
// If the stride would wrap around the i32 before exiting, we can't
|
||||
// transform the IV.
|
||||
if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
|
||||
return;
|
||||
return false;
|
||||
}
|
||||
|
||||
IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
|
||||
|
@ -472,10 +471,10 @@ void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
|
|||
PN->replaceAllUsesWith(Conv);
|
||||
RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
|
||||
}
|
||||
Changed = true;
|
||||
return true;
|
||||
}
|
||||
|
||||
void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
|
||||
bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
|
||||
// First step. Check to see if there are any floating-point recurrences.
|
||||
// If there are, change them into integer recurrences, permitting analysis by
|
||||
// the SCEV routines.
|
||||
|
@ -485,15 +484,17 @@ void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
|
|||
for (PHINode &PN : Header->phis())
|
||||
PHIs.push_back(&PN);
|
||||
|
||||
bool Changed = false;
|
||||
for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
|
||||
if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
|
||||
handleFloatingPointIV(L, PN);
|
||||
Changed |= handleFloatingPointIV(L, PN);
|
||||
|
||||
// If the loop previously had floating-point IV, ScalarEvolution
|
||||
// may not have been able to compute a trip count. Now that we've done some
|
||||
// re-writing, the trip count may be computable.
|
||||
if (Changed)
|
||||
SE->forgetLoop(L);
|
||||
return Changed;
|
||||
}
|
||||
|
||||
namespace {
|
||||
|
@ -533,7 +534,7 @@ struct RewritePhi {
|
|||
/// happen later, except that it's more powerful in some cases, because it's
|
||||
/// able to brute-force evaluate arbitrary instructions as long as they have
|
||||
/// constant operands at the beginning of the loop.
|
||||
void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
|
||||
bool IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
|
||||
// Check a pre-condition.
|
||||
assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
|
||||
"Indvars did not preserve LCSSA!");
|
||||
|
@ -663,6 +664,7 @@ void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
|
|||
|
||||
bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
|
||||
|
||||
bool Changed = false;
|
||||
// Transformation.
|
||||
for (const RewritePhi &Phi : RewritePhiSet) {
|
||||
PHINode *PN = Phi.PN;
|
||||
|
@ -696,6 +698,7 @@ void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
|
|||
// The insertion point instruction may have been deleted; clear it out
|
||||
// so that the rewriter doesn't trip over it later.
|
||||
Rewriter.clearInsertPoint();
|
||||
return Changed;
|
||||
}
|
||||
|
||||
//===---------------------------------------------------------------------===//
|
||||
|
@ -1929,7 +1932,7 @@ public:
|
|||
/// candidates for simplification.
|
||||
///
|
||||
/// Sign/Zero extend elimination is interleaved with IV simplification.
|
||||
void IndVarSimplify::simplifyAndExtend(Loop *L,
|
||||
bool IndVarSimplify::simplifyAndExtend(Loop *L,
|
||||
SCEVExpander &Rewriter,
|
||||
LoopInfo *LI) {
|
||||
SmallVector<WideIVInfo, 8> WideIVs;
|
||||
|
@ -1946,6 +1949,7 @@ void IndVarSimplify::simplifyAndExtend(Loop *L,
|
|||
// for all current phis, then determines whether any IVs can be
|
||||
// widened. Widening adds new phis to LoopPhis, inducing another round of
|
||||
// simplification on the wide IVs.
|
||||
bool Changed = false;
|
||||
while (!LoopPhis.empty()) {
|
||||
// Evaluate as many IV expressions as possible before widening any IVs. This
|
||||
// forces SCEV to set no-wrap flags before evaluating sign/zero
|
||||
|
@ -1975,6 +1979,7 @@ void IndVarSimplify::simplifyAndExtend(Loop *L,
|
|||
}
|
||||
}
|
||||
}
|
||||
return Changed;
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
@ -2341,11 +2346,9 @@ static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
|
|||
/// able to rewrite the exit tests of any loop where the SCEV analysis can
|
||||
/// determine a loop-invariant trip count of the loop, which is actually a much
|
||||
/// broader range than just linear tests.
|
||||
Value *IndVarSimplify::
|
||||
linearFunctionTestReplace(Loop *L,
|
||||
const SCEV *BackedgeTakenCount,
|
||||
PHINode *IndVar,
|
||||
SCEVExpander &Rewriter) {
|
||||
bool IndVarSimplify::
|
||||
linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
|
||||
PHINode *IndVar, SCEVExpander &Rewriter) {
|
||||
assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition");
|
||||
|
||||
// Initialize CmpIndVar and IVCount to their preincremented values.
|
||||
|
@ -2468,8 +2471,7 @@ linearFunctionTestReplace(Loop *L,
|
|||
DeadInsts.push_back(OrigCond);
|
||||
|
||||
++NumLFTR;
|
||||
Changed = true;
|
||||
return Cond;
|
||||
return true;
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
@ -2573,6 +2575,7 @@ bool IndVarSimplify::run(Loop *L) {
|
|||
// We need (and expect!) the incoming loop to be in LCSSA.
|
||||
assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
|
||||
"LCSSA required to run indvars!");
|
||||
bool Changed = false;
|
||||
|
||||
// If LoopSimplify form is not available, stay out of trouble. Some notes:
|
||||
// - LSR currently only supports LoopSimplify-form loops. Indvars'
|
||||
|
@ -2588,7 +2591,7 @@ bool IndVarSimplify::run(Loop *L) {
|
|||
|
||||
// If there are any floating-point recurrences, attempt to
|
||||
// transform them to use integer recurrences.
|
||||
rewriteNonIntegerIVs(L);
|
||||
Changed |= rewriteNonIntegerIVs(L);
|
||||
|
||||
const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
|
||||
|
||||
|
@ -2605,7 +2608,7 @@ bool IndVarSimplify::run(Loop *L) {
|
|||
// other expressions involving loop IVs have been evaluated. This helps SCEV
|
||||
// set no-wrap flags before normalizing sign/zero extension.
|
||||
Rewriter.disableCanonicalMode();
|
||||
simplifyAndExtend(L, Rewriter, LI);
|
||||
Changed |= simplifyAndExtend(L, Rewriter, LI);
|
||||
|
||||
// Check to see if this loop has a computable loop-invariant execution count.
|
||||
// If so, this means that we can compute the final value of any expressions
|
||||
|
@ -2615,7 +2618,7 @@ bool IndVarSimplify::run(Loop *L) {
|
|||
//
|
||||
if (ReplaceExitValue != NeverRepl &&
|
||||
!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
|
||||
rewriteLoopExitValues(L, Rewriter);
|
||||
Changed |= rewriteLoopExitValues(L, Rewriter);
|
||||
|
||||
// Eliminate redundant IV cycles.
|
||||
NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
|
||||
|
@ -2636,8 +2639,8 @@ bool IndVarSimplify::run(Loop *L) {
|
|||
// explicitly check any assumptions made by SCEV. Brittle.
|
||||
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
|
||||
if (!AR || AR->getLoop()->getLoopPreheader())
|
||||
(void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
|
||||
Rewriter);
|
||||
Changed |= linearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
|
||||
Rewriter);
|
||||
}
|
||||
}
|
||||
// Clear the rewriter cache, because values that are in the rewriter's cache
|
||||
|
|
Loading…
Reference in New Issue