Update the ValueRanges interface to use value numbers instead of Value*s.

llvm-svn: 38483
This commit is contained in:
Nick Lewycky 2007-07-10 03:28:21 +00:00
parent 7ff09810a8
commit e635cc43c6
1 changed files with 308 additions and 266 deletions

View File

@ -92,6 +92,7 @@
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ConstantRange.h"
@ -393,6 +394,28 @@ namespace {
DomTreeDFS *DTDFS;
public:
#ifndef NDEBUG
virtual ~ValueNumbering() {}
virtual void dump() {
dump(*cerr.stream());
}
void dump(std::ostream &os) {
for (unsigned i = 1; i <= Values.size(); ++i) {
os << i << " = ";
WriteAsOperand(os, Values[i-1]);
os << " {";
for (unsigned j = 0; j < VNMap.size(); ++j) {
if (VNMap[j].index == i) {
WriteAsOperand(os, VNMap[j].V);
os << " (" << VNMap[j].Subtree->getDFSNumIn() << ") ";
}
}
os << "}\n";
}
}
#endif
/// compare - returns true if V1 is a better canonical value than V2.
bool compare(Value *V1, Value *V2) const {
if (isa<Constant>(V1))
@ -418,6 +441,9 @@ namespace {
/// valueNumber - finds the value number for V under the Subtree. If
/// there is no value number, returns zero.
unsigned valueNumber(Value *V, DomTreeDFS::Node *Subtree) {
if (!(isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V))
|| V->getType() == Type::VoidTy) return 0;
VNMapType::iterator E = VNMap.end();
VNPair pair(V, 0, Subtree);
VNMapType::iterator I = std::lower_bound(VNMap.begin(), E, pair);
@ -429,15 +455,28 @@ namespace {
return 0;
}
/// getOrInsertVN - always returns a value number, creating it if necessary.
unsigned getOrInsertVN(Value *V, DomTreeDFS::Node *Subtree) {
if (unsigned n = valueNumber(V, Subtree))
return n;
else
return newVN(V);
}
/// newVN - creates a new value number. Value V must not already have a
/// value number assigned.
unsigned newVN(Value *V) {
assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) &&
"Bad Value for value numbering.");
assert(V->getType() != Type::VoidTy && "Won't value number a void value");
Values.push_back(V);
VNPair pair = VNPair(V, Values.size(), DTDFS->getRootNode());
assert(!std::binary_search(VNMap.begin(), VNMap.end(), pair) &&
VNMapType::iterator I = std::lower_bound(VNMap.begin(), VNMap.end(), pair);
assert((I == VNMap.end() || value(I->index) != V) &&
"Attempt to create a duplicate value number.");
VNMap.insert(std::lower_bound(VNMap.begin(), VNMap.end(), pair), pair);
VNMap.insert(I, pair);
return Values.size();
}
@ -489,7 +528,7 @@ namespace {
VNMapType::iterator I = std::lower_bound(B, E, pair);
if (I != E && I->V == V && I->Subtree == Subtree)
I->index = n; // Update best choice
else
else
VNMap.insert(I, pair); // New Value
// XXX: we currently don't have to worry about updating values with
@ -506,12 +545,12 @@ namespace {
/// remove - removes all references to value V.
void remove(Value *V) {
VNMapType::iterator B = VNMap.begin();
VNMapType::iterator B = VNMap.begin(), E = VNMap.end();
VNPair pair(V, 0, DTDFS->getRootNode());
VNMapType::iterator J = std::upper_bound(B, VNMap.end(), pair);
VNMapType::iterator J = std::upper_bound(B, E, pair);
VNMapType::iterator I = J;
while (I != B && I->V == V) --I;
while (I != B && (I == E || I->V == V)) --I;
VNMap.erase(I, J);
}
@ -601,8 +640,7 @@ namespace {
" !=", "000031" };
for (Node::const_iterator NI = begin(), NE = end(); NI != NE; ++NI) {
os << names[NI->LV] << " " << NI->To
<< " (" << NI->Subtree->getDFSNumIn() << ")";
if (NI != NE) os << ", ";
<< " (" << NI->Subtree->getDFSNumIn() << "), ";
}
}
public:
@ -676,26 +714,14 @@ namespace {
std::vector<Node> Nodes;
public:
/// node - returns the node object at a given index retrieved from getNode.
/// Index zero is reserved and may not be passed in here. The pointer
/// returned is valid until the next call to newNode or getOrInsertNode.
/// node - returns the node object at a given value number. The pointer
/// returned may be invalidated on the next call to node().
Node *node(unsigned index) {
assert(index != 0 && "Zero index is reserved for not found.");
assert(index <= Nodes.size() && "Index out of range.");
assert(VN.value(index)); // This triggers the necessary checks.
if (Nodes.size() < index) Nodes.resize(index);
return &Nodes[index-1];
}
/// newNode - creates a new node for a given Value and returns the index.
unsigned newNode(Value *V) {
assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) &&
"Bad Value for node.");
assert(V->getType() != Type::VoidTy && "Void node?");
unsigned n = VN.newVN(V);
if (Nodes.size() < n) Nodes.resize(n);
return n;
}
/// isRelatedBy - true iff n1 op n2
bool isRelatedBy(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
LatticeVal LV) {
@ -721,9 +747,6 @@ namespace {
assert(!isRelatedBy(n1, n2, Subtree, reversePredicate(LV1)) &&
"Contradictory inequality.");
Node *N1 = node(n1);
Node *N2 = node(n2);
// Suppose we're adding %n1 < %n2. Find all the %a < %n1 and
// add %a < %n2 too. This keeps the graph fully connected.
if (LV1 != NE) {
@ -735,7 +758,7 @@ namespace {
unsigned LV1_s = LV1 & (SLT_BIT|SGT_BIT);
unsigned LV1_u = LV1 & (ULT_BIT|UGT_BIT);
for (Node::iterator I = N1->begin(), E = N1->end(); I != E; ++I) {
for (Node::iterator I = node(n1)->begin(), E = node(n1)->end(); I != E; ++I) {
if (I->LV != NE && I->To != n2) {
DomTreeDFS::Node *Local_Subtree = NULL;
@ -766,13 +789,13 @@ namespace {
LatticeVal NewLV = static_cast<LatticeVal>(new_relationship);
node(I->To)->update(n2, NewLV, Local_Subtree);
N2->update(I->To, reversePredicate(NewLV), Local_Subtree);
node(n2)->update(I->To, reversePredicate(NewLV), Local_Subtree);
}
}
}
}
for (Node::iterator I = N2->begin(), E = N2->end(); I != E; ++I) {
for (Node::iterator I = node(n2)->begin(), E = node(n2)->end(); I != E; ++I) {
if (I->LV != NE && I->To != n1) {
DomTreeDFS::Node *Local_Subtree = NULL;
if (Subtree->DominatedBy(I->Subtree))
@ -801,7 +824,7 @@ namespace {
LatticeVal NewLV = static_cast<LatticeVal>(new_relationship);
N1->update(I->To, NewLV, Local_Subtree);
node(n1)->update(I->To, NewLV, Local_Subtree);
node(I->To)->update(n1, reversePredicate(NewLV), Local_Subtree);
}
}
@ -809,8 +832,8 @@ namespace {
}
}
N1->update(n2, LV1, Subtree);
N2->update(n1, reversePredicate(LV1), Subtree);
node(n1)->update(n2, LV1, Subtree);
node(n2)->update(n1, reversePredicate(LV1), Subtree);
}
/// remove - removes a node from the graph by removing all references to
@ -848,101 +871,130 @@ namespace {
/// ValueRanges tracks the known integer ranges and anti-ranges of the nodes
/// in the InequalityGraph.
class VISIBILITY_HIDDEN ValueRanges {
ValueNumbering &VN;
TargetData *TD;
/// A ScopedRange ties an InequalityGraph node with a ConstantRange under
/// the scope of a rooted subtree in the dominator tree.
class VISIBILITY_HIDDEN ScopedRange {
typedef std::vector<std::pair<DomTreeDFS::Node *, ConstantRange> >
RangeListType;
RangeListType RangeList;
static bool swo(const std::pair<DomTreeDFS::Node *, ConstantRange> &LHS,
const std::pair<DomTreeDFS::Node *, ConstantRange> &RHS) {
return *LHS.first < *RHS.first;
}
public:
ScopedRange(Value *V, ConstantRange CR, DomTreeDFS::Node *ST)
: V(V), CR(CR), Subtree(ST) {}
Value *V;
ConstantRange CR;
DomTreeDFS::Node *Subtree;
bool operator<(const ScopedRange &range) const {
if (V != range.V) return V < range.V;
return *Subtree < *range.Subtree;
#ifndef NDEBUG
virtual ~ScopedRange() {}
virtual void dump() const {
dump(*cerr.stream());
}
bool operator<(const Value *value) const {
return V < value;
void dump(std::ostream &os) const {
os << "{";
for (const_iterator I = begin(), E = end(); I != E; ++I) {
os << I->second << " (" << I->first->getDFSNumIn() << "), ";
}
os << "}";
}
#endif
typedef RangeListType::iterator iterator;
typedef RangeListType::const_iterator const_iterator;
iterator begin() { return RangeList.begin(); }
iterator end() { return RangeList.end(); }
const_iterator begin() const { return RangeList.begin(); }
const_iterator end() const { return RangeList.end(); }
iterator find(DomTreeDFS::Node *Subtree) {
static ConstantRange empty(1, false);
iterator E = end();
iterator I = std::lower_bound(begin(), E,
std::make_pair(Subtree, empty), swo);
while (I != E && !I->first->dominates(Subtree)) ++I;
return I;
}
bool operator>(const Value *value) const {
return V > value;
const_iterator find(DomTreeDFS::Node *Subtree) const {
static const ConstantRange empty(1, false);
const_iterator E = end();
const_iterator I = std::lower_bound(begin(), E,
std::make_pair(Subtree, empty), swo);
while (I != E && !I->first->dominates(Subtree)) ++I;
return I;
}
friend bool operator<(const Value *value, const ScopedRange &range) {
return range.operator>(value);
void update(const ConstantRange &CR, DomTreeDFS::Node *Subtree) {
assert(!CR.isEmptySet() && "Empty ConstantRange.");
assert(!CR.isSingleElement() && "Won't store single element.");
static ConstantRange empty(1, false);
iterator E = end();
iterator I =
std::lower_bound(begin(), E, std::make_pair(Subtree, empty), swo);
if (I != end() && I->first == Subtree) {
ConstantRange CR2 = I->second.intersectWith(CR);
assert(!CR2.isEmptySet() && !CR2.isSingleElement() &&
"Invalid union of ranges.");
I->second = CR2;
} else
RangeList.insert(I, std::make_pair(Subtree, CR));
}
};
TargetData *TD;
std::vector<ScopedRange> Ranges;
typedef std::vector<ScopedRange>::iterator iterator;
// XXX: this is a copy of the code in InequalityGraph::Node. Perhaps a
// intrusive domtree-scoped container is in order?
iterator begin() { return Ranges.begin(); }
iterator end() { return Ranges.end(); }
iterator find(Value *V, DomTreeDFS::Node *Subtree) {
iterator E = end();
for (iterator I = std::lower_bound(begin(), E, V);
I != E && I->V == V; ++I) {
if (Subtree->DominatedBy(I->Subtree))
return I;
}
return E;
}
void update(Value *V, ConstantRange CR, DomTreeDFS::Node *Subtree) {
assert(!CR.isEmptySet() && "Empty ConstantRange!");
void update(unsigned n, const ConstantRange &CR, DomTreeDFS::Node *Subtree){
if (CR.isFullSet()) return;
iterator I = find(V, Subtree);
if (I == end()) {
ScopedRange range(V, CR, Subtree);
iterator Insert = std::lower_bound(begin(), end(), range);
Ranges.insert(Insert, range);
} else {
CR = CR.intersectWith(I->CR);
assert(!CR.isEmptySet() && "Empty intersection of ConstantRanges!");
if (CR != I->CR) {
if (Subtree != I->Subtree) {
assert(Subtree->DominatedBy(I->Subtree) &&
"Find returned subtree that doesn't apply.");
ScopedRange range(V, CR, Subtree);
iterator Insert = std::lower_bound(begin(), end(), range);
Ranges.insert(Insert, range); // invalidates I
I = find(V, Subtree);
}
// Also, we have to tighten any edge that Subtree dominates.
for (iterator B = begin(); I->V == V; --I) {
if (I->Subtree->DominatedBy(Subtree)) {
I->CR = CR.intersectWith(I->CR);
assert(!I->CR.isEmptySet() &&
"Empty intersection of ConstantRanges!");
}
if (I == B) break;
}
}
}
if (Ranges.size() < n) Ranges.resize(n);
Ranges[n-1].update(CR, Subtree);
}
/// range - Creates a ConstantRange representing the set of all values
/// that match the ICmpInst::Predicate with any of the values in CR.
ConstantRange range(ICmpInst::Predicate ICmpOpcode,
const ConstantRange &CR) {
/// create - Creates a ConstantRange that matches the given LatticeVal
/// relation with a given integer.
ConstantRange create(LatticeVal LV, const ConstantRange &CR) {
assert(!CR.isEmptySet() && "Can't deal with empty set.");
if (LV == NE)
return makeConstantRange(ICmpInst::ICMP_NE, CR);
unsigned LV_s = LV & (SGT_BIT|SLT_BIT);
unsigned LV_u = LV & (UGT_BIT|ULT_BIT);
bool hasEQ = LV & EQ_BIT;
ConstantRange Range(CR.getBitWidth());
if (LV_s == SGT_BIT) {
Range = Range.intersectWith(makeConstantRange(
hasEQ ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_SGT, CR));
} else if (LV_s == SLT_BIT) {
Range = Range.intersectWith(makeConstantRange(
hasEQ ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_SLT, CR));
}
if (LV_u == UGT_BIT) {
Range = Range.intersectWith(makeConstantRange(
hasEQ ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_UGT, CR));
} else if (LV_u == ULT_BIT) {
Range = Range.intersectWith(makeConstantRange(
hasEQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT, CR));
}
return Range;
}
/// makeConstantRange - Creates a ConstantRange representing the set of all
/// value that match the ICmpInst::Predicate with any of the values in CR.
ConstantRange makeConstantRange(ICmpInst::Predicate ICmpOpcode,
const ConstantRange &CR) {
uint32_t W = CR.getBitWidth();
switch (ICmpOpcode) {
default: assert(!"Invalid ICmp opcode to range()");
default: assert(!"Invalid ICmp opcode to makeConstantRange()");
case ICmpInst::ICMP_EQ:
return ConstantRange(CR.getLower(), CR.getUpper());
case ICmpInst::ICMP_NE:
@ -985,63 +1037,54 @@ namespace {
}
}
/// create - Creates a ConstantRange that matches the given LatticeVal
/// relation with a given integer.
ConstantRange create(LatticeVal LV, const ConstantRange &CR) {
assert(!CR.isEmptySet() && "Can't deal with empty set.");
if (LV == NE)
return range(ICmpInst::ICMP_NE, CR);
unsigned LV_s = LV & (SGT_BIT|SLT_BIT);
unsigned LV_u = LV & (UGT_BIT|ULT_BIT);
bool hasEQ = LV & EQ_BIT;
ConstantRange Range(CR.getBitWidth());
if (LV_s == SGT_BIT) {
Range = Range.intersectWith(range(
hasEQ ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_SGT, CR));
} else if (LV_s == SLT_BIT) {
Range = Range.intersectWith(range(
hasEQ ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_SLT, CR));
}
if (LV_u == UGT_BIT) {
Range = Range.intersectWith(range(
hasEQ ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_UGT, CR));
} else if (LV_u == ULT_BIT) {
Range = Range.intersectWith(range(
hasEQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT, CR));
}
return Range;
}
#ifndef NDEBUG
bool isCanonical(Value *V, DomTreeDFS::Node *Subtree, VRPSolver *VRP);
bool isCanonical(Value *V, DomTreeDFS::Node *Subtree) {
return V == VN.canonicalize(V, Subtree);
}
#endif
public:
explicit ValueRanges(TargetData *TD) : TD(TD) {}
ValueRanges(ValueNumbering &VN, TargetData *TD) : VN(VN), TD(TD) {}
// rangeFromValue - converts a Value into a range. If the value is a
// constant it constructs the single element range, otherwise it performs
// a lookup. The width W must be retrieved from typeToWidth and may not
// be zero.
ConstantRange rangeFromValue(Value *V, DomTreeDFS::Node *Subtree,
uint32_t W) {
if (ConstantInt *C = dyn_cast<ConstantInt>(V)) {
return ConstantRange(C->getValue());
} else if (isa<ConstantPointerNull>(V)) {
return ConstantRange(APInt::getNullValue(W));
} else {
iterator I = find(V, Subtree);
if (I != end())
return I->CR;
#ifndef NDEBUG
virtual ~ValueRanges() {}
virtual void dump() const {
dump(*cerr.stream());
}
void dump(std::ostream &os) const {
for (unsigned i = 0, e = Ranges.size(); i != e; ++i) {
os << (i+1) << " = ";
Ranges[i].dump(os);
os << "\n";
}
return ConstantRange(W);
}
#endif
/// range - looks up the ConstantRange associated with a value number.
ConstantRange range(unsigned n, DomTreeDFS::Node *Subtree) {
assert(VN.value(n)); // performs range checks
if (n <= Ranges.size()) {
ScopedRange::iterator I = Ranges[n-1].find(Subtree);
if (I != Ranges[n-1].end()) return I->second;
}
Value *V = VN.value(n);
ConstantRange CR = range(V);
return CR;
}
/// range - determine a range from a Value without performing any lookups.
ConstantRange range(Value *V) const {
if (ConstantInt *C = dyn_cast<ConstantInt>(V))
return ConstantRange(C->getValue());
else if (isa<ConstantPointerNull>(V))
return ConstantRange(APInt::getNullValue(typeToWidth(V->getType())));
else
return typeToWidth(V->getType());
}
// typeToWidth - returns the number of bits necessary to store a value of
@ -1056,15 +1099,8 @@ namespace {
return 0;
}
bool isRelatedBy(Value *V1, Value *V2, DomTreeDFS::Node *Subtree,
LatticeVal LV) {
uint32_t W = typeToWidth(V1->getType());
if (!W) return false;
ConstantRange CR1 = rangeFromValue(V1, Subtree, W);
ConstantRange CR2 = rangeFromValue(V2, Subtree, W);
// True iff all values in CR1 are LV to all values in CR2.
static bool isRelatedBy(const ConstantRange &CR1, const ConstantRange &CR2,
LatticeVal LV) {
switch (LV) {
default: assert(!"Impossible lattice value!");
case NE:
@ -1112,22 +1148,27 @@ namespace {
}
}
bool isRelatedBy(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
LatticeVal LV) {
ConstantRange CR1 = range(n1, Subtree);
ConstantRange CR2 = range(n2, Subtree);
// True iff all values in CR1 are LV to all values in CR2.
return isRelatedBy(CR1, CR2, LV);
}
void addToWorklist(Value *V, Constant *C, ICmpInst::Predicate Pred,
VRPSolver *VRP);
void markBlock(VRPSolver *VRP);
void mergeInto(Value **I, unsigned n, Value *New,
void mergeInto(Value **I, unsigned n, unsigned New,
DomTreeDFS::Node *Subtree, VRPSolver *VRP) {
assert(isCanonical(New, Subtree, VRP) && "Best choice not canonical?");
uint32_t W = typeToWidth(New->getType());
if (!W) return;
ConstantRange CR_New = rangeFromValue(New, Subtree, W);
ConstantRange CR_New = range(New, Subtree);
ConstantRange Merged = CR_New;
for (; n != 0; ++I, --n) {
ConstantRange CR_Kill = rangeFromValue(*I, Subtree, W);
unsigned i = VN.valueNumber(*I, Subtree);
ConstantRange CR_Kill = i ? range(i, Subtree) : range(*I);
if (CR_Kill.isFullSet()) continue;
Merged = Merged.intersectWith(CR_Kill);
}
@ -1137,11 +1178,16 @@ namespace {
applyRange(New, Merged, Subtree, VRP);
}
void applyRange(Value *V, const ConstantRange &CR,
void applyRange(unsigned n, const ConstantRange &CR,
DomTreeDFS::Node *Subtree, VRPSolver *VRP) {
assert(isCanonical(V, Subtree, VRP) && "Value not canonical.");
ConstantRange Merged = CR.intersectWith(range(n, Subtree));
if (Merged.isEmptySet()) {
markBlock(VRP);
return;
}
if (const APInt *I = CR.getSingleElement()) {
if (const APInt *I = Merged.getSingleElement()) {
Value *V = VN.value(n); // XXX: redesign worklist.
const Type *Ty = V->getType();
if (Ty->isInteger()) {
addToWorklist(V, ConstantInt::get(*I), ICmpInst::ICMP_EQ, VRP);
@ -1149,33 +1195,25 @@ namespace {
} else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
assert(*I == 0 && "Pointer is null but not zero?");
addToWorklist(V, ConstantPointerNull::get(PTy),
ICmpInst::ICMP_EQ, VRP);
ICmpInst::ICMP_EQ, VRP);
return;
}
}
ConstantRange Merged = CR.intersectWith(
rangeFromValue(V, Subtree, CR.getBitWidth()));
if (Merged.isEmptySet()) {
markBlock(VRP);
return;
}
update(V, Merged, Subtree);
update(n, Merged, Subtree);
}
void addNotEquals(Value *V1, Value *V2, DomTreeDFS::Node *Subtree,
void addNotEquals(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
VRPSolver *VRP) {
uint32_t W = typeToWidth(V1->getType());
if (!W) return;
ConstantRange CR1 = range(n1, Subtree);
ConstantRange CR2 = range(n2, Subtree);
ConstantRange CR1 = rangeFromValue(V1, Subtree, W);
ConstantRange CR2 = rangeFromValue(V2, Subtree, W);
uint32_t W = CR1.getBitWidth();
if (const APInt *I = CR1.getSingleElement()) {
if (CR2.isFullSet()) {
ConstantRange NewCR2(CR1.getUpper(), CR1.getLower());
applyRange(V2, NewCR2, Subtree, VRP);
applyRange(n2, NewCR2, Subtree, VRP);
} else if (*I == CR2.getLower()) {
APInt NewLower(CR2.getLower() + 1),
NewUpper(CR2.getUpper());
@ -1183,7 +1221,7 @@ namespace {
NewLower = NewUpper = APInt::getMinValue(W);
ConstantRange NewCR2(NewLower, NewUpper);
applyRange(V2, NewCR2, Subtree, VRP);
applyRange(n2, NewCR2, Subtree, VRP);
} else if (*I == CR2.getUpper() - 1) {
APInt NewLower(CR2.getLower()),
NewUpper(CR2.getUpper() - 1);
@ -1191,14 +1229,14 @@ namespace {
NewLower = NewUpper = APInt::getMinValue(W);
ConstantRange NewCR2(NewLower, NewUpper);
applyRange(V2, NewCR2, Subtree, VRP);
applyRange(n2, NewCR2, Subtree, VRP);
}
}
if (const APInt *I = CR2.getSingleElement()) {
if (CR1.isFullSet()) {
ConstantRange NewCR1(CR2.getUpper(), CR2.getLower());
applyRange(V1, NewCR1, Subtree, VRP);
applyRange(n1, NewCR1, Subtree, VRP);
} else if (*I == CR1.getLower()) {
APInt NewLower(CR1.getLower() + 1),
NewUpper(CR1.getUpper());
@ -1206,7 +1244,7 @@ namespace {
NewLower = NewUpper = APInt::getMinValue(W);
ConstantRange NewCR1(NewLower, NewUpper);
applyRange(V1, NewCR1, Subtree, VRP);
applyRange(n1, NewCR1, Subtree, VRP);
} else if (*I == CR1.getUpper() - 1) {
APInt NewLower(CR1.getLower()),
NewUpper(CR1.getUpper() - 1);
@ -1214,40 +1252,34 @@ namespace {
NewLower = NewUpper = APInt::getMinValue(W);
ConstantRange NewCR1(NewLower, NewUpper);
applyRange(V1, NewCR1, Subtree, VRP);
applyRange(n1, NewCR1, Subtree, VRP);
}
}
}
void addInequality(Value *V1, Value *V2, DomTreeDFS::Node *Subtree,
void addInequality(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
LatticeVal LV, VRPSolver *VRP) {
assert(!isRelatedBy(V1, V2, Subtree, LV) && "Asked to do useless work.");
assert(isCanonical(V1, Subtree, VRP) && "Value not canonical.");
assert(isCanonical(V2, Subtree, VRP) && "Value not canonical.");
assert(!isRelatedBy(n1, n2, Subtree, LV) && "Asked to do useless work.");
if (LV == NE) {
addNotEquals(V1, V2, Subtree, VRP);
addNotEquals(n1, n2, Subtree, VRP);
return;
}
uint32_t W = typeToWidth(V1->getType());
if (!W) return;
ConstantRange CR1 = rangeFromValue(V1, Subtree, W);
ConstantRange CR2 = rangeFromValue(V2, Subtree, W);
ConstantRange CR1 = range(n1, Subtree);
ConstantRange CR2 = range(n2, Subtree);
if (!CR1.isSingleElement()) {
ConstantRange NewCR1 = CR1.intersectWith(create(LV, CR2));
if (NewCR1 != CR1)
applyRange(V1, NewCR1, Subtree, VRP);
applyRange(n1, NewCR1, Subtree, VRP);
}
if (!CR2.isSingleElement()) {
ConstantRange NewCR2 = CR2.intersectWith(create(reversePredicate(LV),
CR1));
if (NewCR2 != CR2)
applyRange(V2, NewCR2, Subtree, VRP);
applyRange(n2, NewCR2, Subtree, VRP);
}
}
};
@ -1406,19 +1438,18 @@ namespace {
// be EQ and that's invalid. What we're doing is looking for any nodes
// %z such that %x <= %z and %y >= %z, and vice versa.
Node *N1 = IG.node(n1);
Node *N2 = IG.node(n2);
Node::iterator end = N2->end();
Node::iterator end = IG.node(n2)->end();
// Find the intersection between N1 and N2 which is dominated by
// Top. If we find %x where N1 <= %x <= N2 (or >=) then add %x to
// Remove.
for (Node::iterator I = N1->begin(), E = N1->end(); I != E; ++I) {
for (Node::iterator I = IG.node(n1)->begin(), E = IG.node(n1)->end();
I != E; ++I) {
if (!(I->LV & EQ_BIT) || !Top->DominatedBy(I->Subtree)) continue;
unsigned ILV_s = I->LV & (SLT_BIT|SGT_BIT);
unsigned ILV_u = I->LV & (ULT_BIT|UGT_BIT);
Node::iterator NI = N2->find(I->To, Top);
Node::iterator NI = IG.node(n2)->find(I->To, Top);
if (NI != end) {
LatticeVal NILV = reversePredicate(NI->LV);
unsigned NILV_s = NILV & (SLT_BIT|SGT_BIT);
@ -1518,7 +1549,7 @@ namespace {
if (!isa<Constant>(V1)) {
if (Remove.empty()) {
VR.mergeInto(&V2, 1, V1, Top, this);
VR.mergeInto(&V2, 1, VN.getOrInsertVN(V1, Top), Top, this);
} else {
std::vector<Value*> RemoveVals;
RemoveVals.reserve(Remove.size());
@ -1529,21 +1560,21 @@ namespace {
if (!V->use_empty())
RemoveVals.push_back(V);
}
VR.mergeInto(&RemoveVals[0], RemoveVals.size(), V1, Top, this);
VR.mergeInto(&RemoveVals[0], RemoveVals.size(),
VN.getOrInsertVN(V1, Top), Top, this);
}
}
if (mergeIGNode) {
// Create N1.
if (!n1) n1 = IG.newNode(V1);
if (!n1) n1 = VN.getOrInsertVN(V1, Top);
// Migrate relationships from removed nodes to N1.
Node *N1 = IG.node(n1);
for (SetVector<unsigned>::iterator I = Remove.begin(), E = Remove.end();
I != E; ++I) {
unsigned n = *I;
Node *N = IG.node(n);
for (Node::iterator NI = N->begin(), NE = N->end(); NI != NE; ++NI) {
for (Node::iterator NI = IG.node(n)->begin(), NE = IG.node(n)->end();
NI != NE; ++NI) {
if (NI->Subtree->DominatedBy(Top)) {
if (NI->To == n1) {
assert((NI->LV & EQ_BIT) && "Node inequal to itself.");
@ -1553,7 +1584,7 @@ namespace {
continue;
IG.node(NI->To)->update(n1, reversePredicate(NI->LV), Top);
N1->update(NI->To, NI->LV, Top);
IG.node(n1)->update(NI->To, NI->LV, Top);
}
}
}
@ -1679,19 +1710,33 @@ namespace {
return ConstantExpr::getCompare(Pred, C1, C2) ==
ConstantInt::getTrue();
if (unsigned n1 = VN.valueNumber(V1, Top))
if (unsigned n2 = VN.valueNumber(V2, Top)) {
if (n1 == n2) return Pred == ICmpInst::ICMP_EQ ||
Pred == ICmpInst::ICMP_ULE ||
Pred == ICmpInst::ICMP_UGE ||
Pred == ICmpInst::ICMP_SLE ||
Pred == ICmpInst::ICMP_SGE;
if (Pred == ICmpInst::ICMP_EQ) return false;
if (IG.isRelatedBy(n1, n2, Top, cmpInstToLattice(Pred))) return true;
}
unsigned n1 = VN.valueNumber(V1, Top);
unsigned n2 = VN.valueNumber(V2, Top);
if (n1 && n2) {
if (n1 == n2) return Pred == ICmpInst::ICMP_EQ ||
Pred == ICmpInst::ICMP_ULE ||
Pred == ICmpInst::ICMP_UGE ||
Pred == ICmpInst::ICMP_SLE ||
Pred == ICmpInst::ICMP_SGE;
if (Pred == ICmpInst::ICMP_EQ) return false;
if (IG.isRelatedBy(n1, n2, Top, cmpInstToLattice(Pred))) return true;
if (VR.isRelatedBy(n1, n2, Top, cmpInstToLattice(Pred))) return true;
}
if ((n1 && !n2 && isa<Constant>(V2)) ||
(n2 && !n1 && isa<Constant>(V1))) {
ConstantRange CR1 = n1 ? VR.range(n1, Top) : VR.range(V1);
ConstantRange CR2 = n2 ? VR.range(n2, Top) : VR.range(V2);
if (Pred == ICmpInst::ICMP_EQ)
return CR1.isSingleElement() &&
CR1.getSingleElement() == CR2.getSingleElement();
return VR.isRelatedBy(CR1, CR2, cmpInstToLattice(Pred));
}
if (Pred == ICmpInst::ICMP_EQ) return V1 == V2;
return VR.isRelatedBy(V1, V2, Top, cmpInstToLattice(Pred));
return false;
}
/// add - adds a new property to the work queue
@ -1817,10 +1862,10 @@ namespace {
} else if (CastInst *CI = dyn_cast<CastInst>(I)) {
const Type *SrcTy = CI->getSrcTy();
Value *TheCI = VN.canonicalize(CI, Top);
unsigned ci = VN.getOrInsertVN(CI, Top);
uint32_t W = VR.typeToWidth(SrcTy);
if (!W) return;
ConstantRange CR = VR.rangeFromValue(TheCI, Top, W);
ConstantRange CR = VR.range(ci, Top);
if (CR.isFullSet()) return;
@ -1828,11 +1873,11 @@ namespace {
default: break;
case Instruction::ZExt:
case Instruction::SExt:
VR.applyRange(VN.canonicalize(CI->getOperand(0), Top),
VR.applyRange(VN.getOrInsertVN(CI->getOperand(0), Top),
CR.truncate(W), Top, this);
break;
case Instruction::BitCast:
VR.applyRange(VN.canonicalize(CI->getOperand(0), Top),
VR.applyRange(VN.getOrInsertVN(CI->getOperand(0), Top),
CR, Top, this);
break;
}
@ -1956,11 +2001,10 @@ namespace {
Value *Op1 = VN.canonicalize(IC->getOperand(1), Top);
ICmpInst::Predicate Pred = IC->getPredicate();
if (isRelatedBy(Op0, Op1, Pred)) {
if (isRelatedBy(Op0, Op1, Pred))
add(IC, ConstantInt::getTrue(), ICmpInst::ICMP_EQ, NewContext);
} else if (isRelatedBy(Op0, Op1, ICmpInst::getInversePredicate(Pred))) {
else if (isRelatedBy(Op0, Op1, ICmpInst::getInversePredicate(Pred)))
add(IC, ConstantInt::getFalse(), ICmpInst::ICMP_EQ, NewContext);
}
} else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
if (I->getType()->isFPOrFPVector()) return;
@ -1992,25 +2036,25 @@ namespace {
}
uint32_t W = VR.typeToWidth(DestTy);
Value *TheCI = VN.canonicalize(CI, Top);
ConstantRange CR = VR.rangeFromValue(Op, Top, W);
unsigned ci = VN.getOrInsertVN(CI, Top);
ConstantRange CR = VR.range(VN.getOrInsertVN(Op, Top), Top);
if (!CR.isFullSet()) {
switch (Opcode) {
default: break;
case Instruction::ZExt:
VR.applyRange(TheCI, CR.zeroExtend(W), Top, this);
VR.applyRange(ci, CR.zeroExtend(W), Top, this);
break;
case Instruction::SExt:
VR.applyRange(TheCI, CR.signExtend(W), Top, this);
VR.applyRange(ci, CR.signExtend(W), Top, this);
break;
case Instruction::Trunc: {
ConstantRange Result = CR.truncate(W);
if (!Result.isFullSet())
VR.applyRange(TheCI, Result, Top, this);
VR.applyRange(ci, Result, Top, this);
} break;
case Instruction::BitCast:
VR.applyRange(TheCI, CR, Top, this);
VR.applyRange(ci, CR, Top, this);
break;
// TODO: other casts?
}
@ -2054,7 +2098,9 @@ namespace {
else DOUT << " context block: " << O.ContextBB->getName();
DOUT << "\n";
DEBUG(VN.dump());
DEBUG(IG.dump());
DEBUG(VR.dump());
// If they're both Constant, skip it. Check for contradiction and mark
// the BB as unreachable if so.
@ -2091,10 +2137,10 @@ namespace {
continue;
}
unsigned n1 = VN.valueNumber(O.LHS, Top);
unsigned n2 = VN.valueNumber(O.RHS, Top);
unsigned n1 = VN.getOrInsertVN(O.LHS, Top);
unsigned n2 = VN.getOrInsertVN(O.RHS, Top);
if (n1 && n1 == n2) {
if (n1 == n2) {
if (O.Op != ICmpInst::ICMP_UGE && O.Op != ICmpInst::ICMP_ULE &&
O.Op != ICmpInst::ICMP_SGE && O.Op != ICmpInst::ICMP_SLE)
UB.mark(TopBB);
@ -2103,19 +2149,16 @@ namespace {
continue;
}
if (VR.isRelatedBy(O.LHS, O.RHS, Top, LV) ||
(n1 && n2 && IG.isRelatedBy(n1, n2, Top, LV))) {
if (VR.isRelatedBy(n1, n2, Top, LV) ||
IG.isRelatedBy(n1, n2, Top, LV)) {
WorkList.pop_front();
continue;
}
VR.addInequality(O.LHS, O.RHS, Top, LV, this);
VR.addInequality(n1, n2, Top, LV, this);
if ((!isa<ConstantInt>(O.RHS) && !isa<ConstantInt>(O.LHS)) ||
LV == NE) {
if (!n1) n1 = IG.newNode(O.LHS);
if (!n2) n2 = IG.newNode(O.RHS);
LV == NE)
IG.addInequality(n1, n2, Top, LV);
}
if (Instruction *I1 = dyn_cast<Instruction>(O.LHS)) {
if (aboveOrBelow(I1))
@ -2163,13 +2206,6 @@ namespace {
VRP->UB.mark(VRP->TopBB);
}
#ifndef NDEBUG
bool ValueRanges::isCanonical(Value *V, DomTreeDFS::Node *Subtree,
VRPSolver *VRP) {
return V == VRP->VN.canonicalize(V, Subtree);
}
#endif
/// PredicateSimplifier - This class is a simplifier that replaces
/// one equivalent variable with another. It also tracks what
/// can't be equal and will solve setcc instructions when possible.
@ -2262,7 +2298,9 @@ namespace {
// the PropertySet.
void visitInstruction(Instruction *I, DomTreeDFS::Node *DT) {
DOUT << "Considering instruction " << *I << "\n";
DEBUG(VN->dump());
DEBUG(IG->dump());
DEBUG(VR->dump());
// Sometimes instructions are killed in earlier analysis.
if (isInstructionTriviallyDead(I)) {
@ -2325,7 +2363,7 @@ namespace {
DomTreeDFS::Node *Root = DTDFS->getRootNode();
VN = new ValueNumbering(DTDFS);
IG = new InequalityGraph(*VN, Root);
VR = new ValueRanges(TD);
VR = new ValueRanges(*VN, TD);
WorkList.push_back(Root);
do {
@ -2373,13 +2411,17 @@ namespace {
VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, Dest);
VRP.add(ConstantInt::getTrue(), Condition, ICmpInst::ICMP_EQ);
VRP.solve();
DEBUG(VN.dump());
DEBUG(IG.dump());
DEBUG(VR.dump());
} else if (Dest == FalseDest) {
DOUT << "(" << DTNode->getBlock()->getName() << ") false set:\n";
VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, Dest);
VRP.add(ConstantInt::getFalse(), Condition, ICmpInst::ICMP_EQ);
VRP.solve();
DEBUG(VN.dump());
DEBUG(IG.dump());
DEBUG(VR.dump());
}
PS->proceedToSuccessor(*I);