forked from OSchip/llvm-project
Revert r233062 ""float2int": Add a new pass to demote from float to int where possible."
This caused PR23008, compiles failing with: "Use still stuck around after Def is destroyed: %.sroa.speculated" Also reverting follow-up r233064. llvm-svn: 233105
This commit is contained in:
parent
45dc94a856
commit
e42c64551a
|
@ -294,7 +294,6 @@ void initializeWinEHPreparePass(PassRegistry&);
|
|||
void initializePlaceBackedgeSafepointsImplPass(PassRegistry&);
|
||||
void initializePlaceSafepointsPass(PassRegistry&);
|
||||
void initializeDwarfEHPreparePass(PassRegistry&);
|
||||
void initializeFloat2IntPass(PassRegistry&);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -169,7 +169,6 @@ namespace {
|
|||
(void) llvm::createRewriteSymbolsPass();
|
||||
(void) llvm::createStraightLineStrengthReducePass();
|
||||
(void) llvm::createMemDerefPrinter();
|
||||
(void) llvm::createFloat2IntPass();
|
||||
|
||||
(void)new llvm::IntervalPartition();
|
||||
(void)new llvm::ScalarEvolution();
|
||||
|
|
|
@ -429,6 +429,7 @@ BasicBlockPass *createLoadCombinePass();
|
|||
|
||||
FunctionPass *createStraightLineStrengthReducePass();
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// PlaceSafepoints - Rewrite any IR calls to gc.statepoints and insert any
|
||||
|
@ -446,12 +447,6 @@ ModulePass *createPlaceSafepointsPass();
|
|||
//
|
||||
FunctionPass *createRewriteStatepointsForGCPass();
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Float2Int - Demote floats to ints where possible.
|
||||
//
|
||||
FunctionPass *createFloat2IntPass();
|
||||
|
||||
} // End llvm namespace
|
||||
|
||||
#endif
|
||||
|
|
|
@ -59,10 +59,6 @@ static cl::opt<bool>
|
|||
RunLoopRerolling("reroll-loops", cl::Hidden,
|
||||
cl::desc("Run the loop rerolling pass"));
|
||||
|
||||
static cl::opt<bool>
|
||||
RunFloat2Int("float-to-int", cl::Hidden, cl::init(true),
|
||||
cl::desc("Run the float2int (float demotion) pass"));
|
||||
|
||||
static cl::opt<bool> RunLoadCombine("combine-loads", cl::init(false),
|
||||
cl::Hidden,
|
||||
cl::desc("Run the load combining pass"));
|
||||
|
@ -311,9 +307,6 @@ void PassManagerBuilder::populateModulePassManager(
|
|||
// we must insert a no-op module pass to reset the pass manager.
|
||||
MPM.add(createBarrierNoopPass());
|
||||
|
||||
if (RunFloat2Int)
|
||||
MPM.add(createFloat2IntPass());
|
||||
|
||||
// Re-rotate loops in all our loop nests. These may have fallout out of
|
||||
// rotated form due to GVN or other transformations, and the vectorizer relies
|
||||
// on the rotated form.
|
||||
|
|
|
@ -9,7 +9,6 @@ add_llvm_library(LLVMScalarOpts
|
|||
DeadStoreElimination.cpp
|
||||
EarlyCSE.cpp
|
||||
FlattenCFGPass.cpp
|
||||
Float2Int.cpp
|
||||
GVN.cpp
|
||||
InductiveRangeCheckElimination.cpp
|
||||
IndVarSimplify.cpp
|
||||
|
|
|
@ -1,536 +0,0 @@
|
|||
//===- Float2Int.cpp - Demote floating point ops to work on integers ------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements the Float2Int pass, which aims to demote floating
|
||||
// point operations to work on integers, where that is losslessly possible.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#define DEBUG_TYPE "float2int"
|
||||
#include "llvm/ADT/APInt.h"
|
||||
#include "llvm/ADT/APSInt.h"
|
||||
#include "llvm/ADT/DenseMap.h"
|
||||
#include "llvm/ADT/EquivalenceClasses.h"
|
||||
#include "llvm/ADT/MapVector.h"
|
||||
#include "llvm/ADT/SmallVector.h"
|
||||
#include "llvm/IR/ConstantRange.h"
|
||||
#include "llvm/IR/Constants.h"
|
||||
#include "llvm/IR/IRBuilder.h"
|
||||
#include "llvm/IR/InstIterator.h"
|
||||
#include "llvm/IR/Instructions.h"
|
||||
#include "llvm/IR/Module.h"
|
||||
#include "llvm/Pass.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
#include "llvm/Transforms/Scalar.h"
|
||||
#include <deque>
|
||||
#include <functional> // For std::function
|
||||
using namespace llvm;
|
||||
|
||||
// The algorithm is simple. Start at instructions that convert from the
|
||||
// float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use
|
||||
// graph, using an equivalence datastructure to unify graphs that interfere.
|
||||
//
|
||||
// Mappable instructions are those with an integer corrollary that, given
|
||||
// integer domain inputs, produce an integer output; fadd, for example.
|
||||
//
|
||||
// If a non-mappable instruction is seen, this entire def-use graph is marked
|
||||
// as non-transformable. If we see an instruction that converts from the
|
||||
// integer domain to FP domain (uitofp,sitofp), we terminate our walk.
|
||||
|
||||
/// The largest integer type worth dealing with.
|
||||
static cl::opt<unsigned>
|
||||
MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden,
|
||||
cl::desc("Max integer bitwidth to consider in float2int"
|
||||
"(default=64)"));
|
||||
|
||||
namespace {
|
||||
struct Float2Int : public FunctionPass {
|
||||
static char ID; // Pass identification, replacement for typeid
|
||||
Float2Int() : FunctionPass(ID) {
|
||||
initializeFloat2IntPass(*PassRegistry::getPassRegistry());
|
||||
}
|
||||
|
||||
bool runOnFunction(Function &F) override;
|
||||
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
||||
AU.setPreservesCFG();
|
||||
}
|
||||
|
||||
void findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots);
|
||||
ConstantRange seen(Instruction *I, ConstantRange R);
|
||||
ConstantRange badRange();
|
||||
ConstantRange unknownRange();
|
||||
ConstantRange validateRange(ConstantRange R);
|
||||
void walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots);
|
||||
void walkForwards();
|
||||
bool validateAndTransform();
|
||||
Value *convert(Instruction *I, Type *ToTy);
|
||||
void cleanup();
|
||||
|
||||
MapVector<Instruction*, ConstantRange > SeenInsts;
|
||||
SmallPtrSet<Instruction*,8> Roots;
|
||||
EquivalenceClasses<Instruction*> ECs;
|
||||
MapVector<Instruction*, Value*> ConvertedInsts;
|
||||
LLVMContext *Ctx;
|
||||
};
|
||||
}
|
||||
|
||||
char Float2Int::ID = 0;
|
||||
INITIALIZE_PASS(Float2Int, "float2int", "Float to int", false, false)
|
||||
|
||||
// Given a FCmp predicate, return a matching ICmp predicate if one
|
||||
// exists, otherwise return BAD_ICMP_PREDICATE.
|
||||
static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) {
|
||||
switch (P) {
|
||||
case CmpInst::FCMP_OEQ:
|
||||
case CmpInst::FCMP_UEQ:
|
||||
return CmpInst::ICMP_EQ;
|
||||
case CmpInst::FCMP_OGT:
|
||||
case CmpInst::FCMP_UGT:
|
||||
return CmpInst::ICMP_SGT;
|
||||
case CmpInst::FCMP_OGE:
|
||||
case CmpInst::FCMP_UGE:
|
||||
return CmpInst::ICMP_SGE;
|
||||
case CmpInst::FCMP_OLT:
|
||||
case CmpInst::FCMP_ULT:
|
||||
return CmpInst::ICMP_SLT;
|
||||
case CmpInst::FCMP_OLE:
|
||||
case CmpInst::FCMP_ULE:
|
||||
return CmpInst::ICMP_SLE;
|
||||
case CmpInst::FCMP_ONE:
|
||||
case CmpInst::FCMP_UNE:
|
||||
return CmpInst::ICMP_NE;
|
||||
default:
|
||||
return CmpInst::BAD_ICMP_PREDICATE;
|
||||
}
|
||||
}
|
||||
|
||||
// Given a floating point binary operator, return the matching
|
||||
// integer version.
|
||||
static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) {
|
||||
switch (Opcode) {
|
||||
default: llvm_unreachable("Unhandled opcode!");
|
||||
case Instruction::FAdd: return Instruction::Add;
|
||||
case Instruction::FSub: return Instruction::Sub;
|
||||
case Instruction::FMul: return Instruction::Mul;
|
||||
}
|
||||
}
|
||||
|
||||
// Find the roots - instructions that convert from the FP domain to
|
||||
// integer domain.
|
||||
void Float2Int::findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots) {
|
||||
for (auto &I : inst_range(F)) {
|
||||
switch (I.getOpcode()) {
|
||||
default: break;
|
||||
case Instruction::FPToUI:
|
||||
case Instruction::FPToSI:
|
||||
Roots.insert(&I);
|
||||
break;
|
||||
case Instruction::FCmp:
|
||||
if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) !=
|
||||
CmpInst::BAD_ICMP_PREDICATE)
|
||||
Roots.insert(&I);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Helper - mark I as having been traversed, having range R.
|
||||
ConstantRange Float2Int::seen(Instruction *I, ConstantRange R) {
|
||||
DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n");
|
||||
if (SeenInsts.find(I) != SeenInsts.end())
|
||||
SeenInsts.find(I)->second = R;
|
||||
else
|
||||
SeenInsts.insert(std::make_pair(I, R));
|
||||
return R;
|
||||
}
|
||||
|
||||
// Helper - get a range representing a poison value.
|
||||
ConstantRange Float2Int::badRange() {
|
||||
return ConstantRange(MaxIntegerBW + 1, true);
|
||||
}
|
||||
ConstantRange Float2Int::unknownRange() {
|
||||
return ConstantRange(MaxIntegerBW + 1, false);
|
||||
}
|
||||
ConstantRange Float2Int::validateRange(ConstantRange R) {
|
||||
if (R.getBitWidth() > MaxIntegerBW + 1)
|
||||
return badRange();
|
||||
return R;
|
||||
}
|
||||
|
||||
// The most obvious way to structure the search is a depth-first, eager
|
||||
// search from each root. However, that require direct recursion and so
|
||||
// can only handle small instruction sequences. Instead, we split the search
|
||||
// up into two phases:
|
||||
// - walkBackwards: A breadth-first walk of the use-def graph starting from
|
||||
// the roots. Populate "SeenInsts" with interesting
|
||||
// instructions and poison values if they're obvious and
|
||||
// cheap to compute. Calculate the equivalance set structure
|
||||
// while we're here too.
|
||||
// - walkForwards: Iterate over SeenInsts in reverse order, so we visit
|
||||
// defs before their uses. Calculate the real range info.
|
||||
|
||||
// Breadth-first walk of the use-def graph; determine the set of nodes
|
||||
// we care about and eagerly determine if some of them are poisonous.
|
||||
void Float2Int::walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots) {
|
||||
std::deque<Instruction*> Worklist(Roots.begin(), Roots.end());
|
||||
while (!Worklist.empty()) {
|
||||
Instruction *I = Worklist.back();
|
||||
Worklist.pop_back();
|
||||
|
||||
if (SeenInsts.find(I) != SeenInsts.end())
|
||||
// Seen already.
|
||||
continue;
|
||||
|
||||
switch (I->getOpcode()) {
|
||||
// FIXME: Handle select and phi nodes.
|
||||
default:
|
||||
// Path terminated uncleanly.
|
||||
seen(I, badRange());
|
||||
continue;
|
||||
|
||||
case Instruction::UIToFP: {
|
||||
// Path terminated cleanly.
|
||||
unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
|
||||
APInt Min = APInt::getMinValue(BW).zextOrSelf(MaxIntegerBW+1);
|
||||
APInt Max = APInt::getMaxValue(BW).zextOrSelf(MaxIntegerBW+1);
|
||||
seen(I, validateRange(ConstantRange(Min, Max)));
|
||||
continue;
|
||||
}
|
||||
|
||||
case Instruction::SIToFP: {
|
||||
// Path terminated cleanly.
|
||||
unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
|
||||
APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(MaxIntegerBW+1);
|
||||
APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(MaxIntegerBW+1);
|
||||
seen(I, validateRange(ConstantRange(SMin, SMax)));
|
||||
continue;
|
||||
}
|
||||
|
||||
case Instruction::FAdd:
|
||||
case Instruction::FSub:
|
||||
case Instruction::FMul:
|
||||
case Instruction::FPToUI:
|
||||
case Instruction::FPToSI:
|
||||
case Instruction::FCmp:
|
||||
break;
|
||||
}
|
||||
|
||||
seen(I, unknownRange());
|
||||
for (Value *O : I->operands()) {
|
||||
if (Instruction *OI = dyn_cast<Instruction>(O)) {
|
||||
// Unify def-use chains if they interfere.
|
||||
ECs.unionSets(I, OI);
|
||||
Worklist.push_back(OI);
|
||||
} else if (!isa<ConstantFP>(O)) {
|
||||
// Not an instruction or ConstantFP? we can't do anything.
|
||||
seen(I, badRange());
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Walk forwards down the list of seen instructions, so we visit defs before
|
||||
// uses.
|
||||
void Float2Int::walkForwards() {
|
||||
for (auto It = SeenInsts.rbegin(), E = SeenInsts.rend(); It != E; ++It) {
|
||||
if (It->second != unknownRange())
|
||||
continue;
|
||||
|
||||
Instruction *I = It->first;
|
||||
std::function<ConstantRange(ArrayRef<ConstantRange>)> Op;
|
||||
switch (I->getOpcode()) {
|
||||
// FIXME: Handle select and phi nodes.
|
||||
default:
|
||||
case Instruction::UIToFP:
|
||||
case Instruction::SIToFP:
|
||||
llvm_unreachable("Should have been handled in walkForwards!");
|
||||
|
||||
case Instruction::FAdd:
|
||||
Op = [](ArrayRef<ConstantRange> Ops) {
|
||||
assert(Ops.size() == 2 && "FAdd is a binary operator!");
|
||||
return Ops[0].add(Ops[1]);
|
||||
};
|
||||
break;
|
||||
|
||||
case Instruction::FSub:
|
||||
Op = [](ArrayRef<ConstantRange> Ops) {
|
||||
assert(Ops.size() == 2 && "FSub is a binary operator!");
|
||||
return Ops[0].sub(Ops[1]);
|
||||
};
|
||||
break;
|
||||
|
||||
case Instruction::FMul:
|
||||
Op = [](ArrayRef<ConstantRange> Ops) {
|
||||
assert(Ops.size() == 2 && "FMul is a binary operator!");
|
||||
return Ops[0].multiply(Ops[1]);
|
||||
};
|
||||
break;
|
||||
|
||||
//
|
||||
// Root-only instructions - we'll only see these if they're the
|
||||
// first node in a walk.
|
||||
//
|
||||
case Instruction::FPToUI:
|
||||
case Instruction::FPToSI:
|
||||
Op = [](ArrayRef<ConstantRange> Ops) {
|
||||
assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!");
|
||||
return Ops[0];
|
||||
};
|
||||
break;
|
||||
|
||||
case Instruction::FCmp:
|
||||
Op = [](ArrayRef<ConstantRange> Ops) {
|
||||
assert(Ops.size() == 2 && "FCmp is a binary operator!");
|
||||
return Ops[0].unionWith(Ops[1]);
|
||||
};
|
||||
break;
|
||||
}
|
||||
|
||||
bool Abort = false;
|
||||
SmallVector<ConstantRange,4> OpRanges;
|
||||
for (Value *O : I->operands()) {
|
||||
if (Instruction *OI = dyn_cast<Instruction>(O)) {
|
||||
assert(SeenInsts.find(OI) != SeenInsts.end() &&
|
||||
"def not seen before use!");
|
||||
OpRanges.push_back(SeenInsts.find(OI)->second);
|
||||
} else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) {
|
||||
// Work out if the floating point number can be losslessly represented
|
||||
// as an integer.
|
||||
// APFloat::convertToInteger(&Exact) purports to do what we want, but
|
||||
// the exactness can be too precise. For example, negative zero can
|
||||
// never be exactly converted to an integer.
|
||||
//
|
||||
// Instead, we ask APFloat to round itself to an integral value - this
|
||||
// preserves sign-of-zero - then compare the result with the original.
|
||||
//
|
||||
APFloat F = CF->getValueAPF();
|
||||
|
||||
// First, weed out obviously incorrect values. Non-finite numbers
|
||||
// can't be represented and neither can negative zero, unless
|
||||
// we're in fast math mode.
|
||||
if (!F.isFinite() ||
|
||||
(F.isZero() && F.isNegative() && isa<FPMathOperator>(I) &&
|
||||
!I->hasNoSignedZeros())) {
|
||||
seen(I, badRange());
|
||||
Abort = true;
|
||||
break;
|
||||
}
|
||||
|
||||
APFloat NewF = F;
|
||||
auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven);
|
||||
if (Res != APFloat::opOK || NewF.compare(F) != APFloat::cmpEqual) {
|
||||
seen(I, badRange());
|
||||
Abort = true;
|
||||
break;
|
||||
}
|
||||
// OK, it's representable. Now get it.
|
||||
APSInt Int(MaxIntegerBW+1, false);
|
||||
bool Exact;
|
||||
CF->getValueAPF().convertToInteger(Int,
|
||||
APFloat::rmNearestTiesToEven,
|
||||
&Exact);
|
||||
OpRanges.push_back(ConstantRange(Int));
|
||||
} else {
|
||||
llvm_unreachable("Should have already marked this as badRange!");
|
||||
}
|
||||
}
|
||||
|
||||
// Reduce the operands' ranges to a single range and return.
|
||||
if (!Abort)
|
||||
seen(I, Op(OpRanges));
|
||||
}
|
||||
}
|
||||
|
||||
// If there is a valid transform to be done, do it.
|
||||
bool Float2Int::validateAndTransform() {
|
||||
bool MadeChange = false;
|
||||
|
||||
// Iterate over every disjoint partition of the def-use graph.
|
||||
for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) {
|
||||
ConstantRange R(MaxIntegerBW + 1, false);
|
||||
bool Fail = false;
|
||||
Type *ConvertedToTy = nullptr;
|
||||
|
||||
// For every member of the partition, union all the ranges together.
|
||||
for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
|
||||
MI != ME; ++MI) {
|
||||
Instruction *I = *MI;
|
||||
auto SeenI = SeenInsts.find(I);
|
||||
assert (SeenI != SeenInsts.end() && "Didn't see this instruction?");
|
||||
|
||||
R = R.unionWith(SeenI->second);
|
||||
// We need to ensure I has no users that have not been seen.
|
||||
// If it does, transformation would be illegal.
|
||||
//
|
||||
// Don't count the roots, as they terminate the graphs.
|
||||
if (Roots.count(I) == 0) {
|
||||
// Set the type of the conversion while we're here.
|
||||
if (!ConvertedToTy)
|
||||
ConvertedToTy = I->getType();
|
||||
for (User *U : I->users()) {
|
||||
Instruction *UI = dyn_cast<Instruction>(U);
|
||||
if (!UI || SeenInsts.find(UI) == SeenInsts.end()) {
|
||||
DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n");
|
||||
Fail = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (Fail)
|
||||
break;
|
||||
}
|
||||
|
||||
// If the set was empty, or we failed, or the range is poisonous,
|
||||
// bail out.
|
||||
if (ECs.member_begin(It) == ECs.member_end() || Fail ||
|
||||
R.isFullSet() || R.isSignWrappedSet())
|
||||
continue;
|
||||
assert(ConvertedToTy && "Must have set the convertedtoty by this point!");
|
||||
|
||||
// The number of bits required is the maximum of the upper and
|
||||
// lower limits, plus one so it can be signed.
|
||||
unsigned MinBW = std::max(R.getLower().getMinSignedBits(),
|
||||
R.getUpper().getMinSignedBits()) + 1;
|
||||
DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n");
|
||||
|
||||
// If we've run off the realms of the exactly representable integers,
|
||||
// the floating point result will differ from an integer approximation.
|
||||
|
||||
// Do we need more bits than are in the mantissa of the type we converted
|
||||
// to? semanticsPrecision returns the number of mantissa bits plus one
|
||||
// for the sign bit.
|
||||
unsigned MaxRepresentableBits
|
||||
= APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1;
|
||||
if (MinBW > MaxRepresentableBits) {
|
||||
DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n");
|
||||
continue;
|
||||
}
|
||||
if (MinBW > 64) {
|
||||
DEBUG(dbgs() << "F2I: Value requires more than 64 bits to represent!\n");
|
||||
continue;
|
||||
}
|
||||
|
||||
// OK, R is known to be representable. Now pick a type for it.
|
||||
// FIXME: Pick the smallest legal type that will fit.
|
||||
Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx);
|
||||
|
||||
for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
|
||||
MI != ME; ++MI)
|
||||
convert(*MI, Ty);
|
||||
MadeChange = true;
|
||||
}
|
||||
|
||||
return MadeChange;
|
||||
}
|
||||
|
||||
Value *Float2Int::convert(Instruction *I, Type *ToTy) {
|
||||
if (ConvertedInsts.find(I) != ConvertedInsts.end())
|
||||
// Already converted this instruction.
|
||||
return ConvertedInsts[I];
|
||||
|
||||
SmallVector<Value*,4> NewOperands;
|
||||
for (Value *V : I->operands()) {
|
||||
// Don't recurse if we're an instruction that terminates the path.
|
||||
if (I->getOpcode() == Instruction::UIToFP ||
|
||||
I->getOpcode() == Instruction::SIToFP) {
|
||||
NewOperands.push_back(V);
|
||||
} else if (Instruction *VI = dyn_cast<Instruction>(V)) {
|
||||
NewOperands.push_back(convert(VI, ToTy));
|
||||
} else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
|
||||
APSInt Val(ToTy->getPrimitiveSizeInBits(), true);
|
||||
bool Exact;
|
||||
CF->getValueAPF().convertToInteger(Val,
|
||||
APFloat::rmNearestTiesToEven,
|
||||
&Exact);
|
||||
NewOperands.push_back(ConstantInt::get(ToTy, Val));
|
||||
} else {
|
||||
llvm_unreachable("Unhandled operand type?");
|
||||
}
|
||||
}
|
||||
|
||||
// Now create a new instruction.
|
||||
IRBuilder<> IRB(I);
|
||||
Value *NewV = nullptr;
|
||||
switch (I->getOpcode()) {
|
||||
default: llvm_unreachable("Unhandled instruction!");
|
||||
|
||||
case Instruction::FPToUI:
|
||||
NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType());
|
||||
break;
|
||||
|
||||
case Instruction::FPToSI:
|
||||
NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType());
|
||||
break;
|
||||
|
||||
case Instruction::FCmp: {
|
||||
CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate());
|
||||
assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!");
|
||||
NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName());
|
||||
break;
|
||||
}
|
||||
|
||||
case Instruction::UIToFP:
|
||||
NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy);
|
||||
break;
|
||||
|
||||
case Instruction::SIToFP:
|
||||
NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy);
|
||||
break;
|
||||
|
||||
case Instruction::FAdd:
|
||||
case Instruction::FSub:
|
||||
case Instruction::FMul:
|
||||
NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()),
|
||||
NewOperands[0], NewOperands[1],
|
||||
I->getName());
|
||||
break;
|
||||
}
|
||||
|
||||
// If we're a root instruction, RAUW.
|
||||
if (Roots.count(I))
|
||||
I->replaceAllUsesWith(NewV);
|
||||
|
||||
ConvertedInsts[I] = NewV;
|
||||
return NewV;
|
||||
}
|
||||
|
||||
// Perform dead code elimination on the instructions we just modified.
|
||||
void Float2Int::cleanup() {
|
||||
for (auto I = ConvertedInsts.rbegin(), E = ConvertedInsts.rend();
|
||||
I != E; ++I)
|
||||
I->first->eraseFromParent();
|
||||
}
|
||||
|
||||
bool Float2Int::runOnFunction(Function &F) {
|
||||
DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n");
|
||||
// Clear out all state.
|
||||
ECs = EquivalenceClasses<Instruction*>();
|
||||
SeenInsts.clear();
|
||||
ConvertedInsts.clear();
|
||||
Roots.clear();
|
||||
|
||||
Ctx = &F.getParent()->getContext();
|
||||
|
||||
findRoots(F, Roots);
|
||||
|
||||
walkBackwards(Roots);
|
||||
walkForwards();
|
||||
|
||||
bool Modified = validateAndTransform();
|
||||
if (Modified)
|
||||
cleanup();
|
||||
return Modified;
|
||||
}
|
||||
|
||||
FunctionPass *llvm::createFloat2IntPass() {
|
||||
return new Float2Int();
|
||||
}
|
||||
|
|
@ -77,7 +77,6 @@ void llvm::initializeScalarOpts(PassRegistry &Registry) {
|
|||
initializeLoadCombinePass(Registry);
|
||||
initializePlaceBackedgeSafepointsImplPass(Registry);
|
||||
initializePlaceSafepointsPass(Registry);
|
||||
initializeFloat2IntPass(Registry);
|
||||
}
|
||||
|
||||
void LLVMInitializeScalarOpts(LLVMPassRegistryRef R) {
|
||||
|
|
|
@ -1,227 +0,0 @@
|
|||
; RUN: opt < %s -float2int -S | FileCheck %s
|
||||
|
||||
;
|
||||
; Positive tests
|
||||
;
|
||||
|
||||
; CHECK-LABEL: @simple1
|
||||
; CHECK: %1 = zext i8 %a to i32
|
||||
; CHECK: %2 = add i32 %1, 1
|
||||
; CHECK: %3 = trunc i32 %2 to i16
|
||||
; CHECK: ret i16 %3
|
||||
define i16 @simple1(i8 %a) {
|
||||
%1 = uitofp i8 %a to float
|
||||
%2 = fadd float %1, 1.0
|
||||
%3 = fptoui float %2 to i16
|
||||
ret i16 %3
|
||||
}
|
||||
|
||||
; CHECK-LABEL: @simple2
|
||||
; CHECK: %1 = zext i8 %a to i32
|
||||
; CHECK: %2 = sub i32 %1, 1
|
||||
; CHECK: %3 = trunc i32 %2 to i8
|
||||
; CHECK: ret i8 %3
|
||||
define i8 @simple2(i8 %a) {
|
||||
%1 = uitofp i8 %a to float
|
||||
%2 = fsub float %1, 1.0
|
||||
%3 = fptoui float %2 to i8
|
||||
ret i8 %3
|
||||
}
|
||||
|
||||
; CHECK-LABEL: @simple3
|
||||
; CHECK: %1 = zext i8 %a to i32
|
||||
; CHECK: %2 = sub i32 %1, 1
|
||||
; CHECK: ret i32 %2
|
||||
define i32 @simple3(i8 %a) {
|
||||
%1 = uitofp i8 %a to float
|
||||
%2 = fsub float %1, 1.0
|
||||
%3 = fptoui float %2 to i32
|
||||
ret i32 %3
|
||||
}
|
||||
|
||||
; CHECK-LABEL: @cmp
|
||||
; CHECK: %1 = zext i8 %a to i32
|
||||
; CHECK: %2 = zext i8 %b to i32
|
||||
; CHECK: %3 = icmp slt i32 %1, %2
|
||||
; CHECK: ret i1 %3
|
||||
define i1 @cmp(i8 %a, i8 %b) {
|
||||
%1 = uitofp i8 %a to float
|
||||
%2 = uitofp i8 %b to float
|
||||
%3 = fcmp ult float %1, %2
|
||||
ret i1 %3
|
||||
}
|
||||
|
||||
; CHECK-LABEL: @simple4
|
||||
; CHECK: %1 = zext i32 %a to i64
|
||||
; CHECK: %2 = add i64 %1, 1
|
||||
; CHECK: %3 = trunc i64 %2 to i32
|
||||
; CHECK: ret i32 %3
|
||||
define i32 @simple4(i32 %a) {
|
||||
%1 = uitofp i32 %a to double
|
||||
%2 = fadd double %1, 1.0
|
||||
%3 = fptoui double %2 to i32
|
||||
ret i32 %3
|
||||
}
|
||||
|
||||
; CHECK-LABEL: @simple5
|
||||
; CHECK: %1 = zext i8 %a to i32
|
||||
; CHECK: %2 = zext i8 %b to i32
|
||||
; CHECK: %3 = add i32 %1, 1
|
||||
; CHECK: %4 = mul i32 %3, %2
|
||||
; CHECK: ret i32 %4
|
||||
define i32 @simple5(i8 %a, i8 %b) {
|
||||
%1 = uitofp i8 %a to float
|
||||
%2 = uitofp i8 %b to float
|
||||
%3 = fadd float %1, 1.0
|
||||
%4 = fmul float %3, %2
|
||||
%5 = fptoui float %4 to i32
|
||||
ret i32 %5
|
||||
}
|
||||
|
||||
; The two chains don't interact - failure of one shouldn't
|
||||
; cause failure of the other.
|
||||
|
||||
; CHECK-LABEL: @multi1
|
||||
; CHECK: %1 = zext i8 %a to i32
|
||||
; CHECK: %2 = zext i8 %b to i32
|
||||
; CHECK: %fc = uitofp i8 %c to float
|
||||
; CHECK: %x1 = add i32 %1, %2
|
||||
; CHECK: %z = fadd float %fc, %d
|
||||
; CHECK: %w = fptoui float %z to i32
|
||||
; CHECK: %r = add i32 %x1, %w
|
||||
; CHECK: ret i32 %r
|
||||
define i32 @multi1(i8 %a, i8 %b, i8 %c, float %d) {
|
||||
%fa = uitofp i8 %a to float
|
||||
%fb = uitofp i8 %b to float
|
||||
%fc = uitofp i8 %c to float
|
||||
%x = fadd float %fa, %fb
|
||||
%y = fptoui float %x to i32
|
||||
%z = fadd float %fc, %d
|
||||
%w = fptoui float %z to i32
|
||||
%r = add i32 %y, %w
|
||||
ret i32 %r
|
||||
}
|
||||
|
||||
; CHECK-LABEL: @simple_negzero
|
||||
; CHECK: %1 = zext i8 %a to i32
|
||||
; CHECK: %2 = add i32 %1, 0
|
||||
; CHECK: %3 = trunc i32 %2 to i16
|
||||
; CHECK: ret i16 %3
|
||||
define i16 @simple_negzero(i8 %a) {
|
||||
%1 = uitofp i8 %a to float
|
||||
%2 = fadd fast float %1, -0.0
|
||||
%3 = fptoui float %2 to i16
|
||||
ret i16 %3
|
||||
}
|
||||
|
||||
;
|
||||
; Negative tests
|
||||
;
|
||||
|
||||
; CHECK-LABEL: @neg_multi1
|
||||
; CHECK: %fa = uitofp i8 %a to float
|
||||
; CHECK: %fc = uitofp i8 %c to float
|
||||
; CHECK: %x = fadd float %fa, %fc
|
||||
; CHECK: %y = fptoui float %x to i32
|
||||
; CHECK: %z = fadd float %fc, %d
|
||||
; CHECK: %w = fptoui float %z to i32
|
||||
; CHECK: %r = add i32 %y, %w
|
||||
; CHECK: ret i32 %r
|
||||
; The two chains intersect, which means because one fails, no
|
||||
; transform can occur.
|
||||
define i32 @neg_multi1(i8 %a, i8 %b, i8 %c, float %d) {
|
||||
%fa = uitofp i8 %a to float
|
||||
%fc = uitofp i8 %c to float
|
||||
%x = fadd float %fa, %fc
|
||||
%y = fptoui float %x to i32
|
||||
%z = fadd float %fc, %d
|
||||
%w = fptoui float %z to i32
|
||||
%r = add i32 %y, %w
|
||||
ret i32 %r
|
||||
}
|
||||
|
||||
; CHECK-LABEL: @neg_muld
|
||||
; CHECK: %fa = uitofp i32 %a to double
|
||||
; CHECK: %fb = uitofp i32 %b to double
|
||||
; CHECK: %mul = fmul double %fa, %fb
|
||||
; CHECK: %r = fptoui double %mul to i64
|
||||
; CHECK: ret i64 %r
|
||||
; The i32 * i32 = i64, which has 64 bits, which is greater than the 52 bits
|
||||
; that can be exactly represented in a double.
|
||||
define i64 @neg_muld(i32 %a, i32 %b) {
|
||||
%fa = uitofp i32 %a to double
|
||||
%fb = uitofp i32 %b to double
|
||||
%mul = fmul double %fa, %fb
|
||||
%r = fptoui double %mul to i64
|
||||
ret i64 %r
|
||||
}
|
||||
|
||||
; CHECK-LABEL: @neg_mulf
|
||||
; CHECK: %fa = uitofp i16 %a to float
|
||||
; CHECK: %fb = uitofp i16 %b to float
|
||||
; CHECK: %mul = fmul float %fa, %fb
|
||||
; CHECK: %r = fptoui float %mul to i32
|
||||
; CHECK: ret i32 %r
|
||||
; The i16 * i16 = i32, which can't be represented in a float, but can in a
|
||||
; double. This should fail, as the written code uses floats, not doubles so
|
||||
; the original result may be inaccurate.
|
||||
define i32 @neg_mulf(i16 %a, i16 %b) {
|
||||
%fa = uitofp i16 %a to float
|
||||
%fb = uitofp i16 %b to float
|
||||
%mul = fmul float %fa, %fb
|
||||
%r = fptoui float %mul to i32
|
||||
ret i32 %r
|
||||
}
|
||||
|
||||
; CHECK-LABEL: @neg_cmp
|
||||
; CHECK: %1 = uitofp i8 %a to float
|
||||
; CHECK: %2 = uitofp i8 %b to float
|
||||
; CHECK: %3 = fcmp false float %1, %2
|
||||
; CHECK: ret i1 %3
|
||||
; "false" doesn't have an icmp equivalent.
|
||||
define i1 @neg_cmp(i8 %a, i8 %b) {
|
||||
%1 = uitofp i8 %a to float
|
||||
%2 = uitofp i8 %b to float
|
||||
%3 = fcmp false float %1, %2
|
||||
ret i1 %3
|
||||
}
|
||||
|
||||
; CHECK-LABEL: @neg_div
|
||||
; CHECK: %1 = uitofp i8 %a to float
|
||||
; CHECK: %2 = fdiv float %1, 1.0
|
||||
; CHECK: %3 = fptoui float %2 to i16
|
||||
; CHECK: ret i16 %3
|
||||
; Division isn't a supported operator.
|
||||
define i16 @neg_div(i8 %a) {
|
||||
%1 = uitofp i8 %a to float
|
||||
%2 = fdiv float %1, 1.0
|
||||
%3 = fptoui float %2 to i16
|
||||
ret i16 %3
|
||||
}
|
||||
|
||||
; CHECK-LABEL: @neg_remainder
|
||||
; CHECK: %1 = uitofp i8 %a to float
|
||||
; CHECK: %2 = fadd float %1, 1.2
|
||||
; CHECK: %3 = fptoui float %2 to i16
|
||||
; CHECK: ret i16 %3
|
||||
; 1.2 is not an integer.
|
||||
define i16 @neg_remainder(i8 %a) {
|
||||
%1 = uitofp i8 %a to float
|
||||
%2 = fadd float %1, 1.25
|
||||
%3 = fptoui float %2 to i16
|
||||
ret i16 %3
|
||||
}
|
||||
|
||||
; CHECK-LABEL: @neg_toolarge
|
||||
; CHECK: %1 = uitofp i80 %a to fp128
|
||||
; CHECK: %2 = fadd fp128 %1, %1
|
||||
; CHECK: %3 = fptoui fp128 %2 to i80
|
||||
; CHECK: ret i80 %3
|
||||
; i80 > i64, which is the largest bitwidth handleable by default.
|
||||
define i80 @neg_toolarge(i80 %a) {
|
||||
%1 = uitofp i80 %a to fp128
|
||||
%2 = fadd fp128 %1, %1
|
||||
%3 = fptoui fp128 %2 to i80
|
||||
ret i80 %3
|
||||
}
|
||||
|
|
@ -1,16 +0,0 @@
|
|||
; RUN: opt < %s -float2int -float2int-max-integer-bw=256 -S | FileCheck %s
|
||||
|
||||
; CHECK-LABEL: @neg_toolarge
|
||||
; CHECK: %1 = uitofp i80 %a to fp128
|
||||
; CHECK: %2 = fadd fp128 %1, %1
|
||||
; CHECK: %3 = fptoui fp128 %2 to i80
|
||||
; CHECK: ret i80 %3
|
||||
; fp128 has a 112-bit mantissa, which can hold an i80. But we only support
|
||||
; up to i64, so it should fail (even though the max integer bitwidth is 256).
|
||||
define i80 @neg_toolarge(i80 %a) {
|
||||
%1 = uitofp i80 %a to fp128
|
||||
%2 = fadd fp128 %1, %1
|
||||
%3 = fptoui fp128 %2 to i80
|
||||
ret i80 %3
|
||||
}
|
||||
|
Loading…
Reference in New Issue