Revert "blockfreq: Rewrite BlockFrequencyInfoImpl"

This reverts commit r206704, as expected.

llvm-svn: 206707
This commit is contained in:
Duncan P. N. Exon Smith 2014-04-19 22:46:00 +00:00
parent 6611a377eb
commit e63327e967
12 changed files with 358 additions and 2972 deletions

File diff suppressed because it is too large Load Diff

View File

@ -11,7 +11,6 @@
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "block-freq"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
@ -107,7 +106,6 @@ struct DOTGraphTraits<BlockFrequencyInfo*> : public DefaultDOTGraphTraits {
INITIALIZE_PASS_BEGIN(BlockFrequencyInfo, "block-freq",
"Block Frequency Analysis", true, true)
INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfo)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_END(BlockFrequencyInfo, "block-freq",
"Block Frequency Analysis", true, true)
@ -122,16 +120,14 @@ BlockFrequencyInfo::~BlockFrequencyInfo() {}
void BlockFrequencyInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<BranchProbabilityInfo>();
AU.addRequired<LoopInfo>();
AU.setPreservesAll();
}
bool BlockFrequencyInfo::runOnFunction(Function &F) {
BranchProbabilityInfo &BPI = getAnalysis<BranchProbabilityInfo>();
LoopInfo &LI = getAnalysis<LoopInfo>();
if (!BFI)
BFI.reset(new ImplType);
BFI->doFunction(&F, &BPI, &LI);
BFI->doFunction(&F, &BPI);
#ifndef NDEBUG
if (ViewBlockFreqPropagationDAG != GVDT_None)
view();
@ -162,7 +158,7 @@ void BlockFrequencyInfo::view() const {
}
const Function *BlockFrequencyInfo::getFunction() const {
return BFI ? BFI->getFunction() : nullptr;
return BFI ? BFI->Fn : nullptr;
}
raw_ostream &BlockFrequencyInfo::

View File

@ -1,932 +0,0 @@
//===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Loops should be simplified before this analysis.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "block-freq"
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/Support/raw_ostream.h"
#include <deque>
using namespace llvm;
//===----------------------------------------------------------------------===//
//
// PositiveFloat implementation.
//
//===----------------------------------------------------------------------===//
#ifndef _MSC_VER
const int32_t PositiveFloatBase::MaxExponent;
const int32_t PositiveFloatBase::MinExponent;
#endif
static void appendDigit(std::string &Str, unsigned D) {
assert(D < 10);
Str += '0' + D % 10;
}
static void appendNumber(std::string &Str, uint64_t N) {
while (N) {
appendDigit(Str, N % 10);
N /= 10;
}
}
static bool doesRoundUp(char Digit) {
switch (Digit) {
case '5':
case '6':
case '7':
case '8':
case '9':
return true;
default:
return false;
}
}
static std::string toStringAPFloat(uint64_t D, int E, unsigned Precision) {
assert(E >= PositiveFloatBase::MinExponent);
assert(E <= PositiveFloatBase::MaxExponent);
// Find a new E, but don't let it increase past MaxExponent.
int LeadingZeros = PositiveFloatBase::countLeadingZeros64(D);
int NewE = std::min(PositiveFloatBase::MaxExponent, E + 63 - LeadingZeros);
int Shift = 63 - (NewE - E);
assert(Shift <= LeadingZeros);
assert(Shift == LeadingZeros || NewE == PositiveFloatBase::MaxExponent);
D <<= Shift;
E = NewE;
// Check for a denormal.
unsigned AdjustedE = E + 16383;
if (!(D >> 63)) {
assert(E == PositiveFloatBase::MaxExponent);
AdjustedE = 0;
}
// Build the float and print it.
uint64_t RawBits[2] = {D, AdjustedE};
APFloat Float(APFloat::x87DoubleExtended, APInt(80, RawBits));
SmallVector<char, 24> Chars;
Float.toString(Chars, Precision, 0);
return std::string(Chars.begin(), Chars.end());
}
static std::string stripTrailingZeros(const std::string &Float) {
size_t NonZero = Float.find_last_not_of('0');
assert(NonZero != std::string::npos && "no . in floating point string");
if (Float[NonZero] == '.')
++NonZero;
return Float.substr(0, NonZero + 1);
}
std::string PositiveFloatBase::toString(uint64_t D, int16_t E, int Width,
unsigned Precision) {
if (!D)
return "0.0";
// Canonicalize exponent and digits.
uint64_t Above0 = 0;
uint64_t Below0 = 0;
uint64_t Extra = 0;
int ExtraShift = 0;
if (E == 0) {
Above0 = D;
} else if (E > 0) {
if (int Shift = std::min(int16_t(countLeadingZeros64(D)), E)) {
D <<= Shift;
E -= Shift;
if (!E)
Above0 = D;
}
} else if (E > -64) {
Above0 = D >> -E;
Below0 = D << (64 + E);
} else if (E > -120) {
Below0 = D >> (-E - 64);
Extra = D << (128 + E);
ExtraShift = -64 - E;
}
// Fall back on APFloat for very small and very large numbers.
if (!Above0 && !Below0)
return toStringAPFloat(D, E, Precision);
// Append the digits before the decimal.
std::string Str;
size_t DigitsOut = 0;
if (Above0) {
appendNumber(Str, Above0);
DigitsOut = Str.size();
} else
appendDigit(Str, 0);
std::reverse(Str.begin(), Str.end());
// Return early if there's nothing after the decimal.
if (!Below0)
return Str + ".0";
// Append the decimal and beyond.
Str += '.';
uint64_t Error = UINT64_C(1) << (64 - Width);
// We need to shift Below0 to the right to make space for calculating
// digits. Save the precision we're losing in Extra.
Extra = (Below0 & 0xf) << 56 | (Extra >> 8);
Below0 >>= 4;
size_t SinceDot = 0;
size_t AfterDot = Str.size();
do {
if (ExtraShift) {
--ExtraShift;
Error *= 5;
} else
Error *= 10;
Below0 *= 10;
Extra *= 10;
Below0 += (Extra >> 60);
Extra = Extra & (UINT64_MAX >> 4);
appendDigit(Str, Below0 >> 60);
Below0 = Below0 & (UINT64_MAX >> 4);
if (DigitsOut || Str.back() != '0')
++DigitsOut;
++SinceDot;
} while (Error && (Below0 << 4 | Extra >> 60) >= Error / 2 &&
(!Precision || DigitsOut <= Precision || SinceDot < 2));
// Return early for maximum precision.
if (!Precision || DigitsOut <= Precision)
return stripTrailingZeros(Str);
// Find where to truncate.
size_t Truncate =
std::max(Str.size() - (DigitsOut - Precision), AfterDot + 1);
// Check if there's anything to truncate.
if (Truncate >= Str.size())
return stripTrailingZeros(Str);
bool Carry = doesRoundUp(Str[Truncate]);
if (!Carry)
return stripTrailingZeros(Str.substr(0, Truncate));
// Round with the first truncated digit.
for (std::string::reverse_iterator I(Str.begin() + Truncate), E = Str.rend();
I != E; ++I) {
if (*I == '.')
continue;
if (*I == '9') {
*I = '0';
continue;
}
++*I;
Carry = false;
break;
}
// Add "1" in front if we still need to carry.
return stripTrailingZeros(std::string(Carry, '1') + Str.substr(0, Truncate));
}
raw_ostream &PositiveFloatBase::print(raw_ostream &OS, uint64_t D, int16_t E,
int Width, unsigned Precision) {
return OS << toString(D, E, Width, Precision);
}
void PositiveFloatBase::dump(uint64_t D, int16_t E, int Width) {
print(dbgs(), D, E, Width, 0) << "[" << Width << ":" << D << "*2^" << E
<< "]";
}
static std::pair<uint64_t, int16_t>
getRoundedFloat(uint64_t N, bool ShouldRound, int64_t Shift) {
if (ShouldRound)
if (!++N)
// Rounding caused an overflow.
return std::make_pair(UINT64_C(1), Shift + 64);
return std::make_pair(N, Shift);
}
std::pair<uint64_t, int16_t> PositiveFloatBase::divide64(uint64_t Dividend,
uint64_t Divisor) {
// Input should be sanitized.
assert(Divisor);
assert(Dividend);
// Minimize size of divisor.
int16_t Shift = 0;
if (int Zeros = countTrailingZeros(Divisor)) {
Shift -= Zeros;
Divisor >>= Zeros;
}
// Check for powers of two.
if (Divisor == 1)
return std::make_pair(Dividend, Shift);
// Maximize size of dividend.
if (int Zeros = countLeadingZeros64(Dividend)) {
Shift -= Zeros;
Dividend <<= Zeros;
}
// Start with the result of a divide.
uint64_t Quotient = Dividend / Divisor;
Dividend %= Divisor;
// Continue building the quotient with long division.
//
// TODO: continue with largers digits.
while (!(Quotient >> 63) && Dividend) {
// Shift Dividend, and check for overflow.
bool IsOverflow = Dividend >> 63;
Dividend <<= 1;
--Shift;
// Divide.
bool DoesDivide = IsOverflow || Divisor <= Dividend;
Quotient = (Quotient << 1) | uint64_t(DoesDivide);
Dividend -= DoesDivide ? Divisor : 0;
}
// Round.
if (Dividend >= getHalf(Divisor))
if (!++Quotient)
// Rounding caused an overflow in Quotient.
return std::make_pair(UINT64_C(1), Shift + 64);
return getRoundedFloat(Quotient, Dividend >= getHalf(Divisor), Shift);
}
std::pair<uint64_t, int16_t> PositiveFloatBase::multiply64(uint64_t L,
uint64_t R) {
// Separate into two 32-bit digits (U.L).
uint64_t UL = L >> 32, LL = L & UINT32_MAX, UR = R >> 32, LR = R & UINT32_MAX;
// Compute cross products.
uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR;
// Sum into two 64-bit digits.
uint64_t Upper = P1, Lower = P4;
auto addWithCarry = [&](uint64_t N) {
uint64_t NewLower = Lower + (N << 32);
Upper += (N >> 32) + (NewLower < Lower);
Lower = NewLower;
};
addWithCarry(P2);
addWithCarry(P3);
// Check whether the upper digit is empty.
if (!Upper)
return std::make_pair(Lower, 0);
// Shift as little as possible to maximize precision.
unsigned LeadingZeros = countLeadingZeros64(Upper);
int16_t Shift = 64 - LeadingZeros;
if (LeadingZeros)
Upper = Upper << LeadingZeros | Lower >> Shift;
bool ShouldRound = Shift && (Lower & UINT64_C(1) << (Shift - 1));
return getRoundedFloat(Upper, ShouldRound, Shift);
}
//===----------------------------------------------------------------------===//
//
// BlockMass implementation.
//
//===----------------------------------------------------------------------===//
BlockMass &BlockMass::operator*=(const BranchProbability &P) {
uint32_t N = P.getNumerator(), D = P.getDenominator();
assert(D && "divide by 0");
assert(N <= D && "fraction greater than 1");
// Fast path for multiplying by 1.0.
if (!Mass || N == D)
return *this;
// Get as much precision as we can.
int Shift = countLeadingZeros(Mass);
uint64_t ShiftedQuotient = (Mass << Shift) / D;
uint64_t Product = ShiftedQuotient * N >> Shift;
// Now check for what's lost.
uint64_t Left = ShiftedQuotient * (D - N) >> Shift;
uint64_t Lost = Mass - Product - Left;
// TODO: prove this assertion.
assert(Lost <= UINT32_MAX);
// Take the product plus a portion of the spoils.
Mass = Product + Lost * N / D;
return *this;
}
PositiveFloat<uint64_t> BlockMass::toFloat() const {
if (isFull())
return PositiveFloat<uint64_t>(1, 0);
return PositiveFloat<uint64_t>(getMass() + 1, -64);
}
void BlockMass::dump() const { print(dbgs()); }
static char getHexDigit(int N) {
assert(N < 16);
if (N < 10)
return '0' + N;
return 'a' + N - 10;
}
raw_ostream &BlockMass::print(raw_ostream &OS) const {
for (int Digits = 0; Digits < 16; ++Digits)
OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf);
return OS;
}
//===----------------------------------------------------------------------===//
//
// BlockFrequencyInfoImpl implementation.
//
//===----------------------------------------------------------------------===//
namespace {
typedef BlockFrequencyInfoImplBase::BlockNode BlockNode;
typedef BlockFrequencyInfoImplBase::Distribution Distribution;
typedef BlockFrequencyInfoImplBase::Distribution::WeightList WeightList;
typedef BlockFrequencyInfoImplBase::Float Float;
typedef BlockFrequencyInfoImplBase::PackagedLoopData PackagedLoopData;
typedef BlockFrequencyInfoImplBase::Weight Weight;
typedef BlockFrequencyInfoImplBase::FrequencyData FrequencyData;
/// \brief Dithering mass distributer.
///
/// This class splits up a single mass into portions by weight, dithering to
/// spread out error. No mass is lost. The dithering precision depends on the
/// precision of the product of \a BlockMass and \a BranchProbability.
///
/// The distribution algorithm follows.
///
/// 1. Initialize by saving the sum of the weights in \a RemWeight and the
/// mass to distribute in \a RemMass.
///
/// 2. For each portion:
///
/// 1. Construct a branch probability, P, as the portion's weight divided
/// by the current value of \a RemWeight.
/// 2. Calculate the portion's mass as \a RemMass times P.
/// 3. Update \a RemWeight and \a RemMass at each portion by subtracting
/// the current portion's weight and mass.
///
/// Mass is distributed in two ways: full distribution and forward
/// distribution. The latter ignores backedges, and uses the parallel fields
/// \a RemForwardWeight and \a RemForwardMass.
struct DitheringDistributer {
uint32_t RemWeight;
uint32_t RemForwardWeight;
BlockMass RemMass;
BlockMass RemForwardMass;
DitheringDistributer(Distribution &Dist, const BlockMass &Mass);
BlockMass takeLocalMass(uint32_t Weight) {
(void)takeMass(Weight);
return takeForwardMass(Weight);
}
BlockMass takeExitMass(uint32_t Weight) {
(void)takeForwardMass(Weight);
return takeMass(Weight);
}
BlockMass takeBackedgeMass(uint32_t Weight) { return takeMass(Weight); }
private:
BlockMass takeForwardMass(uint32_t Weight);
BlockMass takeMass(uint32_t Weight);
};
}
DitheringDistributer::DitheringDistributer(Distribution &Dist,
const BlockMass &Mass) {
Dist.normalize();
RemWeight = Dist.Total;
RemForwardWeight = Dist.ForwardTotal;
RemMass = Mass;
RemForwardMass = Dist.ForwardTotal ? Mass : BlockMass();
}
BlockMass DitheringDistributer::takeForwardMass(uint32_t Weight) {
// Compute the amount of mass to take.
assert(Weight && "invalid weight");
assert(Weight <= RemForwardWeight);
BlockMass Mass = RemForwardMass * BranchProbability(Weight, RemForwardWeight);
// Decrement totals (dither).
RemForwardWeight -= Weight;
RemForwardMass -= Mass;
return Mass;
}
BlockMass DitheringDistributer::takeMass(uint32_t Weight) {
assert(Weight && "invalid weight");
assert(Weight <= RemWeight);
BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight);
// Decrement totals (dither).
RemWeight -= Weight;
RemMass -= Mass;
return Mass;
}
void Distribution::add(const BlockNode &Node, uint64_t Amount,
Weight::DistType Type) {
assert(Amount && "invalid weight of 0");
uint64_t NewTotal = Total + Amount;
// Check for overflow. It should be impossible to overflow twice.
bool IsOverflow = NewTotal < Total;
assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow");
DidOverflow |= IsOverflow;
// Update the total.
Total = NewTotal;
// Save the weight.
Weight W;
W.TargetNode = Node;
W.Amount = Amount;
W.Type = Type;
Weights.push_back(W);
if (Type == Weight::Backedge)
return;
// Update forward total. Don't worry about overflow here, since then Total
// will exceed 32-bits and they'll both be recomputed in normalize().
ForwardTotal += Amount;
}
static void combineWeight(Weight &W, const Weight &OtherW) {
assert(OtherW.TargetNode.isValid());
if (!W.Amount) {
W = OtherW;
return;
}
assert(W.Type == OtherW.Type);
assert(W.TargetNode == OtherW.TargetNode);
assert(W.Amount < W.Amount + OtherW.Amount);
W.Amount += OtherW.Amount;
}
static void combineWeightsBySorting(WeightList &Weights) {
// Sort so edges to the same node are adjacent.
std::sort(Weights.begin(), Weights.end(),
[](const Weight &L,
const Weight &R) { return L.TargetNode < R.TargetNode; });
// Combine adjacent edges.
WeightList::iterator O = Weights.begin();
for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E;
++O, (I = L)) {
*O = *I;
// Find the adjacent weights to the same node.
for (++L; L != E && I->TargetNode == L->TargetNode; ++L)
combineWeight(*O, *L);
}
// Erase extra entries.
Weights.erase(O, Weights.end());
return;
}
static void combineWeightsByHashing(WeightList &Weights) {
// Collect weights into a DenseMap.
typedef DenseMap<BlockNode::IndexType, Weight> HashTable;
HashTable Combined(NextPowerOf2(2 * Weights.size()));
for (const Weight &W : Weights)
combineWeight(Combined[W.TargetNode.Index], W);
// Check whether anything changed.
if (Weights.size() == Combined.size())
return;
// Fill in the new weights.
Weights.clear();
Weights.reserve(Combined.size());
for (const auto &I : Combined)
Weights.push_back(I.second);
}
static void combineWeights(WeightList &Weights) {
// Use a hash table for many successors to keep this linear.
if (Weights.size() > 128) {
combineWeightsByHashing(Weights);
return;
}
combineWeightsBySorting(Weights);
}
static uint64_t shiftRightAndRound(uint64_t N, int Shift) {
assert(Shift >= 0);
assert(Shift < 64);
if (!Shift)
return N;
return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1));
}
void Distribution::normalize() {
// Early exit for termination nodes.
if (Weights.empty())
return;
// Only bother if there are multiple successors.
if (Weights.size() > 1)
combineWeights(Weights);
// Early exit when combined into a single successor.
if (Weights.size() == 1) {
Total = 1;
ForwardTotal = Weights.front().Type != Weight::Backedge;
Weights.front().Amount = 1;
return;
}
// Determine how much to shift right so that the total fits into 32-bits.
//
// If we shift at all, shift by 1 extra. Otherwise, the lower limit of 1
// for each weight can cause a 32-bit overflow.
int Shift = 0;
if (DidOverflow)
Shift = 33;
else if (Total > UINT32_MAX)
Shift = 33 - countLeadingZeros(Total);
// Early exit if nothing needs to be scaled.
if (!Shift)
return;
// Recompute the total through accumulation (rather than shifting it) so that
// it's accurate after shifting. ForwardTotal is dirty here anyway.
Total = 0;
ForwardTotal = 0;
// Sum the weights to each node and shift right if necessary.
for (Weight &W : Weights) {
// Scale down below UINT32_MAX. Since Shift is larger than necessary, we
// can round here without concern about overflow.
assert(W.TargetNode.isValid());
W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift));
assert(W.Amount <= UINT32_MAX);
// Update the total.
Total += W.Amount;
if (W.Type == Weight::Backedge)
continue;
// Update the forward total.
ForwardTotal += W.Amount;
}
assert(Total <= UINT32_MAX);
}
void BlockFrequencyInfoImplBase::clear() {
*this = BlockFrequencyInfoImplBase();
}
/// \brief Clear all memory not needed downstream.
///
/// Releases all memory not used downstream. In particular, saves Freqs.
static void cleanup(BlockFrequencyInfoImplBase &BFI) {
std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs));
BFI.clear();
BFI.Freqs = std::move(SavedFreqs);
}
/// \brief Get a possibly packaged node.
///
/// Get the node currently representing Node, which could be a containing
/// loop.
///
/// This function should only be called when distributing mass. As long as
/// there are no irreducilbe edges to Node, then it will have complexity O(1)
/// in this context.
///
/// In general, the complexity is O(L), where L is the number of loop headers
/// Node has been packaged into. Since this method is called in the context
/// of distributing mass, L will be the number of loop headers an early exit
/// edge jumps out of.
static BlockNode getPackagedNode(const BlockFrequencyInfoImplBase &BFI,
const BlockNode &Node) {
assert(Node.isValid());
if (!BFI.Working[Node.Index].IsPackaged)
return Node;
if (!BFI.Working[Node.Index].ContainingLoop.isValid())
return Node;
return getPackagedNode(BFI, BFI.Working[Node.Index].ContainingLoop);
}
/// \brief Get the appropriate mass for a possible pseudo-node loop package.
///
/// Get appropriate mass for Node. If Node is a loop-header (whose loop has
/// been packaged), returns the mass of its pseudo-node. If it's a node inside
/// a packaged loop, it returns the loop's pseudo-node.
static BlockMass &getPackageMass(BlockFrequencyInfoImplBase &BFI,
const BlockNode &Node) {
assert(Node.isValid());
assert(!BFI.Working[Node.Index].IsPackaged);
if (!BFI.Working[Node.Index].IsAPackage)
return BFI.Working[Node.Index].Mass;
return BFI.getLoopPackage(Node).Mass;
}
void BlockFrequencyInfoImplBase::addToDist(Distribution &Dist,
const BlockNode &LoopHead,
const BlockNode &Pred,
const BlockNode &Succ,
uint64_t Weight) {
if (!Weight)
Weight = 1;
#ifndef NDEBUG
auto debugSuccessor = [&](const char *Type, const BlockNode &Resolved) {
dbgs() << " =>"
<< " [" << Type << "] weight = " << Weight;
if (Succ != LoopHead)
dbgs() << ", succ = " << getBlockName(Succ);
if (Resolved != Succ)
dbgs() << ", resolved = " << getBlockName(Resolved);
dbgs() << "\n";
};
(void)debugSuccessor;
#endif
if (Succ == LoopHead) {
DEBUG(debugSuccessor("backedge", Succ));
Dist.addBackedge(LoopHead, Weight);
return;
}
BlockNode Resolved = getPackagedNode(*this, Succ);
assert(Resolved != LoopHead);
if (Working[Resolved.Index].ContainingLoop != LoopHead) {
DEBUG(debugSuccessor(" exit ", Resolved));
Dist.addExit(Resolved, Weight);
return;
}
if (!LoopHead.isValid() && Resolved < Pred) {
// Irreducible backedge. Skip this edge in the distribution.
DEBUG(debugSuccessor("skipped ", Resolved));
return;
}
DEBUG(debugSuccessor(" local ", Resolved));
Dist.addLocal(Resolved, Weight);
}
void BlockFrequencyInfoImplBase::addLoopSuccessorsToDist(
const BlockNode &LoopHead, const BlockNode &LocalLoopHead,
Distribution &Dist) {
PackagedLoopData &LoopPackage = getLoopPackage(LocalLoopHead);
const PackagedLoopData::ExitMap &Exits = LoopPackage.Exits;
// Copy the exit map into Dist.
for (const auto &I : Exits)
addToDist(Dist, LoopHead, LocalLoopHead, I.first, I.second.getMass());
// We don't need this map any more. Clear it to prevent quadratic memory
// usage in deeply nested loops with irreducible control flow.
LoopPackage.Exits.clear();
}
/// \brief Get the maximum allowed loop scale.
///
/// Gives the maximum number of estimated iterations allowed for a loop.
/// Downstream users have trouble with very large numbers (even within
/// 64-bits). Perhaps they can be changed to use PositiveFloat.
///
/// TODO: change downstream users so that this can be increased or removed.
static Float getMaxLoopScale() { return Float(1, 12); }
/// \brief Compute the loop scale for a loop.
void BlockFrequencyInfoImplBase::computeLoopScale(const BlockNode &LoopHead) {
// Compute loop scale.
DEBUG(dbgs() << "compute-loop-scale: " << getBlockName(LoopHead) << "\n");
// LoopScale == 1 / ExitMass
// ExitMass == HeadMass - BackedgeMass
PackagedLoopData &LoopPackage = getLoopPackage(LoopHead);
BlockMass ExitMass = BlockMass::getFull() - LoopPackage.BackedgeMass;
// Block scale stores the inverse of the scale.
LoopPackage.Scale = ExitMass.toFloat().inverse();
DEBUG(dbgs() << " - exit-mass = " << ExitMass << " (" << BlockMass::getFull()
<< " - " << LoopPackage.BackedgeMass << ")\n"
<< " - scale = " << LoopPackage.Scale << "\n");
if (LoopPackage.Scale > getMaxLoopScale()) {
LoopPackage.Scale = getMaxLoopScale();
DEBUG(dbgs() << " - reduced-to-max-scale: " << getMaxLoopScale() << "\n");
}
}
/// \brief Package up a loop.
void BlockFrequencyInfoImplBase::packageLoop(const BlockNode &LoopHead) {
DEBUG(dbgs() << "packaging-loop: " << getBlockName(LoopHead) << "\n");
Working[LoopHead.Index].IsAPackage = true;
for (const BlockNode &M : getLoopPackage(LoopHead).Members) {
DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n");
Working[M.Index].IsPackaged = true;
}
}
void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source,
const BlockNode &LoopHead,
Distribution &Dist) {
BlockMass Mass = getPackageMass(*this, Source);
DEBUG(dbgs() << " => mass: " << Mass
<< " ( general | forward )\n");
// Distribute mass to successors as laid out in Dist.
DitheringDistributer D(Dist, Mass);
#ifndef NDEBUG
auto debugAssign = [&](const BlockNode &T, const BlockMass &M,
const char *Desc) {
dbgs() << " => assign " << M << " (" << D.RemMass << "|"
<< D.RemForwardMass << ")";
if (Desc)
dbgs() << " [" << Desc << "]";
if (T.isValid())
dbgs() << " to " << getBlockName(T);
dbgs() << "\n";
};
(void)debugAssign;
#endif
PackagedLoopData *LoopPackage = 0;
if (LoopHead.isValid())
LoopPackage = &getLoopPackage(LoopHead);
for (const Weight &W : Dist.Weights) {
// Check for a local edge (forward and non-exit).
if (W.Type == Weight::Local) {
BlockMass Local = D.takeLocalMass(W.Amount);
getPackageMass(*this, W.TargetNode) += Local;
DEBUG(debugAssign(W.TargetNode, Local, nullptr));
continue;
}
// Backedges and exits only make sense if we're processing a loop.
assert(LoopPackage && "backedge or exit outside of loop");
// Check for a backedge.
if (W.Type == Weight::Backedge) {
BlockMass Back = D.takeBackedgeMass(W.Amount);
LoopPackage->BackedgeMass += Back;
DEBUG(debugAssign(BlockNode(), Back, "back"));
continue;
}
// This must be an exit.
assert(W.Type == Weight::Exit);
BlockMass Exit = D.takeExitMass(W.Amount);
LoopPackage->Exits.push_back(std::make_pair(W.TargetNode, Exit));
DEBUG(debugAssign(W.TargetNode, Exit, "exit"));
}
}
static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI,
const Float &Min, const Float &Max) {
// Scale the Factor to a size that creates integers. Ideally, integers would
// be scaled so that Max == UINT64_MAX so that they can be best
// differentiated. However, the register allocator currently deals poorly
// with large numbers. Instead, push Min up a little from 1 to give some
// room to differentiate small, unequal numbers.
//
// TODO: fix issues downstream so that ScalingFactor can be Float(1,64)/Max.
Float ScalingFactor = Min.inverse();
if ((Max / Min).lg() < 60)
ScalingFactor <<= 3;
// Translate the floats to integers.
DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max
<< ", factor = " << ScalingFactor << "\n");
for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) {
Float Scaled = BFI.Freqs[Index].Floating * ScalingFactor;
BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>());
DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = "
<< BFI.Freqs[Index].Floating << ", scaled = " << Scaled
<< ", int = " << BFI.Freqs[Index].Integer << "\n");
}
}
static void scaleBlockData(BlockFrequencyInfoImplBase &BFI,
const BlockNode &Node,
const PackagedLoopData &Loop) {
Float F = Loop.Mass.toFloat() * Loop.Scale;
Float &Current = BFI.Freqs[Node.Index].Floating;
Float Updated = Current * F;
DEBUG(dbgs() << " - " << BFI.getBlockName(Node) << ": " << Current << " => "
<< Updated << "\n");
Current = Updated;
}
/// \brief Unwrap a loop package.
///
/// Visits all the members of a loop, adjusting their BlockData according to
/// the loop's pseudo-node.
static void unwrapLoopPackage(BlockFrequencyInfoImplBase &BFI,
const BlockNode &Head) {
assert(Head.isValid());
PackagedLoopData &LoopPackage = BFI.getLoopPackage(Head);
DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getBlockName(Head)
<< ": mass = " << LoopPackage.Mass
<< ", scale = " << LoopPackage.Scale << "\n");
scaleBlockData(BFI, Head, LoopPackage);
// Propagate the head scale through the loop. Since members are visited in
// RPO, the head scale will be updated by the loop scale first, and then the
// final head scale will be used for updated the rest of the members.
for (const BlockNode &M : LoopPackage.Members) {
const FrequencyData &HeadData = BFI.Freqs[Head.Index];
FrequencyData &Freqs = BFI.Freqs[M.Index];
Float NewFreq = Freqs.Floating * HeadData.Floating;
DEBUG(dbgs() << " - " << BFI.getBlockName(M) << ": " << Freqs.Floating
<< " => " << NewFreq << "\n");
Freqs.Floating = NewFreq;
}
}
void BlockFrequencyInfoImplBase::finalizeMetrics() {
// Set initial frequencies from loop-local masses.
for (size_t Index = 0; Index < Working.size(); ++Index)
Freqs[Index].Floating = Working[Index].Mass.toFloat();
// Unwrap loop packages in reverse post-order, tracking min and max
// frequencies.
auto Min = Float::getLargest();
auto Max = Float::getZero();
for (size_t Index = 0; Index < Working.size(); ++Index) {
if (Working[Index].isLoopHeader())
unwrapLoopPackage(*this, BlockNode(Index));
// Update max scale.
Min = std::min(Min, Freqs[Index].Floating);
Max = std::max(Max, Freqs[Index].Floating);
}
// Convert to integers.
convertFloatingToInteger(*this, Min, Max);
// Clean up data structures.
cleanup(*this);
// Print out the final stats.
DEBUG(dump());
}
BlockFrequency
BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const {
if (!Node.isValid())
return 0;
return Freqs[Node.Index].Integer;
}
Float
BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const {
if (!Node.isValid())
return Float::getZero();
return Freqs[Node.Index].Floating;
}
std::string
BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const {
return std::string();
}
raw_ostream &
BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
const BlockNode &Node) const {
return OS << getFloatingBlockFreq(Node);
}
raw_ostream &
BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
const BlockFrequency &Freq) const {
Float Block(Freq.getFrequency(), 0);
Float Entry(getEntryFreq(), 0);
return OS << Block / Entry;
}

View File

@ -7,7 +7,6 @@ add_llvm_library(LLVMAnalysis
Analysis.cpp
BasicAliasAnalysis.cpp
BlockFrequencyInfo.cpp
BlockFrequencyInfoImpl.cpp
BranchProbabilityInfo.cpp
CFG.cpp
CFGPrinter.cpp

View File

@ -11,12 +11,9 @@
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "block-freq"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
@ -115,7 +112,6 @@ struct DOTGraphTraits<MachineBlockFrequencyInfo*> :
INITIALIZE_PASS_BEGIN(MachineBlockFrequencyInfo, "machine-block-freq",
"Machine Block Frequency Analysis", true, true)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_END(MachineBlockFrequencyInfo, "machine-block-freq",
"Machine Block Frequency Analysis", true, true)
@ -131,18 +127,16 @@ MachineBlockFrequencyInfo::~MachineBlockFrequencyInfo() {}
void MachineBlockFrequencyInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<MachineBranchProbabilityInfo>();
AU.addRequired<MachineLoopInfo>();
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool MachineBlockFrequencyInfo::runOnMachineFunction(MachineFunction &F) {
MachineBranchProbabilityInfo &MBPI =
getAnalysis<MachineBranchProbabilityInfo>();
MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
getAnalysis<MachineBranchProbabilityInfo>();
if (!MBFI)
MBFI.reset(new ImplType);
MBFI->doFunction(&F, &MBPI, &MLI);
MBFI->doFunction(&F, &MBPI);
#ifndef NDEBUG
if (ViewMachineBlockFreqPropagationDAG != GVDT_None) {
view();
@ -172,7 +166,7 @@ getBlockFreq(const MachineBasicBlock *MBB) const {
}
const MachineFunction *MachineBlockFrequencyInfo::getFunction() const {
return MBFI ? MBFI->getFunction() : nullptr;
return MBFI ? MBFI->Fn : nullptr;
}
raw_ostream &

View File

@ -1,50 +0,0 @@
; RUN: opt < %s -analyze -block-freq | FileCheck %s
declare void @g(i32 %x)
; CHECK-LABEL: Printing analysis {{.*}} for function 'branch_weight_0':
; CHECK-NEXT: block-frequency-info: branch_weight_0
define void @branch_weight_0(i32 %a) {
; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
entry:
br label %for.body
; Check that we get 1,4 instead of 0,3.
; CHECK-NEXT: for.body: float = 4.0,
for.body:
%i = phi i32 [ 0, %entry ], [ %inc, %for.body ]
call void @g(i32 %i)
%inc = add i32 %i, 1
%cmp = icmp ugt i32 %inc, %a
br i1 %cmp, label %for.end, label %for.body, !prof !0
; CHECK-NEXT: for.end: float = 1.0, int = [[ENTRY]]
for.end:
ret void
}
!0 = metadata !{metadata !"branch_weights", i32 0, i32 3}
; CHECK-LABEL: Printing analysis {{.*}} for function 'infinite_loop'
; CHECK-NEXT: block-frequency-info: infinite_loop
define void @infinite_loop(i1 %x) {
; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
entry:
br i1 %x, label %for.body, label %for.end, !prof !1
; Check that the loop scale maxes out at 4096, giving 2048 here.
; CHECK-NEXT: for.body: float = 2048.0,
for.body:
%i = phi i32 [ 0, %entry ], [ %inc, %for.body ]
call void @g(i32 %i)
%inc = add i32 %i, 1
br label %for.body
; Check that the exit weight is half of entry, since half is lost in the
; infinite loop above.
; CHECK-NEXT: for.end: float = 0.5,
for.end:
ret void
}
!1 = metadata !{metadata !"branch_weights", i32 1, i32 1}

View File

@ -1,14 +1,13 @@
; RUN: opt < %s -analyze -block-freq | FileCheck %s
define i32 @test1(i32 %i, i32* %a) {
; CHECK-LABEL: Printing analysis {{.*}} for function 'test1':
; CHECK-NEXT: block-frequency-info: test1
; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
; CHECK: Printing analysis {{.*}} for function 'test1'
; CHECK: entry = 1.0
entry:
br label %body
; Loop backedges are weighted and thus their bodies have a greater frequency.
; CHECK-NEXT: body: float = 32.0,
; CHECK: body = 32.0
body:
%iv = phi i32 [ 0, %entry ], [ %next, %body ]
%base = phi i32 [ 0, %entry ], [ %sum, %body ]
@ -19,29 +18,29 @@ body:
%exitcond = icmp eq i32 %next, %i
br i1 %exitcond, label %exit, label %body
; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
; CHECK: exit = 1.0
exit:
ret i32 %sum
}
define i32 @test2(i32 %i, i32 %a, i32 %b) {
; CHECK-LABEL: Printing analysis {{.*}} for function 'test2':
; CHECK-NEXT: block-frequency-info: test2
; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
; CHECK: Printing analysis {{.*}} for function 'test2'
; CHECK: entry = 1.0
entry:
%cond = icmp ult i32 %i, 42
br i1 %cond, label %then, label %else, !prof !0
; The 'then' branch is predicted more likely via branch weight metadata.
; CHECK-NEXT: then: float = 0.9411{{[0-9]*}},
; CHECK: then = 0.94116
then:
br label %exit
; CHECK-NEXT: else: float = 0.05882{{[0-9]*}},
; CHECK: else = 0.05877
else:
br label %exit
; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
; FIXME: It may be a bug that we don't sum back to 1.0.
; CHECK: exit = 0.99993
exit:
%result = phi i32 [ %a, %then ], [ %b, %else ]
ret i32 %result
@ -50,37 +49,37 @@ exit:
!0 = metadata !{metadata !"branch_weights", i32 64, i32 4}
define i32 @test3(i32 %i, i32 %a, i32 %b, i32 %c, i32 %d, i32 %e) {
; CHECK-LABEL: Printing analysis {{.*}} for function 'test3':
; CHECK-NEXT: block-frequency-info: test3
; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
; CHECK: Printing analysis {{.*}} for function 'test3'
; CHECK: entry = 1.0
entry:
switch i32 %i, label %case_a [ i32 1, label %case_b
i32 2, label %case_c
i32 3, label %case_d
i32 4, label %case_e ], !prof !1
; CHECK-NEXT: case_a: float = 0.05,
; CHECK: case_a = 0.04998
case_a:
br label %exit
; CHECK-NEXT: case_b: float = 0.05,
; CHECK: case_b = 0.04998
case_b:
br label %exit
; The 'case_c' branch is predicted more likely via branch weight metadata.
; CHECK-NEXT: case_c: float = 0.8,
; CHECK: case_c = 0.79998
case_c:
br label %exit
; CHECK-NEXT: case_d: float = 0.05,
; CHECK: case_d = 0.04998
case_d:
br label %exit
; CHECK-NEXT: case_e: float = 0.05,
; CHECK: case_e = 0.04998
case_e:
br label %exit
; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
; FIXME: It may be a bug that we don't sum back to 1.0.
; CHECK: exit = 0.99993
exit:
%result = phi i32 [ %a, %case_a ],
[ %b, %case_b ],
@ -92,50 +91,44 @@ exit:
!1 = metadata !{metadata !"branch_weights", i32 4, i32 4, i32 64, i32 4, i32 4}
; CHECK: Printing analysis {{.*}} for function 'nested_loops'
; CHECK: entry = 1.0
; This test doesn't seem to be assigning sensible frequencies to nested loops.
define void @nested_loops(i32 %a) {
; CHECK-LABEL: Printing analysis {{.*}} for function 'nested_loops':
; CHECK-NEXT: block-frequency-info: nested_loops
; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
entry:
br label %for.cond1.preheader
; CHECK-NEXT: for.cond1.preheader: float = 4001.0,
for.cond1.preheader:
%x.024 = phi i32 [ 0, %entry ], [ %inc12, %for.inc11 ]
br label %for.cond4.preheader
; CHECK-NEXT: for.cond4.preheader: float = 16008001.0,
for.cond4.preheader:
%y.023 = phi i32 [ 0, %for.cond1.preheader ], [ %inc9, %for.inc8 ]
%add = add i32 %y.023, %x.024
br label %for.body6
; CHECK-NEXT: for.body6: float = 64048012001.0,
for.body6:
%z.022 = phi i32 [ 0, %for.cond4.preheader ], [ %inc, %for.body6 ]
%add7 = add i32 %add, %z.022
tail call void @g(i32 %add7)
tail call void @g(i32 %add7) #2
%inc = add i32 %z.022, 1
%cmp5 = icmp ugt i32 %inc, %a
br i1 %cmp5, label %for.inc8, label %for.body6, !prof !2
; CHECK-NEXT: for.inc8: float = 16008001.0,
for.inc8:
%inc9 = add i32 %y.023, 1
%cmp2 = icmp ugt i32 %inc9, %a
br i1 %cmp2, label %for.inc11, label %for.cond4.preheader, !prof !2
; CHECK-NEXT: for.inc11: float = 4001.0,
for.inc11:
%inc12 = add i32 %x.024, 1
%cmp = icmp ugt i32 %inc12, %a
br i1 %cmp, label %for.end13, label %for.cond1.preheader, !prof !2
; CHECK-NEXT: for.end13: float = 1.0, int = [[ENTRY]]
for.end13:
ret void
}
declare void @g(i32)
declare void @g(i32) #1
!2 = metadata !{metadata !"branch_weights", i32 1, i32 4000}

View File

@ -1,165 +0,0 @@
; RUN: opt < %s -analyze -block-freq | FileCheck %s
; CHECK-LABEL: Printing analysis {{.*}} for function 'double_exit':
; CHECK-NEXT: block-frequency-info: double_exit
define i32 @double_exit(i32 %N) {
; Mass = 1
; Frequency = 1
; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
entry:
br label %outer
; Mass = 1
; Backedge mass = 1/3, exit mass = 2/3
; Loop scale = 3/2
; Psuedo-edges = exit
; Psuedo-mass = 1
; Frequency = 1*3/2*1 = 3/2
; CHECK-NEXT: outer: float = 1.5,
outer:
%I.0 = phi i32 [ 0, %entry ], [ %inc6, %outer.inc ]
%Return.0 = phi i32 [ 0, %entry ], [ %Return.1, %outer.inc ]
%cmp = icmp slt i32 %I.0, %N
br i1 %cmp, label %inner, label %exit, !prof !2 ; 2:1
; Mass = 1
; Backedge mass = 3/5, exit mass = 2/5
; Loop scale = 5/2
; Pseudo-edges = outer.inc @ 1/5, exit @ 1/5
; Pseudo-mass = 2/3
; Frequency = 3/2*1*5/2*2/3 = 5/2
; CHECK-NEXT: inner: float = 2.5,
inner:
%Return.1 = phi i32 [ %Return.0, %outer ], [ %call4, %inner.inc ]
%J.0 = phi i32 [ %I.0, %outer ], [ %inc, %inner.inc ]
%cmp2 = icmp slt i32 %J.0, %N
br i1 %cmp2, label %inner.body, label %outer.inc, !prof !1 ; 4:1
; Mass = 4/5
; Frequency = 5/2*4/5 = 2
; CHECK-NEXT: inner.body: float = 2.0,
inner.body:
%call = call i32 @c2(i32 %I.0, i32 %J.0)
%tobool = icmp ne i32 %call, 0
br i1 %tobool, label %exit, label %inner.inc, !prof !0 ; 3:1
; Mass = 3/5
; Frequency = 5/2*3/5 = 3/2
; CHECK-NEXT: inner.inc: float = 1.5,
inner.inc:
%call4 = call i32 @logic2(i32 %Return.1, i32 %I.0, i32 %J.0)
%inc = add nsw i32 %J.0, 1
br label %inner
; Mass = 1/3
; Frequency = 3/2*1/3 = 1/2
; CHECK-NEXT: outer.inc: float = 0.5,
outer.inc:
%inc6 = add nsw i32 %I.0, 1
br label %outer
; Mass = 1
; Frequency = 1
; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
exit:
%Return.2 = phi i32 [ %Return.1, %inner.body ], [ %Return.0, %outer ]
ret i32 %Return.2
}
!0 = metadata !{metadata !"branch_weights", i32 1, i32 3}
!1 = metadata !{metadata !"branch_weights", i32 4, i32 1}
!2 = metadata !{metadata !"branch_weights", i32 2, i32 1}
declare i32 @c2(i32, i32)
declare i32 @logic2(i32, i32, i32)
; CHECK-LABEL: Printing analysis {{.*}} for function 'double_exit_in_loop':
; CHECK-NEXT: block-frequency-info: double_exit_in_loop
define i32 @double_exit_in_loop(i32 %N) {
; Mass = 1
; Frequency = 1
; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
entry:
br label %outer
; Mass = 1
; Backedge mass = 1/2, exit mass = 1/2
; Loop scale = 2
; Pseudo-edges = exit
; Psuedo-mass = 1
; Frequency = 1*2*1 = 2
; CHECK-NEXT: outer: float = 2.0,
outer:
%I.0 = phi i32 [ 0, %entry ], [ %inc12, %outer.inc ]
%Return.0 = phi i32 [ 0, %entry ], [ %Return.3, %outer.inc ]
%cmp = icmp slt i32 %I.0, %N
br i1 %cmp, label %middle, label %exit, !prof !3 ; 1:1
; Mass = 1
; Backedge mass = 1/3, exit mass = 2/3
; Loop scale = 3/2
; Psuedo-edges = outer.inc
; Psuedo-mass = 1/2
; Frequency = 2*1*3/2*1/2 = 3/2
; CHECK-NEXT: middle: float = 1.5,
middle:
%J.0 = phi i32 [ %I.0, %outer ], [ %inc9, %middle.inc ]
%Return.1 = phi i32 [ %Return.0, %outer ], [ %Return.2, %middle.inc ]
%cmp2 = icmp slt i32 %J.0, %N
br i1 %cmp2, label %inner, label %outer.inc, !prof !2 ; 2:1
; Mass = 1
; Backedge mass = 3/5, exit mass = 2/5
; Loop scale = 5/2
; Pseudo-edges = middle.inc @ 1/5, outer.inc @ 1/5
; Pseudo-mass = 2/3
; Frequency = 3/2*1*5/2*2/3 = 5/2
; CHECK-NEXT: inner: float = 2.5,
inner:
%Return.2 = phi i32 [ %Return.1, %middle ], [ %call7, %inner.inc ]
%K.0 = phi i32 [ %J.0, %middle ], [ %inc, %inner.inc ]
%cmp5 = icmp slt i32 %K.0, %N
br i1 %cmp5, label %inner.body, label %middle.inc, !prof !1 ; 4:1
; Mass = 4/5
; Frequency = 5/2*4/5 = 2
; CHECK-NEXT: inner.body: float = 2.0,
inner.body:
%call = call i32 @c3(i32 %I.0, i32 %J.0, i32 %K.0)
%tobool = icmp ne i32 %call, 0
br i1 %tobool, label %outer.inc, label %inner.inc, !prof !0 ; 3:1
; Mass = 3/5
; Frequency = 5/2*3/5 = 3/2
; CHECK-NEXT: inner.inc: float = 1.5,
inner.inc:
%call7 = call i32 @logic3(i32 %Return.2, i32 %I.0, i32 %J.0, i32 %K.0)
%inc = add nsw i32 %K.0, 1
br label %inner
; Mass = 1/3
; Frequency = 3/2*1/3 = 1/2
; CHECK-NEXT: middle.inc: float = 0.5,
middle.inc:
%inc9 = add nsw i32 %J.0, 1
br label %middle
; Mass = 1/2
; Frequency = 2*1/2 = 1
; CHECK-NEXT: outer.inc: float = 1.0,
outer.inc:
%Return.3 = phi i32 [ %Return.2, %inner.body ], [ %Return.1, %middle ]
%inc12 = add nsw i32 %I.0, 1
br label %outer
; Mass = 1
; Frequency = 1
; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
exit:
ret i32 %Return.0
}
!3 = metadata !{metadata !"branch_weights", i32 1, i32 1}
declare i32 @c3(i32, i32, i32)
declare i32 @logic3(i32, i32, i32, i32)

View File

@ -1,197 +0,0 @@
; RUN: opt < %s -analyze -block-freq | FileCheck %s
; A loop with multiple exits should be handled correctly.
;
; CHECK-LABEL: Printing analysis {{.*}} for function 'multiexit':
; CHECK-NEXT: block-frequency-info: multiexit
define void @multiexit(i32 %a) {
; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
entry:
br label %loop.1
; CHECK-NEXT: loop.1: float = 1.333{{3*}},
loop.1:
%i = phi i32 [ 0, %entry ], [ %inc.2, %loop.2 ]
call void @f(i32 %i)
%inc.1 = add i32 %i, 1
%cmp.1 = icmp ugt i32 %inc.1, %a
br i1 %cmp.1, label %exit.1, label %loop.2, !prof !0
; CHECK-NEXT: loop.2: float = 0.666{{6*7}},
loop.2:
call void @g(i32 %inc.1)
%inc.2 = add i32 %inc.1, 1
%cmp.2 = icmp ugt i32 %inc.2, %a
br i1 %cmp.2, label %exit.2, label %loop.1, !prof !1
; CHECK-NEXT: exit.1: float = 0.666{{6*7}},
exit.1:
call void @h(i32 %inc.1)
br label %return
; CHECK-NEXT: exit.2: float = 0.333{{3*}},
exit.2:
call void @i(i32 %inc.2)
br label %return
; CHECK-NEXT: return: float = 1.0, int = [[ENTRY]]
return:
ret void
}
declare void @f(i32 %x)
declare void @g(i32 %x)
declare void @h(i32 %x)
declare void @i(i32 %x)
!0 = metadata !{metadata !"branch_weights", i32 3, i32 3}
!1 = metadata !{metadata !"branch_weights", i32 5, i32 5}
; The current BlockFrequencyInfo algorithm doesn't handle multiple entrances
; into a loop very well. The frequencies assigned to blocks in the loop are
; predictable (and not absurd), but also not correct and therefore not worth
; testing.
;
; There are two testcases below.
;
; For each testcase, I use a CHECK-NEXT/NOT combo like an XFAIL with the
; granularity of a single check. If/when this behaviour is fixed, we'll know
; about it, and the test should be updated.
;
; Testcase #1
; ===========
;
; In this case c1 and c2 should have frequencies of 15/7 and 13/7,
; respectively. To calculate this, consider assigning 1.0 to entry, and
; distributing frequency iteratively (to infinity). At the first iteration,
; entry gives 3/4 to c1 and 1/4 to c2. At every step after, c1 and c2 give 3/4
; of what they have to each other. Somehow, all of it comes out to exit.
;
; c1 = 3/4 + 1/4*3/4 + 3/4*3^2/4^2 + 1/4*3^3/4^3 + 3/4*3^3/4^3 + ...
; c2 = 1/4 + 3/4*3/4 + 1/4*3^2/4^2 + 3/4*3^3/4^3 + 1/4*3^3/4^3 + ...
;
; Simplify by splitting up the odd and even terms of the series and taking out
; factors so that the infite series matches:
;
; c1 = 3/4 *(9^0/16^0 + 9^1/16^1 + 9^2/16^2 + ...)
; + 3/16*(9^0/16^0 + 9^1/16^1 + 9^2/16^2 + ...)
; c2 = 1/4 *(9^0/16^0 + 9^1/16^1 + 9^2/16^2 + ...)
; + 9/16*(9^0/16^0 + 9^1/16^1 + 9^2/16^2 + ...)
;
; c1 = 15/16*(9^0/16^0 + 9^1/16^1 + 9^2/16^2 + ...)
; c2 = 13/16*(9^0/16^0 + 9^1/16^1 + 9^2/16^2 + ...)
;
; Since this geometric series sums to 16/7:
;
; c1 = 15/7
; c2 = 13/7
;
; If we treat c1 and c2 as members of the same loop, the exit frequency of the
; loop as a whole is 1/4, so the loop scale should be 4. Summing c1 and c2
; gives 28/7, or 4.0, which is nice confirmation of the math above.
;
; However, assuming c1 precedes c2 in reverse post-order, the current algorithm
; returns 3/4 and 13/16, respectively. LoopInfo ignores edges between loops
; (and doesn't see any loops here at all), and -block-freq ignores the
; irreducible edge from c2 to c1.
;
; CHECK-LABEL: Printing analysis {{.*}} for function 'multientry':
; CHECK-NEXT: block-frequency-info: multientry
define void @multientry(i32 %a) {
; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
entry:
%choose = call i32 @choose(i32 %a)
%compare = icmp ugt i32 %choose, %a
br i1 %compare, label %c1, label %c2, !prof !2
; This is like a single-line XFAIL (see above).
; CHECK-NEXT: c1:
; CHECK-NOT: float = 2.142857{{[0-9]*}},
c1:
%i1 = phi i32 [ %a, %entry ], [ %i2.inc, %c2 ]
%i1.inc = add i32 %i1, 1
%choose1 = call i32 @choose(i32 %i1)
%compare1 = icmp ugt i32 %choose1, %a
br i1 %compare1, label %c2, label %exit, !prof !2
; This is like a single-line XFAIL (see above).
; CHECK-NEXT: c2:
; CHECK-NOT: float = 1.857142{{[0-9]*}},
c2:
%i2 = phi i32 [ %a, %entry ], [ %i1.inc, %c1 ]
%i2.inc = add i32 %i2, 1
%choose2 = call i32 @choose(i32 %i2)
%compare2 = icmp ugt i32 %choose2, %a
br i1 %compare2, label %c1, label %exit, !prof !2
; We still shouldn't lose any frequency.
; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
exit:
ret void
}
; Testcase #2
; ===========
;
; In this case c1 and c2 should be treated as equals in a single loop. The
; exit frequency is 1/3, so the scaling factor for the loop should be 3.0. The
; loop is entered 2/3 of the time, and c1 and c2 split the total loop frequency
; evenly (1/2), so they should each have frequencies of 1.0 (3.0*2/3*1/2).
; Another way of computing this result is by assigning 1.0 to entry and showing
; that c1 and c2 should accumulate frequencies of:
;
; 1/3 + 2/9 + 4/27 + 8/81 + ...
; 2^0/3^1 + 2^1/3^2 + 2^2/3^3 + 2^3/3^4 + ...
;
; At the first step, c1 and c2 each get 1/3 of the entry. At each subsequent
; step, c1 and c2 each get 1/3 of what's left in c1 and c2 combined. This
; infinite series sums to 1.
;
; However, assuming c1 precedes c2 in reverse post-order, the current algorithm
; returns 1/2 and 3/4, respectively. LoopInfo ignores edges between loops (and
; treats c1 and c2 as self-loops only), and -block-freq ignores the irreducible
; edge from c2 to c1.
;
; Below I use a CHECK-NEXT/NOT combo like an XFAIL with the granularity of a
; single check. If/when this behaviour is fixed, we'll know about it, and the
; test should be updated.
;
; CHECK-LABEL: Printing analysis {{.*}} for function 'crossloops':
; CHECK-NEXT: block-frequency-info: crossloops
define void @crossloops(i32 %a) {
; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
entry:
%choose = call i32 @choose(i32 %a)
switch i32 %choose, label %exit [ i32 1, label %c1
i32 2, label %c2 ], !prof !3
; This is like a single-line XFAIL (see above).
; CHECK-NEXT: c1:
; CHECK-NOT: float = 1.0,
c1:
%i1 = phi i32 [ %a, %entry ], [ %i1.inc, %c1 ], [ %i2.inc, %c2 ]
%i1.inc = add i32 %i1, 1
%choose1 = call i32 @choose(i32 %i1)
switch i32 %choose1, label %exit [ i32 1, label %c1
i32 2, label %c2 ], !prof !3
; This is like a single-line XFAIL (see above).
; CHECK-NEXT: c2:
; CHECK-NOT: float = 1.0,
c2:
%i2 = phi i32 [ %a, %entry ], [ %i1.inc, %c1 ], [ %i2.inc, %c2 ]
%i2.inc = add i32 %i2, 1
%choose2 = call i32 @choose(i32 %i2)
switch i32 %choose2, label %exit [ i32 1, label %c1
i32 2, label %c2 ], !prof !3
; We still shouldn't lose any frequency.
; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
exit:
ret void
}
declare i32 @choose(i32)
!2 = metadata !{metadata !"branch_weights", i32 3, i32 1}
!3 = metadata !{metadata !"branch_weights", i32 2, i32 2, i32 2}

View File

@ -1,44 +0,0 @@
; RUN: opt < %s -analyze -block-freq | FileCheck %s
; CHECK-LABEL: Printing analysis {{.*}} for function 'loop_with_branch':
; CHECK-NEXT: block-frequency-info: loop_with_branch
define void @loop_with_branch(i32 %a) {
; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
entry:
%skip_loop = call i1 @foo0(i32 %a)
br i1 %skip_loop, label %skip, label %header, !prof !0
; CHECK-NEXT: skip: float = 0.25,
skip:
br label %exit
; CHECK-NEXT: header: float = 4.5,
header:
%i = phi i32 [ 0, %entry ], [ %i.next, %back ]
%i.next = add i32 %i, 1
%choose = call i2 @foo1(i32 %i)
switch i2 %choose, label %exit [ i2 0, label %left
i2 1, label %right ], !prof !1
; CHECK-NEXT: left: float = 1.5,
left:
br label %back
; CHECK-NEXT: right: float = 2.25,
right:
br label %back
; CHECK-NEXT: back: float = 3.75,
back:
br label %header
; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
exit:
ret void
}
declare i1 @foo0(i32)
declare i2 @foo1(i32)
!0 = metadata !{metadata !"branch_weights", i32 1, i32 3}
!1 = metadata !{metadata !"branch_weights", i32 1, i32 2, i32 3}

View File

@ -1,59 +0,0 @@
; RUN: opt < %s -analyze -block-freq | FileCheck %s
; CHECK-LABEL: Printing analysis {{.*}} for function 'nested_loop_with_branches'
; CHECK-NEXT: block-frequency-info: nested_loop_with_branches
define void @nested_loop_with_branches(i32 %a) {
; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
entry:
%v0 = call i1 @foo0(i32 %a)
br i1 %v0, label %exit, label %outer, !prof !0
; CHECK-NEXT: outer: float = 12.0,
outer:
%i = phi i32 [ 0, %entry ], [ %i.next, %inner.end ], [ %i.next, %no_inner ]
%i.next = add i32 %i, 1
%do_inner = call i1 @foo1(i32 %i)
br i1 %do_inner, label %no_inner, label %inner, !prof !0
; CHECK-NEXT: inner: float = 36.0,
inner:
%j = phi i32 [ 0, %outer ], [ %j.next, %inner.end ]
%side = call i1 @foo3(i32 %j)
br i1 %side, label %left, label %right, !prof !0
; CHECK-NEXT: left: float = 9.0,
left:
%v4 = call i1 @foo4(i32 %j)
br label %inner.end
; CHECK-NEXT: right: float = 27.0,
right:
%v5 = call i1 @foo5(i32 %j)
br label %inner.end
; CHECK-NEXT: inner.end: float = 36.0,
inner.end:
%stay_inner = phi i1 [ %v4, %left ], [ %v5, %right ]
%j.next = add i32 %j, 1
br i1 %stay_inner, label %inner, label %outer, !prof !1
; CHECK-NEXT: no_inner: float = 3.0,
no_inner:
%continue = call i1 @foo6(i32 %i)
br i1 %continue, label %outer, label %exit, !prof !1
; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
exit:
ret void
}
declare i1 @foo0(i32)
declare i1 @foo1(i32)
declare i1 @foo2(i32)
declare i1 @foo3(i32)
declare i1 @foo4(i32)
declare i1 @foo5(i32)
declare i1 @foo6(i32)
!0 = metadata !{metadata !"branch_weights", i32 1, i32 3}
!1 = metadata !{metadata !"branch_weights", i32 3, i32 1}

View File

@ -287,8 +287,9 @@ define void @Unwind1() {
; CHECKFP: .LBB{{[0-9_]+}}
; CHECKFP-NEXT: ldc r2, 40
; CHECKFP-NEXT: add r2, r10, r2
; CHECKFP-NEXT: add r2, r2, r0
; CHECKFP-NEXT: add r0, r2, r0
; CHECKFP-NEXT: mov r3, r1
; CHECKFP-NEXT: mov r2, r0
; CHECKFP-NEXT: ldw r9, r10[4]
; CHECKFP-NEXT: ldw r8, r10[5]
; CHECKFP-NEXT: ldw r7, r10[6]
@ -336,8 +337,9 @@ define void @Unwind1() {
; CHECK-NEXT: ldc r2, 36
; CHECK-NEXT: ldaw r3, sp[0]
; CHECK-NEXT: add r2, r3, r2
; CHECK-NEXT: add r2, r2, r0
; CHECK-NEXT: add r0, r2, r0
; CHECK-NEXT: mov r3, r1
; CHECK-NEXT: mov r2, r0
; CHECK-NEXT: ldw r10, sp[2]
; CHECK-NEXT: ldw r9, sp[3]
; CHECK-NEXT: ldw r8, sp[4]