[X86][NFC] Generate fields and getters for subtarget features

Non-duplicated comments are moved from X86Subtarget.h to X86.td.
This is a follow-up patch for D120906.
This commit is contained in:
Shengchen Kan 2022-03-20 15:22:02 +08:00
parent 8271220a99
commit e58dadf3e2
2 changed files with 36 additions and 599 deletions

View File

@ -18,7 +18,7 @@ include "llvm/Target/Target.td"
//===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===//
// X86 Subtarget state // X86 Subtarget state
// //
// disregarding specific ABI / programming model
def Is64Bit : SubtargetFeature<"64bit-mode", "Is64Bit", "true", def Is64Bit : SubtargetFeature<"64bit-mode", "Is64Bit", "true",
"64-bit mode (x86_64)">; "64-bit mode (x86_64)">;
def Is32Bit : SubtargetFeature<"32bit-mode", "Is32Bit", "true", def Is32Bit : SubtargetFeature<"32bit-mode", "Is32Bit", "true",
@ -34,7 +34,7 @@ def FeatureX87 : SubtargetFeature<"x87","HasX87", "true",
"Enable X87 float instructions">; "Enable X87 float instructions">;
def FeatureNOPL : SubtargetFeature<"nopl", "HasNOPL", "true", def FeatureNOPL : SubtargetFeature<"nopl", "HasNOPL", "true",
"Enable NOPL instruction">; "Enable NOPL instruction (generally pentium pro+)">;
def FeatureCMOV : SubtargetFeature<"cmov","HasCMOV", "true", def FeatureCMOV : SubtargetFeature<"cmov","HasCMOV", "true",
"Enable conditional move instructions">; "Enable conditional move instructions">;
@ -43,7 +43,7 @@ def FeatureCX8 : SubtargetFeature<"cx8", "HasCX8", "true",
"Support CMPXCHG8B instructions">; "Support CMPXCHG8B instructions">;
def FeatureCRC32 : SubtargetFeature<"crc32", "HasCRC32", "true", def FeatureCRC32 : SubtargetFeature<"crc32", "HasCRC32", "true",
"Enable SSE 4.2 CRC32 instruction">; "Enable SSE 4.2 CRC32 instruction (used when SSE4.2 is supported but function is GPR only)">;
def FeaturePOPCNT : SubtargetFeature<"popcnt", "HasPOPCNT", "true", def FeaturePOPCNT : SubtargetFeature<"popcnt", "HasPOPCNT", "true",
"Support POPCNT instruction">; "Support POPCNT instruction">;
@ -101,7 +101,7 @@ def Feature3DNowA : SubtargetFeature<"3dnowa", "X863DNowLevel", "ThreeDNowA",
def FeatureX86_64 : SubtargetFeature<"64bit", "HasX86_64", "true", def FeatureX86_64 : SubtargetFeature<"64bit", "HasX86_64", "true",
"Support 64-bit instructions">; "Support 64-bit instructions">;
def FeatureCX16 : SubtargetFeature<"cx16", "HasCX16", "true", def FeatureCX16 : SubtargetFeature<"cx16", "HasCX16", "true",
"64-bit with cmpxchg16b", "64-bit with cmpxchg16b (this is true for most x86-64 chips, but not the first AMD chips)",
[FeatureCX8]>; [FeatureCX8]>;
def FeatureSSE4A : SubtargetFeature<"sse4a", "HasSSE4A", "true", def FeatureSSE4A : SubtargetFeature<"sse4a", "HasSSE4A", "true",
"Support SSE 4a instructions", "Support SSE 4a instructions",
@ -198,7 +198,7 @@ def FeatureXOP : SubtargetFeature<"xop", "HasXOP", "true",
[FeatureFMA4]>; [FeatureFMA4]>;
def FeatureSSEUnalignedMem : SubtargetFeature<"sse-unaligned-mem", def FeatureSSEUnalignedMem : SubtargetFeature<"sse-unaligned-mem",
"HasSSEUnalignedMem", "true", "HasSSEUnalignedMem", "true",
"Allow unaligned memory operands with SSE instructions">; "Allow unaligned memory operands with SSE instructions (this may require setting a configuration bit in the processor)">;
def FeatureAES : SubtargetFeature<"aes", "HasAES", "true", def FeatureAES : SubtargetFeature<"aes", "HasAES", "true",
"Enable AES instructions", "Enable AES instructions",
[FeatureSSE2]>; [FeatureSSE2]>;
@ -228,6 +228,8 @@ def FeatureADX : SubtargetFeature<"adx", "HasADX", "true",
def FeatureSHA : SubtargetFeature<"sha", "HasSHA", "true", def FeatureSHA : SubtargetFeature<"sha", "HasSHA", "true",
"Enable SHA instructions", "Enable SHA instructions",
[FeatureSSE2]>; [FeatureSSE2]>;
// Processor supports CET SHSTK - Control-Flow Enforcement Technology
// using Shadow Stack
def FeatureSHSTK : SubtargetFeature<"shstk", "HasSHSTK", "true", def FeatureSHSTK : SubtargetFeature<"shstk", "HasSHSTK", "true",
"Support CET Shadow-Stack instructions">; "Support CET Shadow-Stack instructions">;
def FeaturePRFCHW : SubtargetFeature<"prfchw", "HasPRFCHW", "true", def FeaturePRFCHW : SubtargetFeature<"prfchw", "HasPRFCHW", "true",
@ -241,7 +243,7 @@ def FeatureMWAITX : SubtargetFeature<"mwaitx", "HasMWAITX", "true",
def FeatureCLZERO : SubtargetFeature<"clzero", "HasCLZERO", "true", def FeatureCLZERO : SubtargetFeature<"clzero", "HasCLZERO", "true",
"Enable Cache Line Zero">; "Enable Cache Line Zero">;
def FeatureCLDEMOTE : SubtargetFeature<"cldemote", "HasCLDEMOTE", "true", def FeatureCLDEMOTE : SubtargetFeature<"cldemote", "HasCLDEMOTE", "true",
"Enable Cache Demote">; "Enable Cache Line Demote">;
def FeaturePTWRITE : SubtargetFeature<"ptwrite", "HasPTWRITE", "true", def FeaturePTWRITE : SubtargetFeature<"ptwrite", "HasPTWRITE", "true",
"Support ptwrite instruction">; "Support ptwrite instruction">;
def FeatureAMXTILE : SubtargetFeature<"amx-tile", "HasAMXTILE", "true", def FeatureAMXTILE : SubtargetFeature<"amx-tile", "HasAMXTILE", "true",
@ -285,9 +287,9 @@ def FeatureUINTR : SubtargetFeature<"uintr", "HasUINTR", "true",
def FeaturePCONFIG : SubtargetFeature<"pconfig", "HasPCONFIG", "true", def FeaturePCONFIG : SubtargetFeature<"pconfig", "HasPCONFIG", "true",
"platform configuration instruction">; "platform configuration instruction">;
def FeatureMOVDIRI : SubtargetFeature<"movdiri", "HasMOVDIRI", "true", def FeatureMOVDIRI : SubtargetFeature<"movdiri", "HasMOVDIRI", "true",
"Support movdiri instruction">; "Support movdiri instruction (direct store integer)">;
def FeatureMOVDIR64B : SubtargetFeature<"movdir64b", "HasMOVDIR64B", "true", def FeatureMOVDIR64B : SubtargetFeature<"movdir64b", "HasMOVDIR64B", "true",
"Support movdir64b instruction">; "Support movdir64b instruction (direct store 64 bytes)">;
// Ivy Bridge and newer processors have enhanced REP MOVSB and STOSB (aka // Ivy Bridge and newer processors have enhanced REP MOVSB and STOSB (aka
// "string operations"). See "REP String Enhancement" in the Intel Software // "string operations"). See "REP String Enhancement" in the Intel Software
@ -388,7 +390,7 @@ def TuningSlowSHLD : SubtargetFeature<"slow-shld", "IsSHLDSlow", "true",
"SHLD instruction is slow">; "SHLD instruction is slow">;
def TuningSlowPMULLD : SubtargetFeature<"slow-pmulld", "IsPMULLDSlow", "true", def TuningSlowPMULLD : SubtargetFeature<"slow-pmulld", "IsPMULLDSlow", "true",
"PMULLD instruction is slow">; "PMULLD instruction is slow (compared to PMULLW/PMULHW and PMULUDQ)">;
def TuningSlowPMADDWD : SubtargetFeature<"slow-pmaddwd", "IsPMADDWDSlow", def TuningSlowPMADDWD : SubtargetFeature<"slow-pmaddwd", "IsPMADDWDSlow",
"true", "true",
@ -404,19 +406,23 @@ def TuningSlowUAMem32 : SubtargetFeature<"slow-unaligned-mem-32",
"Slow unaligned 32-byte memory access">; "Slow unaligned 32-byte memory access">;
def TuningLEAForSP : SubtargetFeature<"lea-sp", "UseLeaForSP", "true", def TuningLEAForSP : SubtargetFeature<"lea-sp", "UseLeaForSP", "true",
"Use LEA for adjusting the stack pointer">; "Use LEA for adjusting the stack pointer (this is an optimization for Intel Atom processors)">;
// True if 8-bit divisions are significantly faster than
// 32-bit divisions and should be used when possible.
def TuningSlowDivide32 : SubtargetFeature<"idivl-to-divb", def TuningSlowDivide32 : SubtargetFeature<"idivl-to-divb",
"HasSlowDivide32", "true", "HasSlowDivide32", "true",
"Use 8-bit divide for positive values less than 256">; "Use 8-bit divide for positive values less than 256">;
// True if 32-bit divides are significantly faster than
// 64-bit divisions and should be used when possible.
def TuningSlowDivide64 : SubtargetFeature<"idivq-to-divl", def TuningSlowDivide64 : SubtargetFeature<"idivq-to-divl",
"HasSlowDivide64", "true", "HasSlowDivide64", "true",
"Use 32-bit divide for positive values less than 2^32">; "Use 32-bit divide for positive values less than 2^32">;
def TuningPadShortFunctions : SubtargetFeature<"pad-short-functions", def TuningPadShortFunctions : SubtargetFeature<"pad-short-functions",
"PadShortFunctions", "true", "PadShortFunctions", "true",
"Pad short functions">; "Pad short functions (to prevent a stall when returning too early)">;
// On some processors, instructions that implicitly take two memory operands are // On some processors, instructions that implicitly take two memory operands are
// slow. In practice, this means that CALL, PUSH, and POP with memory operands // slow. In practice, this means that CALL, PUSH, and POP with memory operands
@ -425,15 +431,21 @@ def TuningSlowTwoMemOps : SubtargetFeature<"slow-two-mem-ops",
"SlowTwoMemOps", "true", "SlowTwoMemOps", "true",
"Two memory operand instructions are slow">; "Two memory operand instructions are slow">;
// True if the LEA instruction inputs have to be ready at address generation
// (AG) time.
def TuningLEAUsesAG : SubtargetFeature<"lea-uses-ag", "LeaUsesAG", "true", def TuningLEAUsesAG : SubtargetFeature<"lea-uses-ag", "LeaUsesAG", "true",
"LEA instruction needs inputs at AG stage">; "LEA instruction needs inputs at AG stage">;
def TuningSlowLEA : SubtargetFeature<"slow-lea", "SlowLEA", "true", def TuningSlowLEA : SubtargetFeature<"slow-lea", "SlowLEA", "true",
"LEA instruction with certain arguments is slow">; "LEA instruction with certain arguments is slow">;
// True if the LEA instruction has all three source operands: base, index,
// and offset or if the LEA instruction uses base and index registers where
// the base is EBP, RBP,or R13
def TuningSlow3OpsLEA : SubtargetFeature<"slow-3ops-lea", "Slow3OpsLEA", "true", def TuningSlow3OpsLEA : SubtargetFeature<"slow-3ops-lea", "Slow3OpsLEA", "true",
"LEA instruction with 3 ops or certain registers is slow">; "LEA instruction with 3 ops or certain registers is slow">;
// True if INC and DEC instructions are slow when writing to flags
def TuningSlowIncDec : SubtargetFeature<"slow-incdec", "SlowIncDec", "true", def TuningSlowIncDec : SubtargetFeature<"slow-incdec", "SlowIncDec", "true",
"INC and DEC instructions are slower than ADD and SUB">; "INC and DEC instructions are slower than ADD and SUB">;
@ -474,9 +486,14 @@ def TuningInsertVZEROUPPER
// vectorized code we should care about the throughput of SQRT operations. // vectorized code we should care about the throughput of SQRT operations.
// But if the code is scalar that probably means that the code has some kind of // But if the code is scalar that probably means that the code has some kind of
// dependency and we should care more about reducing the latency. // dependency and we should care more about reducing the latency.
// True if hardware SQRTSS instruction is at least as fast (latency) as
// RSQRTSS followed by a Newton-Raphson iteration.
def TuningFastScalarFSQRT def TuningFastScalarFSQRT
: SubtargetFeature<"fast-scalar-fsqrt", "HasFastScalarFSQRT", : SubtargetFeature<"fast-scalar-fsqrt", "HasFastScalarFSQRT",
"true", "Scalar SQRT is fast (disable Newton-Raphson)">; "true", "Scalar SQRT is fast (disable Newton-Raphson)">;
// True if hardware SQRTPS/VSQRTPS instructions are at least as fast
// (throughput) as RSQRTPS/VRSQRTPS followed by a Newton-Raphson iteration.
def TuningFastVectorFSQRT def TuningFastVectorFSQRT
: SubtargetFeature<"fast-vector-fsqrt", "HasFastVectorFSQRT", : SubtargetFeature<"fast-vector-fsqrt", "HasFastVectorFSQRT",
"true", "Vector SQRT is fast (disable Newton-Raphson)">; "true", "Vector SQRT is fast (disable Newton-Raphson)">;
@ -533,7 +550,7 @@ def TuningMacroFusion
// similar to Skylake Server (AVX-512). // similar to Skylake Server (AVX-512).
def TuningFastGather def TuningFastGather
: SubtargetFeature<"fast-gather", "HasFastGather", "true", : SubtargetFeature<"fast-gather", "HasFastGather", "true",
"Indicates if gather is reasonably fast">; "Indicates if gather is reasonably fast (this is true for Skylake client and all AVX-512 CPUs)">;
def TuningPrefer128Bit def TuningPrefer128Bit
: SubtargetFeature<"prefer-128-bit", "Prefer128Bit", "true", : SubtargetFeature<"prefer-128-bit", "Prefer128Bit", "true",

View File

@ -69,416 +69,9 @@ class X86Subtarget final : public X86GenSubtargetInfo {
/// MMX, 3DNow, 3DNow Athlon, or none supported. /// MMX, 3DNow, 3DNow Athlon, or none supported.
X863DNowEnum X863DNowLevel = NoThreeDNow; X863DNowEnum X863DNowLevel = NoThreeDNow;
/// Is this a Intel Atom processor? #define GET_SUBTARGETINFO_MACRO(ATTRIBUTE, DEFAULT, GETTER) \
bool IsAtom = false; bool ATTRIBUTE = DEFAULT;
#include "X86GenSubtargetInfo.inc"
/// True if the processor supports X87 instructions.
bool HasX87 = false;
/// True if the processor supports CMPXCHG8B.
bool HasCX8 = false;
/// True if this processor has NOPL instruction
/// (generally pentium pro+).
bool HasNOPL = false;
/// True if this processor has conditional move instructions
/// (generally pentium pro+).
bool HasCMOV = false;
/// True if the processor supports X86-64 instructions.
bool HasX86_64 = false;
/// True if the processor supports POPCNT.
bool HasPOPCNT = false;
/// True if the processor supports SSE4A instructions.
bool HasSSE4A = false;
/// Target has AES instructions
bool HasAES = false;
bool HasVAES = false;
/// Target has FXSAVE/FXRESTOR instructions
bool HasFXSR = false;
/// Target has XSAVE instructions
bool HasXSAVE = false;
/// Target has XSAVEOPT instructions
bool HasXSAVEOPT = false;
/// Target has XSAVEC instructions
bool HasXSAVEC = false;
/// Target has XSAVES instructions
bool HasXSAVES = false;
/// Target has carry-less multiplication
bool HasPCLMUL = false;
bool HasVPCLMULQDQ = false;
/// Target has Galois Field Arithmetic instructions
bool HasGFNI = false;
/// Target has 3-operand fused multiply-add
bool HasFMA = false;
/// Target has 4-operand fused multiply-add
bool HasFMA4 = false;
/// Target has XOP instructions
bool HasXOP = false;
/// Target has TBM instructions.
bool HasTBM = false;
/// Target has LWP instructions
bool HasLWP = false;
/// True if the processor has the MOVBE instruction.
bool HasMOVBE = false;
/// True if the processor has the RDRAND instruction.
bool HasRDRAND = false;
/// Processor has 16-bit floating point conversion instructions.
bool HasF16C = false;
/// Processor has FS/GS base insturctions.
bool HasFSGSBase = false;
/// Processor has LZCNT instruction.
bool HasLZCNT = false;
/// Processor has BMI1 instructions.
bool HasBMI = false;
/// Processor has BMI2 instructions.
bool HasBMI2 = false;
/// Processor has VBMI instructions.
bool HasVBMI = false;
/// Processor has VBMI2 instructions.
bool HasVBMI2 = false;
/// Processor has Integer Fused Multiply Add
bool HasIFMA = false;
/// Processor has RTM instructions.
bool HasRTM = false;
/// Processor has ADX instructions.
bool HasADX = false;
/// Processor has SHA instructions.
bool HasSHA = false;
/// Processor has PRFCHW instructions.
bool HasPRFCHW = false;
/// Processor has RDSEED instructions.
bool HasRDSEED = false;
/// Processor has LAHF/SAHF instructions in 64-bit mode.
bool HasLAHFSAHF64 = false;
/// Processor has MONITORX/MWAITX instructions.
bool HasMWAITX = false;
/// Processor has Cache Line Zero instruction
bool HasCLZERO = false;
/// Processor has Cache Line Demote instruction
bool HasCLDEMOTE = false;
/// Processor has MOVDIRI instruction (direct store integer).
bool HasMOVDIRI = false;
/// Processor has MOVDIR64B instruction (direct store 64 bytes).
bool HasMOVDIR64B = false;
/// Processor has ptwrite instruction.
bool HasPTWRITE = false;
/// Processor has Prefetch with intent to Write instruction
bool HasPREFETCHWT1 = false;
/// True if SHLD instructions are slow.
bool IsSHLDSlow = false;
/// True if the PMULLD instruction is slow compared to PMULLW/PMULHW and
// PMULUDQ.
bool IsPMULLDSlow = false;
/// True if the PMADDWD instruction is slow compared to PMULLD.
bool IsPMADDWDSlow = false;
/// True if unaligned memory accesses of 16-bytes are slow.
bool IsUnalignedMem16Slow = false;
/// True if unaligned memory accesses of 32-bytes are slow.
bool IsUnalignedMem32Slow = false;
/// True if SSE operations can have unaligned memory operands.
/// This may require setting a configuration bit in the processor.
bool HasSSEUnalignedMem = false;
/// True if this processor has the CMPXCHG16B instruction;
/// this is true for most x86-64 chips, but not the first AMD chips.
bool HasCX16 = false;
/// True if the LEA instruction should be used for adjusting
/// the stack pointer. This is an optimization for Intel Atom processors.
bool UseLeaForSP = false;
/// True if POPCNT instruction has a false dependency on the destination register.
bool HasPOPCNTFalseDeps = false;
/// True if LZCNT/TZCNT instructions have a false dependency on the destination register.
bool HasLZCNTFalseDeps = false;
/// True if an SBB instruction with same source register is recognized as
/// having no dependency on that register.
bool HasSBBDepBreaking = false;
/// True if its preferable to combine to a single cross-lane shuffle
/// using a variable mask over multiple fixed shuffles.
bool HasFastVariableCrossLaneShuffle = false;
/// True if its preferable to combine to a single per-lane shuffle
/// using a variable mask over multiple fixed shuffles.
bool HasFastVariablePerLaneShuffle = false;
/// True if vzeroupper instructions should be inserted after code that uses
/// ymm or zmm registers.
bool InsertVZEROUPPER = false;
/// True if there is no performance penalty for writing NOPs with up to
/// 7 bytes.
bool HasFast7ByteNOP = false;
/// True if there is no performance penalty for writing NOPs with up to
/// 11 bytes.
bool HasFast11ByteNOP = false;
/// True if there is no performance penalty for writing NOPs with up to
/// 15 bytes.
bool HasFast15ByteNOP = false;
/// True if gather is reasonably fast. This is true for Skylake client and
/// all AVX-512 CPUs.
bool HasFastGather = false;
/// True if hardware SQRTSS instruction is at least as fast (latency) as
/// RSQRTSS followed by a Newton-Raphson iteration.
bool HasFastScalarFSQRT = false;
/// True if hardware SQRTPS/VSQRTPS instructions are at least as fast
/// (throughput) as RSQRTPS/VRSQRTPS followed by a Newton-Raphson iteration.
bool HasFastVectorFSQRT = false;
/// True if 8-bit divisions are significantly faster than
/// 32-bit divisions and should be used when possible.
bool HasSlowDivide32 = false;
/// True if 32-bit divides are significantly faster than
/// 64-bit divisions and should be used when possible.
bool HasSlowDivide64 = false;
/// True if LZCNT instruction is fast.
bool HasFastLZCNT = false;
/// True if SHLD based rotate is fast.
bool HasFastSHLDRotate = false;
/// True if the processor supports macrofusion.
bool HasMacroFusion = false;
/// True if the processor supports branch fusion.
bool HasBranchFusion = false;
/// True if the processor has enhanced REP MOVSB/STOSB.
bool HasERMSB = false;
/// True if the processor has fast short REP MOV.
bool HasFSRM = false;
/// True if the short functions should be padded to prevent
/// a stall when returning too early.
bool PadShortFunctions = false;
/// True if two memory operand instructions should use a temporary register
/// instead.
bool SlowTwoMemOps = false;
/// True if the LEA instruction inputs have to be ready at address generation
/// (AG) time.
bool LeaUsesAG = false;
/// True if the LEA instruction with certain arguments is slow
bool SlowLEA = false;
/// True if the LEA instruction has all three source operands: base, index,
/// and offset or if the LEA instruction uses base and index registers where
/// the base is EBP, RBP,or R13
bool Slow3OpsLEA = false;
/// True if INC and DEC instructions are slow when writing to flags
bool SlowIncDec = false;
/// Processor has AVX-512 PreFetch Instructions
bool HasPFI = false;
/// Processor has AVX-512 Exponential and Reciprocal Instructions
bool HasERI = false;
/// Processor has AVX-512 Conflict Detection Instructions
bool HasCDI = false;
/// Processor has AVX-512 population count Instructions
bool HasVPOPCNTDQ = false;
/// Processor has AVX-512 Doubleword and Quadword instructions
bool HasDQI = false;
/// Processor has AVX-512 Byte and Word instructions
bool HasBWI = false;
/// Processor has AVX-512 Vector Length eXtenstions
bool HasVLX = false;
/// Processor has AVX-512 16 bit floating-point extenstions
bool HasFP16 = false;
/// Processor has PKU extenstions
bool HasPKU = false;
/// Processor has AVX-512 Vector Neural Network Instructions
bool HasVNNI = false;
/// Processor has AVX Vector Neural Network Instructions
bool HasAVXVNNI = false;
/// Processor has AVX-512 bfloat16 floating-point extensions
bool HasBF16 = false;
/// Processor supports ENQCMD instructions
bool HasENQCMD = false;
/// Processor has AVX-512 Bit Algorithms instructions
bool HasBITALG = false;
/// Processor has AVX-512 vp2intersect instructions
bool HasVP2INTERSECT = false;
/// Processor supports CET SHSTK - Control-Flow Enforcement Technology
/// using Shadow Stack
bool HasSHSTK = false;
/// Processor supports Invalidate Process-Context Identifier
bool HasINVPCID = false;
/// Processor has Software Guard Extensions
bool HasSGX = false;
/// Processor supports Flush Cache Line instruction
bool HasCLFLUSHOPT = false;
/// Processor supports Cache Line Write Back instruction
bool HasCLWB = false;
/// Processor supports Write Back No Invalidate instruction
bool HasWBNOINVD = false;
/// Processor support RDPID instruction
bool HasRDPID = false;
/// Processor supports WaitPKG instructions
bool HasWAITPKG = false;
/// Processor supports PCONFIG instruction
bool HasPCONFIG = false;
/// Processor support key locker instructions
bool HasKL = false;
/// Processor support key locker wide instructions
bool HasWIDEKL = false;
/// Processor supports HRESET instruction
bool HasHRESET = false;
/// Processor supports SERIALIZE instruction
bool HasSERIALIZE = false;
/// Processor supports TSXLDTRK instruction
bool HasTSXLDTRK = false;
/// Processor has AMX support
bool HasAMXTILE = false;
bool HasAMXBF16 = false;
bool HasAMXINT8 = false;
/// Processor supports User Level Interrupt instructions
bool HasUINTR = false;
/// Enable SSE4.2 CRC32 instruction (Used when SSE4.2 is supported but
/// function is GPR only)
bool HasCRC32 = false;
/// Processor has a single uop BEXTR implementation.
bool HasFastBEXTR = false;
/// Try harder to combine to horizontal vector ops if they are fast.
bool HasFastHorizontalOps = false;
/// Prefer a left/right scalar logical shifts pair over a shift+and pair.
bool HasFastScalarShiftMasks = false;
/// Prefer a left/right vector logical shifts pair over a shift+and pair.
bool HasFastVectorShiftMasks = false;
/// Prefer a movbe over a single-use load + bswap / single-use bswap + store.
bool HasFastMOVBE = false;
/// Use a retpoline thunk rather than indirect calls to block speculative
/// execution.
bool UseRetpolineIndirectCalls = false;
/// Use a retpoline thunk or remove any indirect branch to block speculative
/// execution.
bool UseRetpolineIndirectBranches = false;
/// Deprecated flag, query `UseRetpolineIndirectCalls` and
/// `UseRetpolineIndirectBranches` instead.
bool DeprecatedUseRetpoline = false;
/// When using a retpoline thunk, call an externally provided thunk rather
/// than emitting one inside the compiler.
bool UseRetpolineExternalThunk = false;
/// Prevent generation of indirect call/branch instructions from memory,
/// and force all indirect call/branch instructions from a register to be
/// preceded by an LFENCE. Also decompose RET instructions into a
/// POP+LFENCE+JMP sequence.
bool UseLVIControlFlowIntegrity = false;
/// Enable Speculative Execution Side Effect Suppression
bool UseSpeculativeExecutionSideEffectSuppression = false;
/// Insert LFENCE instructions to prevent data speculatively injected into
/// loads from being used maliciously.
bool UseLVILoadHardening = false;
/// Use an instruction sequence for taking the address of a global that allows
/// a memory tag in the upper address bits.
bool AllowTaggedGlobals = false;
/// Use software floating point for code generation.
bool UseSoftFloat = false;
/// The minimum alignment known to hold of the stack frame on /// The minimum alignment known to hold of the stack frame on
/// entry to the function and which must be maintained by every function. /// entry to the function and which must be maintained by every function.
Align stackAlignment = Align(4); Align stackAlignment = Align(4);
@ -490,21 +83,6 @@ class X86Subtarget final : public X86GenSubtargetInfo {
// FIXME: this is a known good value for Yonah. How about others? // FIXME: this is a known good value for Yonah. How about others?
unsigned MaxInlineSizeThreshold = 128; unsigned MaxInlineSizeThreshold = 128;
/// Indicates target prefers 128 bit instructions.
bool Prefer128Bit = false;
/// Indicates target prefers 256 bit instructions.
bool Prefer256Bit = false;
/// Indicates target prefers AVX512 mask registers.
bool PreferMaskRegisters = false;
/// Use Silvermont specific arithmetic costs.
bool UseSLMArithCosts = false;
/// Use Goldmont specific floating point div/sqrt costs.
bool UseGLMDivSqrtCosts = false;
/// What processor and OS we're targeting. /// What processor and OS we're targeting.
Triple TargetTriple; Triple TargetTriple;
@ -514,7 +92,6 @@ class X86Subtarget final : public X86GenSubtargetInfo {
std::unique_ptr<RegisterBankInfo> RegBankInfo; std::unique_ptr<RegisterBankInfo> RegBankInfo;
std::unique_ptr<InstructionSelector> InstSelector; std::unique_ptr<InstructionSelector> InstSelector;
private:
/// Override the stack alignment. /// Override the stack alignment.
MaybeAlign StackAlignOverride; MaybeAlign StackAlignOverride;
@ -528,15 +105,6 @@ private:
/// Required vector width from function attribute. /// Required vector width from function attribute.
unsigned RequiredVectorWidth; unsigned RequiredVectorWidth;
/// True if compiling for 64-bit, false for 16-bit or 32-bit.
bool Is64Bit = false;
/// True if compiling for 32-bit, false for 16-bit or 64-bit.
bool Is32Bit = false;
/// True if compiling for 16-bit, false for 32-bit or 64-bit.
bool Is16Bit = false;
X86SelectionDAGInfo TSInfo; X86SelectionDAGInfo TSInfo;
// Ordering here is important. X86InstrInfo initializes X86RegisterInfo which // Ordering here is important. X86InstrInfo initializes X86RegisterInfo which
// X86TargetLowering needs. // X86TargetLowering needs.
@ -602,18 +170,10 @@ private:
void initSubtargetFeatures(StringRef CPU, StringRef TuneCPU, StringRef FS); void initSubtargetFeatures(StringRef CPU, StringRef TuneCPU, StringRef FS);
public: public:
/// Is this x86_64? (disregarding specific ABI / programming model)
bool is64Bit() const {
return Is64Bit;
}
bool is32Bit() const { #define GET_SUBTARGETINFO_MACRO(ATTRIBUTE, DEFAULT, GETTER) \
return Is32Bit; bool GETTER() const { return ATTRIBUTE; }
} #include "X86GenSubtargetInfo.inc"
bool is16Bit() const {
return Is16Bit;
}
/// Is this x86_64 with the ILP32 programming model (x32 ABI)? /// Is this x86_64 with the ILP32 programming model (x32 ABI)?
bool isTarget64BitILP32() const { bool isTarget64BitILP32() const {
@ -628,16 +188,11 @@ public:
PICStyles::Style getPICStyle() const { return PICStyle; } PICStyles::Style getPICStyle() const { return PICStyle; }
void setPICStyle(PICStyles::Style Style) { PICStyle = Style; } void setPICStyle(PICStyles::Style Style) { PICStyle = Style; }
bool hasX87() const { return HasX87; }
bool hasCX8() const { return HasCX8; }
bool hasCX16() const { return HasCX16; }
bool canUseCMPXCHG8B() const { return hasCX8(); } bool canUseCMPXCHG8B() const { return hasCX8(); }
bool canUseCMPXCHG16B() const { bool canUseCMPXCHG16B() const {
// CX16 is just the CPUID bit, instruction requires 64-bit mode too. // CX16 is just the CPUID bit, instruction requires 64-bit mode too.
return hasCX16() && is64Bit(); return hasCX16() && is64Bit();
} }
bool hasNOPL() const { return HasNOPL; }
bool hasCMOV() const { return HasCMOV; }
// SSE codegen depends on cmovs, and all SSE1+ processors support them. // SSE codegen depends on cmovs, and all SSE1+ processors support them.
// All 64-bit processors support cmov. // All 64-bit processors support cmov.
bool canUseCMOV() const { return hasCMOV() || hasSSE1() || is64Bit(); } bool canUseCMOV() const { return hasCMOV() || hasSSE1() || is64Bit(); }
@ -651,44 +206,10 @@ public:
bool hasAVX2() const { return X86SSELevel >= AVX2; } bool hasAVX2() const { return X86SSELevel >= AVX2; }
bool hasAVX512() const { return X86SSELevel >= AVX512; } bool hasAVX512() const { return X86SSELevel >= AVX512; }
bool hasInt256() const { return hasAVX2(); } bool hasInt256() const { return hasAVX2(); }
bool hasSSE4A() const { return HasSSE4A; }
bool hasMMX() const { return X863DNowLevel >= MMX; } bool hasMMX() const { return X863DNowLevel >= MMX; }
bool hasThreeDNow() const { return X863DNowLevel >= ThreeDNow; } bool hasThreeDNow() const { return X863DNowLevel >= ThreeDNow; }
bool hasThreeDNowA() const { return X863DNowLevel >= ThreeDNowA; } bool hasThreeDNowA() const { return X863DNowLevel >= ThreeDNowA; }
bool hasPOPCNT() const { return HasPOPCNT; }
bool hasAES() const { return HasAES; }
bool hasVAES() const { return HasVAES; }
bool hasFXSR() const { return HasFXSR; }
bool hasXSAVE() const { return HasXSAVE; }
bool hasXSAVEOPT() const { return HasXSAVEOPT; }
bool hasXSAVEC() const { return HasXSAVEC; }
bool hasXSAVES() const { return HasXSAVES; }
bool hasPCLMUL() const { return HasPCLMUL; }
bool hasVPCLMULQDQ() const { return HasVPCLMULQDQ; }
bool hasGFNI() const { return HasGFNI; }
// Prefer FMA4 to FMA - its better for commutation/memory folding and
// has equal or better performance on all supported targets.
bool hasFMA() const { return HasFMA; }
bool hasFMA4() const { return HasFMA4; }
bool hasAnyFMA() const { return hasFMA() || hasFMA4(); } bool hasAnyFMA() const { return hasFMA() || hasFMA4(); }
bool hasXOP() const { return HasXOP; }
bool hasTBM() const { return HasTBM; }
bool hasLWP() const { return HasLWP; }
bool hasMOVBE() const { return HasMOVBE; }
bool hasRDRAND() const { return HasRDRAND; }
bool hasF16C() const { return HasF16C; }
bool hasFSGSBase() const { return HasFSGSBase; }
bool hasLZCNT() const { return HasLZCNT; }
bool hasBMI() const { return HasBMI; }
bool hasBMI2() const { return HasBMI2; }
bool hasVBMI() const { return HasVBMI; }
bool hasVBMI2() const { return HasVBMI2; }
bool hasIFMA() const { return HasIFMA; }
bool hasRTM() const { return HasRTM; }
bool hasADX() const { return HasADX; }
bool hasSHA() const { return HasSHA; }
bool hasPRFCHW() const { return HasPRFCHW; }
bool hasPREFETCHWT1() const { return HasPREFETCHWT1; }
bool hasPrefetchW() const { bool hasPrefetchW() const {
// The PREFETCHW instruction was added with 3DNow but later CPUs gave it // The PREFETCHW instruction was added with 3DNow but later CPUs gave it
// its own CPUID bit as part of deprecating 3DNow. Intel eventually added // its own CPUID bit as part of deprecating 3DNow. Intel eventually added
@ -702,94 +223,7 @@ public:
// 3dnow. // 3dnow.
return hasSSE1() || (hasPRFCHW() && !hasThreeDNow()) || hasPREFETCHWT1(); return hasSSE1() || (hasPRFCHW() && !hasThreeDNow()) || hasPREFETCHWT1();
} }
bool hasRDSEED() const { return HasRDSEED; } bool canUseLAHFSAHF() const { return hasLAHFSAHF64() || !is64Bit(); }
bool hasLAHFSAHF() const { return HasLAHFSAHF64; }
bool canUseLAHFSAHF() const { return hasLAHFSAHF() || !is64Bit(); }
bool hasMWAITX() const { return HasMWAITX; }
bool hasCLZERO() const { return HasCLZERO; }
bool hasCLDEMOTE() const { return HasCLDEMOTE; }
bool hasMOVDIRI() const { return HasMOVDIRI; }
bool hasMOVDIR64B() const { return HasMOVDIR64B; }
bool hasPTWRITE() const { return HasPTWRITE; }
bool isSHLDSlow() const { return IsSHLDSlow; }
bool isPMULLDSlow() const { return IsPMULLDSlow; }
bool isPMADDWDSlow() const { return IsPMADDWDSlow; }
bool isUnalignedMem16Slow() const { return IsUnalignedMem16Slow; }
bool isUnalignedMem32Slow() const { return IsUnalignedMem32Slow; }
bool hasSSEUnalignedMem() const { return HasSSEUnalignedMem; }
bool useLeaForSP() const { return UseLeaForSP; }
bool hasPOPCNTFalseDeps() const { return HasPOPCNTFalseDeps; }
bool hasLZCNTFalseDeps() const { return HasLZCNTFalseDeps; }
bool hasSBBDepBreaking() const { return HasSBBDepBreaking; }
bool hasFastVariableCrossLaneShuffle() const {
return HasFastVariableCrossLaneShuffle;
}
bool hasFastVariablePerLaneShuffle() const {
return HasFastVariablePerLaneShuffle;
}
bool insertVZEROUPPER() const { return InsertVZEROUPPER; }
bool hasFastGather() const { return HasFastGather; }
bool hasFastScalarFSQRT() const { return HasFastScalarFSQRT; }
bool hasFastVectorFSQRT() const { return HasFastVectorFSQRT; }
bool hasFastLZCNT() const { return HasFastLZCNT; }
bool hasFastSHLDRotate() const { return HasFastSHLDRotate; }
bool hasFastBEXTR() const { return HasFastBEXTR; }
bool hasFastHorizontalOps() const { return HasFastHorizontalOps; }
bool hasFastScalarShiftMasks() const { return HasFastScalarShiftMasks; }
bool hasFastVectorShiftMasks() const { return HasFastVectorShiftMasks; }
bool hasFastMOVBE() const { return HasFastMOVBE; }
bool hasMacroFusion() const { return HasMacroFusion; }
bool hasBranchFusion() const { return HasBranchFusion; }
bool hasERMSB() const { return HasERMSB; }
bool hasFSRM() const { return HasFSRM; }
bool hasSlowDivide32() const { return HasSlowDivide32; }
bool hasSlowDivide64() const { return HasSlowDivide64; }
bool padShortFunctions() const { return PadShortFunctions; }
bool slowTwoMemOps() const { return SlowTwoMemOps; }
bool leaUsesAG() const { return LeaUsesAG; }
bool slowLEA() const { return SlowLEA; }
bool slow3OpsLEA() const { return Slow3OpsLEA; }
bool slowIncDec() const { return SlowIncDec; }
bool hasCDI() const { return HasCDI; }
bool hasVPOPCNTDQ() const { return HasVPOPCNTDQ; }
bool hasPFI() const { return HasPFI; }
bool hasERI() const { return HasERI; }
bool hasDQI() const { return HasDQI; }
bool hasBWI() const { return HasBWI; }
bool hasVLX() const { return HasVLX; }
bool hasFP16() const { return HasFP16; }
bool hasPKU() const { return HasPKU; }
bool hasVNNI() const { return HasVNNI; }
bool hasBF16() const { return HasBF16; }
bool hasVP2INTERSECT() const { return HasVP2INTERSECT; }
bool hasBITALG() const { return HasBITALG; }
bool hasSHSTK() const { return HasSHSTK; }
bool hasCLFLUSHOPT() const { return HasCLFLUSHOPT; }
bool hasCLWB() const { return HasCLWB; }
bool hasWBNOINVD() const { return HasWBNOINVD; }
bool hasRDPID() const { return HasRDPID; }
bool hasWAITPKG() const { return HasWAITPKG; }
bool hasPCONFIG() const { return HasPCONFIG; }
bool hasSGX() const { return HasSGX; }
bool hasINVPCID() const { return HasINVPCID; }
bool hasENQCMD() const { return HasENQCMD; }
bool hasKL() const { return HasKL; }
bool hasWIDEKL() const { return HasWIDEKL; }
bool hasHRESET() const { return HasHRESET; }
bool hasSERIALIZE() const { return HasSERIALIZE; }
bool hasTSXLDTRK() const { return HasTSXLDTRK; }
bool hasUINTR() const { return HasUINTR; }
bool hasCRC32() const { return HasCRC32; }
bool useRetpolineIndirectCalls() const { return UseRetpolineIndirectCalls; }
bool useRetpolineIndirectBranches() const {
return UseRetpolineIndirectBranches;
}
bool hasAVXVNNI() const { return HasAVXVNNI; }
bool hasAMXTILE() const { return HasAMXTILE; }
bool hasAMXBF16() const { return HasAMXBF16; }
bool hasAMXINT8() const { return HasAMXINT8; }
bool useRetpolineExternalThunk() const { return UseRetpolineExternalThunk; }
// These are generic getters that OR together all of the thunk types // These are generic getters that OR together all of the thunk types
// supported by the subtarget. Therefore useIndirectThunk*() will return true // supported by the subtarget. Therefore useIndirectThunk*() will return true
// if any respective thunk feature is enabled. // if any respective thunk feature is enabled.
@ -800,16 +234,6 @@ public:
return useRetpolineIndirectBranches() || useLVIControlFlowIntegrity(); return useRetpolineIndirectBranches() || useLVIControlFlowIntegrity();
} }
bool preferMaskRegisters() const { return PreferMaskRegisters; }
bool useSLMArithCosts() const { return UseSLMArithCosts; }
bool useGLMDivSqrtCosts() const { return UseGLMDivSqrtCosts; }
bool useLVIControlFlowIntegrity() const { return UseLVIControlFlowIntegrity; }
bool allowTaggedGlobals() const { return AllowTaggedGlobals; }
bool useLVILoadHardening() const { return UseLVILoadHardening; }
bool useSpeculativeExecutionSideEffectSuppression() const {
return UseSpeculativeExecutionSideEffectSuppression;
}
unsigned getPreferVectorWidth() const { return PreferVectorWidth; } unsigned getPreferVectorWidth() const { return PreferVectorWidth; }
unsigned getRequiredVectorWidth() const { return RequiredVectorWidth; } unsigned getRequiredVectorWidth() const { return RequiredVectorWidth; }
@ -836,10 +260,6 @@ public:
bool isXRaySupported() const override { return is64Bit(); } bool isXRaySupported() const override { return is64Bit(); }
/// TODO: to be removed later and replaced with suitable properties
bool isAtom() const { return IsAtom; }
bool useSoftFloat() const { return UseSoftFloat; }
/// Use mfence if we have SSE2 or we're on x86-64 (even if we asked for /// Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
/// no-sse2). There isn't any reason to disable it if the target processor /// no-sse2). There isn't any reason to disable it if the target processor
/// supports it. /// supports it.