forked from OSchip/llvm-project
[rand.dist.samp.pconst] plus some bug fixes in the tests of the other distributions
llvm-svn: 104224
This commit is contained in:
parent
7c3e230cd1
commit
e302eab415
|
@ -371,7 +371,7 @@ typedef subtract_with_carry_engine<uint_fast64_t, 48, 5, 12> ranlux48_base;
|
|||
typedef discard_block_engine<ranlux24_base, 223, 23> ranlux24;
|
||||
typedef discard_block_engine<ranlux48_base, 389, 11> ranlux48;
|
||||
typedef shuffle_order_engine<minstd_rand0, 256> knuth_b;
|
||||
typedef minstd_rand0 default_random_engine;
|
||||
typedef minstd_rand default_random_engine;
|
||||
|
||||
// Generators
|
||||
|
||||
|
@ -1477,7 +1477,79 @@ public:
|
|||
};
|
||||
|
||||
template<class RealType = double>
|
||||
class piecewise_constant_distribution;
|
||||
class piecewise_constant_distribution
|
||||
{
|
||||
// types
|
||||
typedef RealType result_type;
|
||||
|
||||
class param_type
|
||||
{
|
||||
public:
|
||||
typedef piecewise_constant_distribution distribution_type;
|
||||
|
||||
param_type();
|
||||
template<class InputIteratorB, class InputIteratorW>
|
||||
param_type(InputIteratorB firstB, InputIteratorB lastB,
|
||||
InputIteratorW firstW);
|
||||
template<class UnaryOperation>
|
||||
param_type(initializer_list<result_type> bl, UnaryOperation fw);
|
||||
template<class UnaryOperation>
|
||||
param_type(size_t nw, result_type xmin, result_type xmax,
|
||||
UnaryOperation fw);
|
||||
|
||||
vector<result_type> intervals() const;
|
||||
vector<double> densities() const;
|
||||
|
||||
friend bool operator==(const param_type& x, const param_type& y);
|
||||
friend bool operator!=(const param_type& x, const param_type& y);
|
||||
};
|
||||
|
||||
// constructor and reset functions
|
||||
piecewise_constant_distribution();
|
||||
template<class InputIteratorB, class InputIteratorW>
|
||||
piecewise_constant_distribution(InputIteratorB firstB,
|
||||
InputIteratorB lastB,
|
||||
InputIteratorW firstW);
|
||||
template<class UnaryOperation>
|
||||
piecewise_constant_distribution(initializer_list<result_type> bl,
|
||||
UnaryOperation fw);
|
||||
template<class UnaryOperation>
|
||||
piecewise_constant_distribution(size_t nw, result_type xmin,
|
||||
result_type xmax, UnaryOperation fw);
|
||||
explicit piecewise_constant_distribution(const param_type& parm);
|
||||
void reset();
|
||||
|
||||
// generating functions
|
||||
template<class URNG> result_type operator()(URNG& g);
|
||||
template<class URNG> result_type operator()(URNG& g, const param_type& parm);
|
||||
|
||||
// property functions
|
||||
vector<result_type> intervals() const;
|
||||
vector<double> densities() const;
|
||||
|
||||
param_type param() const;
|
||||
void param(const param_type& parm);
|
||||
|
||||
result_type min() const;
|
||||
result_type max() const;
|
||||
|
||||
friend bool operator==(const piecewise_constant_distribution& x,
|
||||
const piecewise_constant_distribution& y);
|
||||
friend bool operator!=(const piecewise_constant_distribution& x,
|
||||
const piecewise_constant_distribution& y);
|
||||
|
||||
template <class charT, class traits>
|
||||
friend
|
||||
basic_ostream<charT, traits>&
|
||||
operator<<(basic_ostream<charT, traits>& os,
|
||||
const piecewise_constant_distribution& x);
|
||||
|
||||
template <class charT, class traits>
|
||||
friend
|
||||
basic_istream<charT, traits>&
|
||||
operator>>(basic_istream<charT, traits>& is,
|
||||
piecewise_constant_distribution& x);
|
||||
};
|
||||
|
||||
template<class RealType = double>
|
||||
class piecewise_linear_distribution;
|
||||
|
@ -1825,9 +1897,9 @@ operator>>(basic_istream<_CharT, _Traits>& __is,
|
|||
|
||||
typedef linear_congruential_engine<uint_fast32_t, 16807, 0, 2147483647>
|
||||
minstd_rand0;
|
||||
typedef minstd_rand0 default_random_engine;
|
||||
typedef linear_congruential_engine<uint_fast32_t, 48271, 0, 2147483647>
|
||||
minstd_rand;
|
||||
typedef minstd_rand default_random_engine;
|
||||
// mersenne_twister_engine
|
||||
|
||||
template <class _UIntType, size_t __w, size_t __n, size_t __m, size_t __r,
|
||||
|
@ -3655,7 +3727,8 @@ inline
|
|||
bernoulli_distribution::result_type
|
||||
bernoulli_distribution::operator()(_URNG& __g, const param_type& __p)
|
||||
{
|
||||
return (__g() - __g.min()) < __p.p() * (__g.max() - __g.min() + 1.);
|
||||
uniform_real_distribution<double> __gen;
|
||||
return __gen(__g) < __p.p();
|
||||
}
|
||||
|
||||
template <class _CharT, class _Traits>
|
||||
|
@ -5535,7 +5608,7 @@ operator>>(basic_istream<_CharT, _Traits>& __is,
|
|||
__is.flags(ios_base::dec | ios_base::skipws);
|
||||
size_t __n;
|
||||
__is >> __n;
|
||||
std::vector<double> __p(__n);
|
||||
vector<double> __p(__n);
|
||||
for (size_t __i = 0; __i < __n; ++__i)
|
||||
__is >> __p[__i];
|
||||
if (!__is.fail())
|
||||
|
@ -5543,6 +5616,300 @@ operator>>(basic_istream<_CharT, _Traits>& __is,
|
|||
return __is;
|
||||
}
|
||||
|
||||
// piecewise_constant_distribution
|
||||
|
||||
template<class _RealType = double>
|
||||
class piecewise_constant_distribution
|
||||
{
|
||||
public:
|
||||
// types
|
||||
typedef _RealType result_type;
|
||||
|
||||
class param_type
|
||||
{
|
||||
vector<double> __p_;
|
||||
vector<result_type> __b_;
|
||||
public:
|
||||
typedef piecewise_constant_distribution distribution_type;
|
||||
|
||||
param_type();
|
||||
template<class _InputIteratorB, class _InputIteratorW>
|
||||
param_type(_InputIteratorB __fB, _InputIteratorB __lB,
|
||||
_InputIteratorW __fW);
|
||||
template<class _UnaryOperation>
|
||||
param_type(initializer_list<result_type> __bl, _UnaryOperation __fw);
|
||||
template<class _UnaryOperation>
|
||||
param_type(size_t __nw, result_type __xmin, result_type __xmax,
|
||||
_UnaryOperation __fw);
|
||||
|
||||
vector<result_type> intervals() const {return __b_;}
|
||||
vector<double> densities() const;
|
||||
|
||||
friend bool operator==(const param_type& __x, const param_type& __y)
|
||||
{return __x.__p_ == __y.__p_ && __x.__b_ == __y.__b_;}
|
||||
friend bool operator!=(const param_type& __x, const param_type& __y)
|
||||
{return !(__x == __y);}
|
||||
|
||||
private:
|
||||
void __init();
|
||||
|
||||
friend class piecewise_constant_distribution;
|
||||
|
||||
template <class _CharT, class _Traits, class _RT>
|
||||
friend
|
||||
basic_ostream<_CharT, _Traits>&
|
||||
operator<<(basic_ostream<_CharT, _Traits>& __os,
|
||||
const piecewise_constant_distribution<_RT>& __x);
|
||||
|
||||
template <class _CharT, class _Traits, class _RT>
|
||||
friend
|
||||
basic_istream<_CharT, _Traits>&
|
||||
operator>>(basic_istream<_CharT, _Traits>& __is,
|
||||
piecewise_constant_distribution<_RT>& __x);
|
||||
};
|
||||
|
||||
private:
|
||||
param_type __p_;
|
||||
|
||||
public:
|
||||
// constructor and reset functions
|
||||
piecewise_constant_distribution() {}
|
||||
template<class _InputIteratorB, class _InputIteratorW>
|
||||
piecewise_constant_distribution(_InputIteratorB __fB,
|
||||
_InputIteratorB __lB,
|
||||
_InputIteratorW __fW)
|
||||
: __p_(__fB, __lB, __fW) {}
|
||||
|
||||
template<class _UnaryOperation>
|
||||
piecewise_constant_distribution(initializer_list<result_type> __bl,
|
||||
_UnaryOperation __fw)
|
||||
: __p_(__bl, __fw) {}
|
||||
|
||||
template<class _UnaryOperation>
|
||||
piecewise_constant_distribution(size_t __nw, result_type __xmin,
|
||||
result_type __xmax, _UnaryOperation __fw)
|
||||
: __p_(__nw, __xmin, __xmax, __fw) {}
|
||||
|
||||
explicit piecewise_constant_distribution(const param_type& __p)
|
||||
: __p_(__p) {}
|
||||
|
||||
void reset() {}
|
||||
|
||||
// generating functions
|
||||
template<class _URNG> result_type operator()(_URNG& __g)
|
||||
{return (*this)(__g, __p_);}
|
||||
template<class _URNG> result_type operator()(_URNG& __g, const param_type& __p);
|
||||
|
||||
// property functions
|
||||
vector<result_type> intervals() const {return __p_.intervals();}
|
||||
vector<double> densities() const {return __p_.densities();}
|
||||
|
||||
param_type param() const {return __p_;}
|
||||
void param(const param_type& __p) {__p_ = __p;}
|
||||
|
||||
result_type min() const {return __p_.__b_.front();}
|
||||
result_type max() const {return __p_.__b_.back();}
|
||||
|
||||
friend bool operator==(const piecewise_constant_distribution& __x,
|
||||
const piecewise_constant_distribution& __y)
|
||||
{return __x.__p_ == __y.__p_;}
|
||||
friend bool operator!=(const piecewise_constant_distribution& __x,
|
||||
const piecewise_constant_distribution& __y)
|
||||
{return !(__x == __y);}
|
||||
|
||||
template <class _CharT, class _Traits, class _RT>
|
||||
friend
|
||||
basic_ostream<_CharT, _Traits>&
|
||||
operator<<(basic_ostream<_CharT, _Traits>& __os,
|
||||
const piecewise_constant_distribution<_RT>& __x);
|
||||
|
||||
template <class _CharT, class _Traits, class _RT>
|
||||
friend
|
||||
basic_istream<_CharT, _Traits>&
|
||||
operator>>(basic_istream<_CharT, _Traits>& __is,
|
||||
piecewise_constant_distribution<_RT>& __x);
|
||||
};
|
||||
|
||||
template<class _RealType>
|
||||
void
|
||||
piecewise_constant_distribution<_RealType>::param_type::__init()
|
||||
{
|
||||
if (!__p_.empty())
|
||||
{
|
||||
if (__p_.size() > 1)
|
||||
{
|
||||
double __s = _STD::accumulate(__p_.begin(), __p_.end(), 0.0);
|
||||
for (_STD::vector<double>::iterator __i = __p_.begin(), __e = __p_.end();
|
||||
__i < __e; ++__i)
|
||||
*__i /= __s;
|
||||
vector<double> __t(__p_.size() - 1);
|
||||
_STD::partial_sum(__p_.begin(), __p_.end() - 1, __t.begin());
|
||||
swap(__p_, __t);
|
||||
}
|
||||
else
|
||||
{
|
||||
__p_.clear();
|
||||
__p_.shrink_to_fit();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<class _RealType>
|
||||
piecewise_constant_distribution<_RealType>::param_type::param_type()
|
||||
: __b_(2)
|
||||
{
|
||||
__b_[1] = 1;
|
||||
}
|
||||
|
||||
template<class _RealType>
|
||||
template<class _InputIteratorB, class _InputIteratorW>
|
||||
piecewise_constant_distribution<_RealType>::param_type::param_type(
|
||||
_InputIteratorB __fB, _InputIteratorB __lB, _InputIteratorW __fW)
|
||||
: __b_(__fB, __lB)
|
||||
{
|
||||
if (__b_.size() < 2)
|
||||
{
|
||||
__b_.resize(2);
|
||||
__b_[0] = 0;
|
||||
__b_[1] = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
__p_.reserve(__b_.size() - 1);
|
||||
for (size_t __i = 0; __i < __b_.size() - 1; ++__i, ++__fW)
|
||||
__p_.push_back(*__fW);
|
||||
__init();
|
||||
}
|
||||
}
|
||||
|
||||
template<class _RealType>
|
||||
template<class _UnaryOperation>
|
||||
piecewise_constant_distribution<_RealType>::param_type::param_type(
|
||||
initializer_list<result_type> __bl, _UnaryOperation __fw)
|
||||
: __b_(__bl.begin(), __bl.end())
|
||||
{
|
||||
if (__b_.size() < 2)
|
||||
{
|
||||
__b_.resize(2);
|
||||
__b_[0] = 0;
|
||||
__b_[1] = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
__p_.reserve(__b_.size() - 1);
|
||||
for (size_t __i = 0; __i < __b_.size() - 1; ++__i)
|
||||
__p_.push_back(__fw((__b_[__i+1] + __b_[__i])*.5));
|
||||
__init();
|
||||
}
|
||||
}
|
||||
|
||||
template<class _RealType>
|
||||
template<class _UnaryOperation>
|
||||
piecewise_constant_distribution<_RealType>::param_type::param_type(
|
||||
size_t __nw, result_type __xmin, result_type __xmax, _UnaryOperation __fw)
|
||||
: __b_(__nw == 0 ? 2 : __nw + 1)
|
||||
{
|
||||
size_t __n = __b_.size() - 1;
|
||||
result_type __d = (__xmax - __xmin) / __n;
|
||||
__p_.reserve(__n);
|
||||
for (size_t __i = 0; __i < __n; ++__i)
|
||||
{
|
||||
__b_[__i] = __xmin + __i * __d;
|
||||
__p_.push_back(__fw(__b_[__i] + __d*.5));
|
||||
}
|
||||
__b_[__n] = __xmax;
|
||||
__init();
|
||||
}
|
||||
|
||||
template<class _RealType>
|
||||
vector<double>
|
||||
piecewise_constant_distribution<_RealType>::param_type::densities() const
|
||||
{
|
||||
const size_t __n = __b_.size() - 1;
|
||||
vector<double> __d(__n);
|
||||
if (__n == 1)
|
||||
__d[0] = 1/(__b_[1] - __b_[0]);
|
||||
else
|
||||
{
|
||||
__d[0] = __p_[0] / (__b_[1] - __b_[0]);
|
||||
for (size_t __i = 1; __i < __n - 1; ++__i)
|
||||
__d[__i] = (__p_[__i] - __p_[__i-1]) / (__b_[__i+1] - __b_[__i]);
|
||||
__d[__n-1] = (1 - __p_[__n-2]) / (__b_[__n] - __b_[__n-1]);
|
||||
}
|
||||
return __d;
|
||||
};
|
||||
|
||||
|
||||
template<class _RealType>
|
||||
template<class _URNG>
|
||||
_RealType
|
||||
piecewise_constant_distribution<_RealType>::operator()(_URNG& __g, const param_type& __p)
|
||||
{
|
||||
typedef uniform_real_distribution<result_type> _Gen;
|
||||
if (__p.__b_.size() == 2)
|
||||
return _Gen(__p.__b_[0], __p.__b_[1])(__g);
|
||||
result_type __u = _Gen()(__g);
|
||||
const vector<double>& __dd = __p.__p_;
|
||||
size_t __k = static_cast<size_t>(_STD::upper_bound(__dd.begin(),
|
||||
__dd.end(), static_cast<double>(__u)) - __dd.begin());
|
||||
if (__k == 0)
|
||||
return static_cast<result_type>(__u * (__p.__b_[1] - __p.__b_[0]) /
|
||||
__dd[0] + __p.__b_[0]);
|
||||
__u -= __dd[__k-1];
|
||||
if (__k == __dd.size())
|
||||
return static_cast<result_type>(__u * (__p.__b_[__k+1] - __p.__b_[__k]) /
|
||||
(1 - __dd[__k-1]) + __p.__b_[__k]);
|
||||
return static_cast<result_type>(__u * (__p.__b_[__k+1] - __p.__b_[__k]) /
|
||||
(__dd[__k] - __dd[__k-1]) + __p.__b_[__k]);
|
||||
}
|
||||
|
||||
template <class _CharT, class _Traits, class _RT>
|
||||
basic_ostream<_CharT, _Traits>&
|
||||
operator<<(basic_ostream<_CharT, _Traits>& __os,
|
||||
const piecewise_constant_distribution<_RT>& __x)
|
||||
{
|
||||
__save_flags<_CharT, _Traits> _(__os);
|
||||
__os.flags(ios_base::dec | ios_base::left);
|
||||
_CharT __sp = __os.widen(' ');
|
||||
__os.fill(__sp);
|
||||
size_t __n = __x.__p_.__p_.size();
|
||||
__os << __n;
|
||||
for (size_t __i = 0; __i < __n; ++__i)
|
||||
__os << __sp << __x.__p_.__p_[__i];
|
||||
__n = __x.__p_.__b_.size();
|
||||
__os << __sp << __n;
|
||||
for (size_t __i = 0; __i < __n; ++__i)
|
||||
__os << __sp << __x.__p_.__b_[__i];
|
||||
return __os;
|
||||
}
|
||||
|
||||
template <class _CharT, class _Traits, class _RT>
|
||||
basic_istream<_CharT, _Traits>&
|
||||
operator>>(basic_istream<_CharT, _Traits>& __is,
|
||||
piecewise_constant_distribution<_RT>& __x)
|
||||
{
|
||||
typedef piecewise_constant_distribution<_RT> _Eng;
|
||||
typedef typename _Eng::result_type result_type;
|
||||
typedef typename _Eng::param_type param_type;
|
||||
__save_flags<_CharT, _Traits> _(__is);
|
||||
__is.flags(ios_base::dec | ios_base::skipws);
|
||||
size_t __n;
|
||||
__is >> __n;
|
||||
vector<double> __p(__n);
|
||||
for (size_t __i = 0; __i < __n; ++__i)
|
||||
__is >> __p[__i];
|
||||
__is >> __n;
|
||||
vector<result_type> __b(__n);
|
||||
for (size_t __i = 0; __i < __n; ++__i)
|
||||
__is >> __b[__i];
|
||||
if (!__is.fail())
|
||||
{
|
||||
swap(__x.__p_.__p_, __p);
|
||||
swap(__x.__p_.__b_, __b);
|
||||
}
|
||||
return __is;
|
||||
}
|
||||
|
||||
_LIBCPP_END_NAMESPACE_STD
|
||||
|
||||
#endif // _LIBCPP_RANDOM
|
||||
|
|
|
@ -59,10 +59,10 @@ int main()
|
|||
double x_var = d.p()*(1-d.p());
|
||||
double x_skew = (1 - 2 * d.p())/std::sqrt(x_var);
|
||||
double x_kurtosis = (6 * sqr(d.p()) - 6 * d.p() + 1)/x_var;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02);
|
||||
}
|
||||
{
|
||||
typedef std::bernoulli_distribution D;
|
||||
|
@ -95,9 +95,9 @@ int main()
|
|||
double x_var = d.p()*(1-d.p());
|
||||
double x_skew = (1 - 2 * d.p())/std::sqrt(x_var);
|
||||
double x_kurtosis = (6 * sqr(d.p()) - 6 * d.p() + 1)/x_var;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -61,10 +61,10 @@ int main()
|
|||
double x_var = p.p()*(1-p.p());
|
||||
double x_skew = (1 - 2 * p.p())/std::sqrt(x_var);
|
||||
double x_kurtosis = (6 * sqr(p.p()) - 6 * p.p() + 1)/x_var;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02);
|
||||
}
|
||||
{
|
||||
typedef std::bernoulli_distribution D;
|
||||
|
@ -99,9 +99,9 @@ int main()
|
|||
double x_var = p.p()*(1-p.p());
|
||||
double x_skew = (1 - 2 * p.p())/std::sqrt(x_var);
|
||||
double x_kurtosis = (6 * sqr(p.p()) - 6 * p.p() + 1)/x_var;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -31,10 +31,10 @@ int main()
|
|||
{
|
||||
{
|
||||
typedef std::binomial_distribution<> D;
|
||||
typedef std::minstd_rand G;
|
||||
typedef std::mt19937_64 G;
|
||||
G g;
|
||||
D d(5, .75);
|
||||
const int N = 100000;
|
||||
const int N = 1000000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
|
@ -64,10 +64,10 @@ int main()
|
|||
double x_var = x_mean*(1-d.p());
|
||||
double x_skew = (1-2*d.p()) / std::sqrt(x_var);
|
||||
double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.04);
|
||||
}
|
||||
{
|
||||
typedef std::binomial_distribution<> D;
|
||||
|
@ -104,10 +104,10 @@ int main()
|
|||
double x_var = x_mean*(1-d.p());
|
||||
double x_skew = (1-2*d.p()) / std::sqrt(x_var);
|
||||
double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::binomial_distribution<> D;
|
||||
|
@ -144,10 +144,10 @@ int main()
|
|||
double x_var = x_mean*(1-d.p());
|
||||
double x_skew = (1-2*d.p()) / std::sqrt(x_var);
|
||||
double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.03);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.03);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.3);
|
||||
}
|
||||
{
|
||||
typedef std::binomial_distribution<> D;
|
||||
|
@ -260,10 +260,10 @@ int main()
|
|||
double x_var = x_mean*(1-d.p());
|
||||
double x_skew = (1-2*d.p()) / std::sqrt(x_var);
|
||||
double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::binomial_distribution<> D;
|
||||
|
@ -300,10 +300,10 @@ int main()
|
|||
double x_var = x_mean*(1-d.p());
|
||||
double x_skew = (1-2*d.p()) / std::sqrt(x_var);
|
||||
double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::binomial_distribution<> D;
|
||||
|
|
|
@ -32,11 +32,11 @@ int main()
|
|||
{
|
||||
typedef std::binomial_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
typedef std::minstd_rand G;
|
||||
typedef std::mt19937_64 G;
|
||||
G g;
|
||||
D d(16, .75);
|
||||
P p(5, .75);
|
||||
const int N = 100000;
|
||||
const int N = 1000000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
|
@ -66,10 +66,10 @@ int main()
|
|||
double x_var = x_mean*(1-p.p());
|
||||
double x_skew = (1-2*p.p()) / std::sqrt(x_var);
|
||||
double x_kurtosis = (1-6*p.p()*(1-p.p())) / x_var;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.04);
|
||||
}
|
||||
{
|
||||
typedef std::binomial_distribution<> D;
|
||||
|
@ -108,10 +108,10 @@ int main()
|
|||
double x_var = x_mean*(1-p.p());
|
||||
double x_skew = (1-2*p.p()) / std::sqrt(x_var);
|
||||
double x_kurtosis = (1-6*p.p()*(1-p.p())) / x_var;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::binomial_distribution<> D;
|
||||
|
@ -120,7 +120,7 @@ int main()
|
|||
G g;
|
||||
D d(16, .75);
|
||||
P p(40, .25);
|
||||
const int N = 100000;
|
||||
const int N = 1000000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
|
@ -150,9 +150,9 @@ int main()
|
|||
double x_var = x_mean*(1-p.p());
|
||||
double x_skew = (1-2*p.p()) / std::sqrt(x_var);
|
||||
double x_kurtosis = (1-6*p.p()*(1-p.p())) / x_var;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.03);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.04);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.3);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -64,10 +64,10 @@ int main()
|
|||
double x_var = x_mean / d.p();
|
||||
double x_skew = (2 - d.p()) / std::sqrt((1 - d.p()));
|
||||
double x_kurtosis = 6 + sqr(d.p()) / (1 - d.p());
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::geometric_distribution<> D;
|
||||
|
@ -104,10 +104,10 @@ int main()
|
|||
double x_var = x_mean / d.p();
|
||||
double x_skew = (2 - d.p()) / std::sqrt((1 - d.p()));
|
||||
double x_kurtosis = 6 + sqr(d.p()) / (1 - d.p());
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.02);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
|
||||
}
|
||||
{
|
||||
typedef std::geometric_distribution<> D;
|
||||
|
@ -144,10 +144,10 @@ int main()
|
|||
double x_var = x_mean / d.p();
|
||||
double x_skew = (2 - d.p()) / std::sqrt((1 - d.p()));
|
||||
double x_kurtosis = 6 + sqr(d.p()) / (1 - d.p());
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.02);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02);
|
||||
}
|
||||
{
|
||||
typedef std::geometric_distribution<> D;
|
||||
|
@ -184,10 +184,10 @@ int main()
|
|||
double x_var = x_mean / d.p();
|
||||
double x_skew = (2 - d.p()) / std::sqrt((1 - d.p()));
|
||||
double x_kurtosis = 6 + sqr(d.p()) / (1 - d.p());
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02);
|
||||
}
|
||||
{
|
||||
typedef std::geometric_distribution<> D;
|
||||
|
@ -224,10 +224,10 @@ int main()
|
|||
double x_var = x_mean / d.p();
|
||||
double x_skew = (2 - d.p()) / std::sqrt((1 - d.p()));
|
||||
double x_kurtosis = 6 + sqr(d.p()) / (1 - d.p());
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.02);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02);
|
||||
}
|
||||
{
|
||||
typedef std::geometric_distribution<> D;
|
||||
|
@ -264,9 +264,9 @@ int main()
|
|||
double x_var = x_mean / d.p();
|
||||
double x_skew = (2 - d.p()) / std::sqrt((1 - d.p()));
|
||||
double x_kurtosis = 6 + sqr(d.p()) / (1 - d.p());
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -66,10 +66,10 @@ int main()
|
|||
double x_var = x_mean / p.p();
|
||||
double x_skew = (2 - p.p()) / std::sqrt((1 - p.p()));
|
||||
double x_kurtosis = 6 + sqr(p.p()) / (1 - p.p());
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::geometric_distribution<> D;
|
||||
|
@ -108,10 +108,10 @@ int main()
|
|||
double x_var = x_mean / p.p();
|
||||
double x_skew = (2 - p.p()) / std::sqrt((1 - p.p()));
|
||||
double x_kurtosis = 6 + sqr(p.p()) / (1 - p.p());
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.03);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
|
||||
}
|
||||
{
|
||||
typedef std::geometric_distribution<> D;
|
||||
|
@ -150,9 +150,9 @@ int main()
|
|||
double x_var = x_mean / p.p();
|
||||
double x_skew = (2 - p.p()) / std::sqrt((1 - p.p()));
|
||||
double x_kurtosis = 6 + sqr(p.p()) / (1 - p.p());
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -64,10 +64,10 @@ int main()
|
|||
double x_var = x_mean / d.p();
|
||||
double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
|
||||
double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02);
|
||||
}
|
||||
{
|
||||
typedef std::negative_binomial_distribution<> D;
|
||||
|
@ -104,10 +104,10 @@ int main()
|
|||
double x_var = x_mean / d.p();
|
||||
double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
|
||||
double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::negative_binomial_distribution<> D;
|
||||
|
@ -144,10 +144,10 @@ int main()
|
|||
double x_var = x_mean / d.p();
|
||||
double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
|
||||
double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.03);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
|
||||
}
|
||||
{
|
||||
typedef std::negative_binomial_distribution<> D;
|
||||
|
@ -222,10 +222,10 @@ int main()
|
|||
double x_var = x_mean / d.p();
|
||||
double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
|
||||
double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.04);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.05);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.04);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.05);
|
||||
}
|
||||
{
|
||||
typedef std::negative_binomial_distribution<> D;
|
||||
|
@ -262,9 +262,9 @@ int main()
|
|||
double x_var = x_mean / d.p();
|
||||
double x_skew = (2 - d.p()) / std::sqrt(d.k() * (1 - d.p()));
|
||||
double x_kurtosis = 6. / d.k() + sqr(d.p()) / (d.k() * (1 - d.p()));
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.02);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -66,10 +66,10 @@ int main()
|
|||
double x_var = x_mean / p.p();
|
||||
double x_skew = (2 - p.p()) / std::sqrt(p.k() * (1 - p.p()));
|
||||
double x_kurtosis = 6. / p.k() + sqr(p.p()) / (p.k() * (1 - p.p()));
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::negative_binomial_distribution<> D;
|
||||
|
@ -108,10 +108,10 @@ int main()
|
|||
double x_var = x_mean / p.p();
|
||||
double x_skew = (2 - p.p()) / std::sqrt(p.k() * (1 - p.p()));
|
||||
double x_kurtosis = 6. / p.k() + sqr(p.p()) / (p.k() * (1 - p.p()));
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::negative_binomial_distribution<> D;
|
||||
|
@ -150,9 +150,9 @@ int main()
|
|||
double x_var = x_mean / p.p();
|
||||
double x_skew = (2 - p.p()) / std::sqrt(p.k() * (1 - p.p()));
|
||||
double x_kurtosis = 6. / p.k() + sqr(p.p()) / (p.k() * (1 - p.p()));
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.03);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -64,10 +64,10 @@ int main()
|
|||
double x_var = 2 * d.n();
|
||||
double x_skew = std::sqrt(8 / d.n());
|
||||
double x_kurtosis = 12 / d.n();
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::chi_squared_distribution<> D;
|
||||
|
@ -104,10 +104,10 @@ int main()
|
|||
double x_var = 2 * d.n();
|
||||
double x_skew = std::sqrt(8 / d.n());
|
||||
double x_kurtosis = 12 / d.n();
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::chi_squared_distribution<> D;
|
||||
|
@ -144,9 +144,9 @@ int main()
|
|||
double x_var = 2 * d.n();
|
||||
double x_skew = std::sqrt(8 / d.n());
|
||||
double x_kurtosis = 12 / d.n();
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -65,10 +65,10 @@ int main()
|
|||
double x_var = 2 * p.n();
|
||||
double x_skew = std::sqrt(8 / p.n());
|
||||
double x_kurtosis = 12 / p.n();
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::chi_squared_distribution<> D;
|
||||
|
@ -106,10 +106,10 @@ int main()
|
|||
double x_var = 2 * p.n();
|
||||
double x_skew = std::sqrt(8 / p.n());
|
||||
double x_kurtosis = 12 / p.n();
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::chi_squared_distribution<> D;
|
||||
|
@ -147,9 +147,9 @@ int main()
|
|||
double x_var = 2 * p.n();
|
||||
double x_skew = std::sqrt(8 / p.n());
|
||||
double x_kurtosis = 12 / p.n();
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -66,10 +66,10 @@ int main()
|
|||
std::sqrt((std::exp(sqr(d.s())) - 1));
|
||||
double x_kurtosis = std::exp(4*sqr(d.s())) + 2*std::exp(3*sqr(d.s())) +
|
||||
3*std::exp(2*sqr(d.s())) - 6;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.05);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.25);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.05);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.25);
|
||||
}
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
|
@ -108,10 +108,10 @@ int main()
|
|||
std::sqrt((std::exp(sqr(d.s())) - 1));
|
||||
double x_kurtosis = std::exp(4*sqr(d.s())) + 2*std::exp(3*sqr(d.s())) +
|
||||
3*std::exp(2*sqr(d.s())) - 6;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.03);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
|
||||
}
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
|
@ -150,10 +150,10 @@ int main()
|
|||
std::sqrt((std::exp(sqr(d.s())) - 1));
|
||||
double x_kurtosis = std::exp(4*sqr(d.s())) + 2*std::exp(3*sqr(d.s())) +
|
||||
3*std::exp(2*sqr(d.s())) - 6;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.02);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.05);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.02);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.05);
|
||||
}
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
|
@ -192,10 +192,10 @@ int main()
|
|||
std::sqrt((std::exp(sqr(d.s())) - 1));
|
||||
double x_kurtosis = std::exp(4*sqr(d.s())) + 2*std::exp(3*sqr(d.s())) +
|
||||
3*std::exp(2*sqr(d.s())) - 6;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.02);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.08);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.4);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.02);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.08);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.4);
|
||||
}
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
|
@ -234,9 +234,9 @@ int main()
|
|||
std::sqrt((std::exp(sqr(d.s())) - 1));
|
||||
double x_kurtosis = std::exp(4*sqr(d.s())) + 2*std::exp(3*sqr(d.s())) +
|
||||
3*std::exp(2*sqr(d.s())) - 6;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.04);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.2);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.7);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.04);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.2);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.7);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -68,10 +68,10 @@ int main()
|
|||
std::sqrt((std::exp(sqr(p.s())) - 1));
|
||||
double x_kurtosis = std::exp(4*sqr(p.s())) + 2*std::exp(3*sqr(p.s())) +
|
||||
3*std::exp(2*sqr(p.s())) - 6;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.05);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.25);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.05);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.25);
|
||||
}
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
|
@ -111,10 +111,10 @@ int main()
|
|||
std::sqrt((std::exp(sqr(p.s())) - 1));
|
||||
double x_kurtosis = std::exp(4*sqr(p.s())) + 2*std::exp(3*sqr(p.s())) +
|
||||
3*std::exp(2*sqr(p.s())) - 6;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.03);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
|
||||
}
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
|
@ -154,10 +154,10 @@ int main()
|
|||
std::sqrt((std::exp(sqr(p.s())) - 1));
|
||||
double x_kurtosis = std::exp(4*sqr(p.s())) + 2*std::exp(3*sqr(p.s())) +
|
||||
3*std::exp(2*sqr(p.s())) - 6;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.02);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.05);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.02);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.05);
|
||||
}
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
|
@ -197,10 +197,10 @@ int main()
|
|||
std::sqrt((std::exp(sqr(p.s())) - 1));
|
||||
double x_kurtosis = std::exp(4*sqr(p.s())) + 2*std::exp(3*sqr(p.s())) +
|
||||
3*std::exp(2*sqr(p.s())) - 6;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.02);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.08);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.4);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.02);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.08);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.4);
|
||||
}
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
|
@ -240,9 +240,9 @@ int main()
|
|||
std::sqrt((std::exp(sqr(p.s())) - 1));
|
||||
double x_kurtosis = std::exp(4*sqr(p.s())) + 2*std::exp(3*sqr(p.s())) +
|
||||
3*std::exp(2*sqr(p.s())) - 6;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.04);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.2);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.7);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.04);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.2);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.7);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -60,8 +60,8 @@ int main()
|
|||
double x_var = sqr(d.stddev());
|
||||
double x_skew = 0;
|
||||
double x_kurtosis = 0;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) < 0.01);
|
||||
}
|
||||
|
|
|
@ -61,8 +61,8 @@ int main()
|
|||
double x_var = sqr(p.stddev());
|
||||
double x_skew = 0;
|
||||
double x_kurtosis = 0;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) < 0.01);
|
||||
}
|
||||
|
|
|
@ -61,9 +61,9 @@ int main()
|
|||
double x_skew = 0;
|
||||
double x_kurtosis = 6 / (d.n() - 4);
|
||||
assert(std::abs(mean - x_mean) < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.2);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.2);
|
||||
}
|
||||
{
|
||||
typedef std::student_t_distribution<> D;
|
||||
|
@ -97,9 +97,9 @@ int main()
|
|||
double x_skew = 0;
|
||||
double x_kurtosis = 6 / (d.n() - 4);
|
||||
assert(std::abs(mean - x_mean) < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.04);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.04);
|
||||
}
|
||||
{
|
||||
typedef std::student_t_distribution<> D;
|
||||
|
@ -133,8 +133,8 @@ int main()
|
|||
double x_skew = 0;
|
||||
double x_kurtosis = 6 / (d.n() - 4);
|
||||
assert(std::abs(mean - x_mean) < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.02);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -62,9 +62,9 @@ int main()
|
|||
double x_skew = 0;
|
||||
double x_kurtosis = 6 / (p.n() - 4);
|
||||
assert(std::abs(mean - x_mean) < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.2);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.2);
|
||||
}
|
||||
{
|
||||
typedef std::student_t_distribution<> D;
|
||||
|
@ -99,9 +99,9 @@ int main()
|
|||
double x_skew = 0;
|
||||
double x_kurtosis = 6 / (p.n() - 4);
|
||||
assert(std::abs(mean - x_mean) < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.04);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.04);
|
||||
}
|
||||
{
|
||||
typedef std::student_t_distribution<> D;
|
||||
|
@ -136,8 +136,8 @@ int main()
|
|||
double x_skew = 0;
|
||||
double x_kurtosis = 6 / (p.n() - 4);
|
||||
assert(std::abs(mean - x_mean) < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.02);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.02);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -64,10 +64,10 @@ int main()
|
|||
double x_var = 1/sqr(d.lambda());
|
||||
double x_skew = 2;
|
||||
double x_kurtosis = 6;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::exponential_distribution<> D;
|
||||
|
@ -104,10 +104,10 @@ int main()
|
|||
double x_var = 1/sqr(d.lambda());
|
||||
double x_skew = 2;
|
||||
double x_kurtosis = 6;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::exponential_distribution<> D;
|
||||
|
@ -144,9 +144,9 @@ int main()
|
|||
double x_var = 1/sqr(d.lambda());
|
||||
double x_skew = 2;
|
||||
double x_kurtosis = 6;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -65,9 +65,9 @@ int main()
|
|||
double x_var = 1/sqr(p.lambda());
|
||||
double x_skew = 2;
|
||||
double x_kurtosis = 6;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -63,10 +63,10 @@ int main()
|
|||
double x_var = sqr(d.b()) * 1.644934067;
|
||||
double x_skew = 1.139547;
|
||||
double x_kurtosis = 12./5;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::extreme_value_distribution<> D;
|
||||
|
@ -102,10 +102,10 @@ int main()
|
|||
double x_var = sqr(d.b()) * 1.644934067;
|
||||
double x_skew = 1.139547;
|
||||
double x_kurtosis = 12./5;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::extreme_value_distribution<> D;
|
||||
|
@ -141,10 +141,10 @@ int main()
|
|||
double x_var = sqr(d.b()) * 1.644934067;
|
||||
double x_skew = 1.139547;
|
||||
double x_kurtosis = 12./5;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::extreme_value_distribution<> D;
|
||||
|
@ -180,9 +180,9 @@ int main()
|
|||
double x_var = sqr(d.b()) * 1.644934067;
|
||||
double x_skew = 1.139547;
|
||||
double x_kurtosis = 12./5;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -64,10 +64,10 @@ int main()
|
|||
double x_var = sqr(p.b()) * 1.644934067;
|
||||
double x_skew = 1.139547;
|
||||
double x_kurtosis = 12./5;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::extreme_value_distribution<> D;
|
||||
|
@ -104,10 +104,10 @@ int main()
|
|||
double x_var = sqr(p.b()) * 1.644934067;
|
||||
double x_skew = 1.139547;
|
||||
double x_kurtosis = 12./5;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::extreme_value_distribution<> D;
|
||||
|
@ -144,10 +144,10 @@ int main()
|
|||
double x_var = sqr(p.b()) * 1.644934067;
|
||||
double x_skew = 1.139547;
|
||||
double x_kurtosis = 12./5;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::extreme_value_distribution<> D;
|
||||
|
@ -184,9 +184,9 @@ int main()
|
|||
double x_var = sqr(p.b()) * 1.644934067;
|
||||
double x_skew = 1.139547;
|
||||
double x_kurtosis = 12./5;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -64,10 +64,10 @@ int main()
|
|||
double x_var = d.alpha() * sqr(d.beta());
|
||||
double x_skew = 2 / std::sqrt(d.alpha());
|
||||
double x_kurtosis = 6 / d.alpha();
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::gamma_distribution<> D;
|
||||
|
@ -104,10 +104,10 @@ int main()
|
|||
double x_var = d.alpha() * sqr(d.beta());
|
||||
double x_skew = 2 / std::sqrt(d.alpha());
|
||||
double x_kurtosis = 6 / d.alpha();
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::gamma_distribution<> D;
|
||||
|
@ -144,9 +144,9 @@ int main()
|
|||
double x_var = d.alpha() * sqr(d.beta());
|
||||
double x_skew = 2 / std::sqrt(d.alpha());
|
||||
double x_kurtosis = 6 / d.alpha();
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -65,10 +65,10 @@ int main()
|
|||
double x_var = p.alpha() * sqr(p.beta());
|
||||
double x_skew = 2 / std::sqrt(p.alpha());
|
||||
double x_kurtosis = 6 / p.alpha();
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::gamma_distribution<> D;
|
||||
|
@ -106,10 +106,10 @@ int main()
|
|||
double x_var = p.alpha() * sqr(p.beta());
|
||||
double x_skew = 2 / std::sqrt(p.alpha());
|
||||
double x_kurtosis = 6 / p.alpha();
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::gamma_distribution<> D;
|
||||
|
@ -147,9 +147,9 @@ int main()
|
|||
double x_var = p.alpha() * sqr(p.beta());
|
||||
double x_skew = 2 / std::sqrt(p.alpha());
|
||||
double x_kurtosis = 6 / p.alpha();
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -63,10 +63,10 @@ int main()
|
|||
double x_var = d.mean();
|
||||
double x_skew = 1 / std::sqrt(x_var);
|
||||
double x_kurtosis = 1 / x_var;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.03);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
|
||||
}
|
||||
{
|
||||
typedef std::poisson_distribution<> D;
|
||||
|
@ -102,10 +102,10 @@ int main()
|
|||
double x_var = d.mean();
|
||||
double x_skew = 1 / std::sqrt(x_var);
|
||||
double x_kurtosis = 1 / x_var;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.04);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.04);
|
||||
}
|
||||
{
|
||||
typedef std::poisson_distribution<> D;
|
||||
|
@ -141,9 +141,9 @@ int main()
|
|||
double x_var = d.mean();
|
||||
double x_skew = 1 / std::sqrt(x_var);
|
||||
double x_kurtosis = 1 / x_var;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -65,10 +65,10 @@ int main()
|
|||
double x_var = p.mean();
|
||||
double x_skew = 1 / std::sqrt(x_var);
|
||||
double x_kurtosis = 1 / x_var;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.03);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
|
||||
}
|
||||
{
|
||||
typedef std::poisson_distribution<> D;
|
||||
|
@ -106,10 +106,10 @@ int main()
|
|||
double x_var = p.mean();
|
||||
double x_skew = 1 / std::sqrt(x_var);
|
||||
double x_kurtosis = 1 / x_var;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.04);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.04);
|
||||
}
|
||||
{
|
||||
typedef std::poisson_distribution<> D;
|
||||
|
@ -147,9 +147,9 @@ int main()
|
|||
double x_var = p.mean();
|
||||
double x_skew = 1 / std::sqrt(x_var);
|
||||
double x_kurtosis = 1 / x_var;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -68,10 +68,10 @@ int main()
|
|||
double x_kurtosis = (sqr(sqr(d.b())) * std::tgamma(1 + 4/d.a()) -
|
||||
4*x_skew*x_var*sqrt(x_var)*x_mean -
|
||||
6*sqr(x_mean)*x_var - sqr(sqr(x_mean))) / sqr(x_var) - 3;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.03);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
|
||||
}
|
||||
{
|
||||
typedef std::weibull_distribution<> D;
|
||||
|
@ -112,10 +112,10 @@ int main()
|
|||
double x_kurtosis = (sqr(sqr(d.b())) * std::tgamma(1 + 4/d.a()) -
|
||||
4*x_skew*x_var*sqrt(x_var)*x_mean -
|
||||
6*sqr(x_mean)*x_var - sqr(sqr(x_mean))) / sqr(x_var) - 3;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::weibull_distribution<> D;
|
||||
|
@ -156,9 +156,9 @@ int main()
|
|||
double x_kurtosis = (sqr(sqr(d.b())) * std::tgamma(1 + 4/d.a()) -
|
||||
4*x_skew*x_var*sqrt(x_var)*x_mean -
|
||||
6*sqr(x_mean)*x_var - sqr(sqr(x_mean))) / sqr(x_var) - 3;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.03);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -69,10 +69,10 @@ int main()
|
|||
double x_kurtosis = (sqr(sqr(p.b())) * std::tgamma(1 + 4/p.a()) -
|
||||
4*x_skew*x_var*sqrt(x_var)*x_mean -
|
||||
6*sqr(x_mean)*x_var - sqr(sqr(x_mean))) / sqr(x_var) - 3;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::weibull_distribution<> D;
|
||||
|
@ -114,10 +114,10 @@ int main()
|
|||
double x_kurtosis = (sqr(sqr(p.b())) * std::tgamma(1 + 4/p.a()) -
|
||||
4*x_skew*x_var*sqrt(x_var)*x_mean -
|
||||
6*sqr(x_mean)*x_var - sqr(sqr(x_mean))) / sqr(x_var) - 3;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.03);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
|
||||
}
|
||||
{
|
||||
typedef std::weibull_distribution<> D;
|
||||
|
@ -159,9 +159,9 @@ int main()
|
|||
double x_kurtosis = (sqr(sqr(p.b())) * std::tgamma(1 + 4/p.a()) -
|
||||
4*x_skew*x_var*sqrt(x_var)*x_mean -
|
||||
6*sqr(x_mean)*x_var - sqr(sqr(x_mean))) / sqr(x_var) - 3;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.03);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.03);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -0,0 +1,36 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class piecewise_constant_distribution
|
||||
|
||||
// piecewise_constant_distribution& operator=(const piecewise_constant_distribution&);
|
||||
|
||||
#include <random>
|
||||
#include <cassert>
|
||||
|
||||
void
|
||||
test1()
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
double p[] = {2, 4, 1, 8};
|
||||
double b[] = {2, 4, 5, 8, 9};
|
||||
D d1(b, b+5, p);
|
||||
D d2;
|
||||
assert(d1 != d2);
|
||||
d2 = d1;
|
||||
assert(d1 == d2);
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
test1();
|
||||
}
|
|
@ -0,0 +1,34 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class piecewise_constant_distribution
|
||||
|
||||
// piecewise_constant_distribution(const piecewise_constant_distribution&);
|
||||
|
||||
#include <random>
|
||||
#include <cassert>
|
||||
|
||||
void
|
||||
test1()
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
double p[] = {2, 4, 1, 8};
|
||||
double b[] = {2, 4, 5, 8, 9};
|
||||
D d1(b, b+5, p);
|
||||
D d2 = d1;
|
||||
assert(d1 == d2);
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
test1();
|
||||
}
|
|
@ -0,0 +1,33 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class piecewise_constant_distribution
|
||||
|
||||
// piecewise_constant_distribution(initializer_list<double> wl);
|
||||
|
||||
#include <random>
|
||||
#include <cassert>
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
D d;
|
||||
std::vector<double> iv = d.intervals();
|
||||
assert(iv.size() == 2);
|
||||
assert(iv[0] == 0);
|
||||
assert(iv[1] == 1);
|
||||
std::vector<double> dn = d.densities();
|
||||
assert(dn.size() == 1);
|
||||
assert(dn[0] == 1);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,64 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class piecewise_constant_distribution
|
||||
|
||||
// template<class UnaryOperation>
|
||||
// piecewise_constant_distribution(size_t nw, result_type xmin,
|
||||
// result_type xmax, UnaryOperation fw);
|
||||
|
||||
#include <random>
|
||||
#include <cassert>
|
||||
|
||||
double fw(double x)
|
||||
{
|
||||
return 2*x;
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
D d(0, 0, 1, fw);
|
||||
std::vector<double> iv = d.intervals();
|
||||
assert(iv.size() == 2);
|
||||
assert(iv[0] == 0);
|
||||
assert(iv[1] == 1);
|
||||
std::vector<double> dn = d.densities();
|
||||
assert(dn.size() == 1);
|
||||
assert(dn[0] == 1);
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
D d(1, 10, 12, fw);
|
||||
std::vector<double> iv = d.intervals();
|
||||
assert(iv.size() == 2);
|
||||
assert(iv[0] == 10);
|
||||
assert(iv[1] == 12);
|
||||
std::vector<double> dn = d.densities();
|
||||
assert(dn.size() == 1);
|
||||
assert(dn[0] == 0.5);
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
D d(2, 6, 14, fw);
|
||||
std::vector<double> iv = d.intervals();
|
||||
assert(iv.size() == 3);
|
||||
assert(iv[0] == 6);
|
||||
assert(iv[1] == 10);
|
||||
assert(iv[2] == 14);
|
||||
std::vector<double> dn = d.densities();
|
||||
assert(dn.size() == 2);
|
||||
assert(dn[0] == 0.1);
|
||||
assert(dn[1] == 0.15);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,78 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class piecewise_constant_distribution
|
||||
|
||||
// piecewise_constant_distribution(initializer_list<result_type> bl,
|
||||
// UnaryOperation fw);
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#include <random>
|
||||
#include <cassert>
|
||||
|
||||
double f(double x)
|
||||
{
|
||||
return x*2;
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
#ifdef _LIBCPP_MOVE
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
D d({}, f);
|
||||
std::vector<double> iv = d.intervals();
|
||||
assert(iv.size() == 2);
|
||||
assert(iv[0] == 0);
|
||||
assert(iv[1] == 1);
|
||||
std::vector<double> dn = d.densities();
|
||||
assert(dn.size() == 1);
|
||||
assert(dn[0] == 1);
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
D d({12}, f);
|
||||
std::vector<double> iv = d.intervals();
|
||||
assert(iv.size() == 2);
|
||||
assert(iv[0] == 0);
|
||||
assert(iv[1] == 1);
|
||||
std::vector<double> dn = d.densities();
|
||||
assert(dn.size() == 1);
|
||||
assert(dn[0] == 1);
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
D d({12, 14}, f);
|
||||
std::vector<double> iv = d.intervals();
|
||||
assert(iv.size() == 2);
|
||||
assert(iv[0] == 12);
|
||||
assert(iv[1] == 14);
|
||||
std::vector<double> dn = d.densities();
|
||||
assert(dn.size() == 1);
|
||||
assert(dn[0] == 0.5);
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
D d({5.5, 7.5, 11.5}, f);
|
||||
std::vector<double> iv = d.intervals();
|
||||
assert(iv.size() == 3);
|
||||
assert(iv[0] == 5.5);
|
||||
assert(iv[1] == 7.5);
|
||||
assert(iv[2] == 11.5);
|
||||
std::vector<double> dn = d.densities();
|
||||
assert(dn.size() == 2);
|
||||
assert(dn[0] == 0.203125);
|
||||
assert(dn[1] == 0.1484375);
|
||||
}
|
||||
#endif
|
||||
}
|
|
@ -0,0 +1,96 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class piecewise_constant_distribution
|
||||
|
||||
// template<class InputIterator>
|
||||
// piecewise_constant_distribution(InputIteratorB firstB,
|
||||
// InputIteratorB lastB,
|
||||
// InputIteratorW firstW);
|
||||
|
||||
#include <random>
|
||||
#include <cassert>
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
double b[] = {10};
|
||||
double p[] = {12};
|
||||
D d(b, b, p);
|
||||
std::vector<double> iv = d.intervals();
|
||||
assert(iv.size() == 2);
|
||||
assert(iv[0] == 0);
|
||||
assert(iv[1] == 1);
|
||||
std::vector<double> dn = d.densities();
|
||||
assert(dn.size() == 1);
|
||||
assert(dn[0] == 1);
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
double b[] = {10};
|
||||
double p[] = {12};
|
||||
D d(b, b+1, p);
|
||||
std::vector<double> iv = d.intervals();
|
||||
assert(iv.size() == 2);
|
||||
assert(iv[0] == 0);
|
||||
assert(iv[1] == 1);
|
||||
std::vector<double> dn = d.densities();
|
||||
assert(dn.size() == 1);
|
||||
assert(dn[0] == 1);
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
double b[] = {10, 15};
|
||||
double p[] = {12};
|
||||
D d(b, b+2, p);
|
||||
std::vector<double> iv = d.intervals();
|
||||
assert(iv.size() == 2);
|
||||
assert(iv[0] == 10);
|
||||
assert(iv[1] == 15);
|
||||
std::vector<double> dn = d.densities();
|
||||
assert(dn.size() == 1);
|
||||
assert(dn[0] == 1/5.);
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
double b[] = {10, 15, 16};
|
||||
double p[] = {.25, .75};
|
||||
D d(b, b+3, p);
|
||||
std::vector<double> iv = d.intervals();
|
||||
assert(iv.size() == 3);
|
||||
assert(iv[0] == 10);
|
||||
assert(iv[1] == 15);
|
||||
assert(iv[2] == 16);
|
||||
std::vector<double> dn = d.densities();
|
||||
assert(dn.size() == 2);
|
||||
assert(dn[0] == .25/5.);
|
||||
assert(dn[1] == .75);
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
double b[] = {10, 14, 16, 17};
|
||||
double p[] = {25, 62.5, 12.5};
|
||||
D d(b, b+4, p);
|
||||
std::vector<double> iv = d.intervals();
|
||||
assert(iv.size() == 4);
|
||||
assert(iv[0] == 10);
|
||||
assert(iv[1] == 14);
|
||||
assert(iv[2] == 16);
|
||||
assert(iv[3] == 17);
|
||||
std::vector<double> dn = d.densities();
|
||||
assert(dn.size() == 3);
|
||||
assert(dn[0] == .0625);
|
||||
assert(dn[1] == .3125);
|
||||
assert(dn[2] == .125);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,41 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class piecewise_constant_distribution
|
||||
|
||||
// explicit piecewise_constant_distribution(const param_type& parm);
|
||||
|
||||
#include <random>
|
||||
#include <cassert>
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
double b[] = {10, 14, 16, 17};
|
||||
double p[] = {25, 62.5, 12.5};
|
||||
P pa(b, b+4, p);
|
||||
D d(pa);
|
||||
std::vector<double> iv = d.intervals();
|
||||
assert(iv.size() == 4);
|
||||
assert(iv[0] == 10);
|
||||
assert(iv[1] == 14);
|
||||
assert(iv[2] == 16);
|
||||
assert(iv[3] == 17);
|
||||
std::vector<double> dn = d.densities();
|
||||
assert(dn.size() == 3);
|
||||
assert(dn[0] == .0625);
|
||||
assert(dn[1] == .3125);
|
||||
assert(dn[2] == .125);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,47 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class piecewise_constant_distribution
|
||||
|
||||
// bool operator=(const piecewise_constant_distribution& x,
|
||||
// const piecewise_constant_distribution& y);
|
||||
// bool operator!(const piecewise_constant_distribution& x,
|
||||
// const piecewise_constant_distribution& y);
|
||||
|
||||
#include <random>
|
||||
#include <cassert>
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
D d1;
|
||||
D d2;
|
||||
assert(d1 == d2);
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
double b[] = {10, 14, 16, 17};
|
||||
double p[] = {25, 62.5, 12.5};
|
||||
D d1(b, b+4, p);
|
||||
D d2(b, b+4, p);
|
||||
assert(d1 == d2);
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
double b[] = {10, 14, 16, 17};
|
||||
double p[] = {25, 62.5, 12.5};
|
||||
D d1(b, b+4, p);
|
||||
D d2;
|
||||
assert(d1 != d2);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,693 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class piecewise_constant_distribution
|
||||
|
||||
// template<class _URNG> result_type operator()(_URNG& g);
|
||||
|
||||
#include <random>
|
||||
#include <vector>
|
||||
#include <iterator>
|
||||
#include <numeric>
|
||||
#include <cassert>
|
||||
|
||||
template <class T>
|
||||
inline
|
||||
T
|
||||
sqr(T x)
|
||||
{
|
||||
return x*x;
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef std::mt19937_64 G;
|
||||
G g;
|
||||
double b[] = {10, 14, 16, 17};
|
||||
double p[] = {25, 62.5, 12.5};
|
||||
const size_t Np = sizeof(p) / sizeof(p[0]);
|
||||
D d(b, b+Np+1, p);
|
||||
const int N = 1000000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(d.min() <= v && v < d.max());
|
||||
u.push_back(v);
|
||||
}
|
||||
std::vector<double> prob(std::begin(p), std::end(p));
|
||||
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
|
||||
for (int i = 0; i < prob.size(); ++i)
|
||||
prob[i] /= s;
|
||||
std::sort(u.begin(), u.end());
|
||||
for (int i = 0; i < Np; ++i)
|
||||
{
|
||||
typedef std::vector<D::result_type>::iterator I;
|
||||
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
|
||||
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
|
||||
const size_t Ni = ub - lb;
|
||||
if (prob[i] == 0)
|
||||
assert(Ni == 0);
|
||||
else
|
||||
{
|
||||
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
|
||||
double mean = std::accumulate(lb, ub, 0.0) / Ni;
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (I j = lb; j != ub; ++j)
|
||||
{
|
||||
double d = (*j - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= Ni;
|
||||
double dev = std::sqrt(var);
|
||||
skew /= Ni * dev * var;
|
||||
kurtosis /= Ni * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = (b[i+1] + b[i]) / 2;
|
||||
double x_var = sqr(b[i+1] - b[i]) / 12;
|
||||
double x_skew = 0;
|
||||
double x_kurtosis = -6./5;
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
}
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef std::mt19937_64 G;
|
||||
G g;
|
||||
double b[] = {10, 14, 16, 17};
|
||||
double p[] = {0, 62.5, 12.5};
|
||||
const size_t Np = sizeof(p) / sizeof(p[0]);
|
||||
D d(b, b+Np+1, p);
|
||||
const int N = 1000000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(d.min() <= v && v < d.max());
|
||||
u.push_back(v);
|
||||
}
|
||||
std::vector<double> prob(std::begin(p), std::end(p));
|
||||
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
|
||||
for (int i = 0; i < prob.size(); ++i)
|
||||
prob[i] /= s;
|
||||
std::sort(u.begin(), u.end());
|
||||
for (int i = 0; i < Np; ++i)
|
||||
{
|
||||
typedef std::vector<D::result_type>::iterator I;
|
||||
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
|
||||
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
|
||||
const size_t Ni = ub - lb;
|
||||
if (prob[i] == 0)
|
||||
assert(Ni == 0);
|
||||
else
|
||||
{
|
||||
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
|
||||
double mean = std::accumulate(lb, ub, 0.0) / Ni;
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (I j = lb; j != ub; ++j)
|
||||
{
|
||||
double d = (*j - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= Ni;
|
||||
double dev = std::sqrt(var);
|
||||
skew /= Ni * dev * var;
|
||||
kurtosis /= Ni * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = (b[i+1] + b[i]) / 2;
|
||||
double x_var = sqr(b[i+1] - b[i]) / 12;
|
||||
double x_skew = 0;
|
||||
double x_kurtosis = -6./5;
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
}
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef std::mt19937_64 G;
|
||||
G g;
|
||||
double b[] = {10, 14, 16, 17};
|
||||
double p[] = {25, 0, 12.5};
|
||||
const size_t Np = sizeof(p) / sizeof(p[0]);
|
||||
D d(b, b+Np+1, p);
|
||||
const int N = 1000000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(d.min() <= v && v < d.max());
|
||||
u.push_back(v);
|
||||
}
|
||||
std::vector<double> prob(std::begin(p), std::end(p));
|
||||
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
|
||||
for (int i = 0; i < prob.size(); ++i)
|
||||
prob[i] /= s;
|
||||
std::sort(u.begin(), u.end());
|
||||
for (int i = 0; i < Np; ++i)
|
||||
{
|
||||
typedef std::vector<D::result_type>::iterator I;
|
||||
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
|
||||
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
|
||||
const size_t Ni = ub - lb;
|
||||
if (prob[i] == 0)
|
||||
assert(Ni == 0);
|
||||
else
|
||||
{
|
||||
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
|
||||
double mean = std::accumulate(lb, ub, 0.0) / Ni;
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (I j = lb; j != ub; ++j)
|
||||
{
|
||||
double d = (*j - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= Ni;
|
||||
double dev = std::sqrt(var);
|
||||
skew /= Ni * dev * var;
|
||||
kurtosis /= Ni * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = (b[i+1] + b[i]) / 2;
|
||||
double x_var = sqr(b[i+1] - b[i]) / 12;
|
||||
double x_skew = 0;
|
||||
double x_kurtosis = -6./5;
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
}
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef std::mt19937_64 G;
|
||||
G g;
|
||||
double b[] = {10, 14, 16, 17};
|
||||
double p[] = {25, 62.5, 0};
|
||||
const size_t Np = sizeof(p) / sizeof(p[0]);
|
||||
D d(b, b+Np+1, p);
|
||||
const int N = 1000000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(d.min() <= v && v < d.max());
|
||||
u.push_back(v);
|
||||
}
|
||||
std::vector<double> prob(std::begin(p), std::end(p));
|
||||
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
|
||||
for (int i = 0; i < prob.size(); ++i)
|
||||
prob[i] /= s;
|
||||
std::sort(u.begin(), u.end());
|
||||
for (int i = 0; i < Np; ++i)
|
||||
{
|
||||
typedef std::vector<D::result_type>::iterator I;
|
||||
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
|
||||
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
|
||||
const size_t Ni = ub - lb;
|
||||
if (prob[i] == 0)
|
||||
assert(Ni == 0);
|
||||
else
|
||||
{
|
||||
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
|
||||
double mean = std::accumulate(lb, ub, 0.0) / Ni;
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (I j = lb; j != ub; ++j)
|
||||
{
|
||||
double d = (*j - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= Ni;
|
||||
double dev = std::sqrt(var);
|
||||
skew /= Ni * dev * var;
|
||||
kurtosis /= Ni * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = (b[i+1] + b[i]) / 2;
|
||||
double x_var = sqr(b[i+1] - b[i]) / 12;
|
||||
double x_skew = 0;
|
||||
double x_kurtosis = -6./5;
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
}
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef std::mt19937_64 G;
|
||||
G g;
|
||||
double b[] = {10, 14, 16, 17};
|
||||
double p[] = {25, 0, 0};
|
||||
const size_t Np = sizeof(p) / sizeof(p[0]);
|
||||
D d(b, b+Np+1, p);
|
||||
const int N = 100000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(d.min() <= v && v < d.max());
|
||||
u.push_back(v);
|
||||
}
|
||||
std::vector<double> prob(std::begin(p), std::end(p));
|
||||
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
|
||||
for (int i = 0; i < prob.size(); ++i)
|
||||
prob[i] /= s;
|
||||
std::sort(u.begin(), u.end());
|
||||
for (int i = 0; i < Np; ++i)
|
||||
{
|
||||
typedef std::vector<D::result_type>::iterator I;
|
||||
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
|
||||
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
|
||||
const size_t Ni = ub - lb;
|
||||
if (prob[i] == 0)
|
||||
assert(Ni == 0);
|
||||
else
|
||||
{
|
||||
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
|
||||
double mean = std::accumulate(lb, ub, 0.0) / Ni;
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (I j = lb; j != ub; ++j)
|
||||
{
|
||||
double d = (*j - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= Ni;
|
||||
double dev = std::sqrt(var);
|
||||
skew /= Ni * dev * var;
|
||||
kurtosis /= Ni * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = (b[i+1] + b[i]) / 2;
|
||||
double x_var = sqr(b[i+1] - b[i]) / 12;
|
||||
double x_skew = 0;
|
||||
double x_kurtosis = -6./5;
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
}
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef std::mt19937_64 G;
|
||||
G g;
|
||||
double b[] = {10, 14, 16, 17};
|
||||
double p[] = {0, 25, 0};
|
||||
const size_t Np = sizeof(p) / sizeof(p[0]);
|
||||
D d(b, b+Np+1, p);
|
||||
const int N = 100000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(d.min() <= v && v < d.max());
|
||||
u.push_back(v);
|
||||
}
|
||||
std::vector<double> prob(std::begin(p), std::end(p));
|
||||
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
|
||||
for (int i = 0; i < prob.size(); ++i)
|
||||
prob[i] /= s;
|
||||
std::sort(u.begin(), u.end());
|
||||
for (int i = 0; i < Np; ++i)
|
||||
{
|
||||
typedef std::vector<D::result_type>::iterator I;
|
||||
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
|
||||
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
|
||||
const size_t Ni = ub - lb;
|
||||
if (prob[i] == 0)
|
||||
assert(Ni == 0);
|
||||
else
|
||||
{
|
||||
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
|
||||
double mean = std::accumulate(lb, ub, 0.0) / Ni;
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (I j = lb; j != ub; ++j)
|
||||
{
|
||||
double d = (*j - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= Ni;
|
||||
double dev = std::sqrt(var);
|
||||
skew /= Ni * dev * var;
|
||||
kurtosis /= Ni * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = (b[i+1] + b[i]) / 2;
|
||||
double x_var = sqr(b[i+1] - b[i]) / 12;
|
||||
double x_skew = 0;
|
||||
double x_kurtosis = -6./5;
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
}
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef std::mt19937_64 G;
|
||||
G g;
|
||||
double b[] = {10, 14, 16, 17};
|
||||
double p[] = {0, 0, 1};
|
||||
const size_t Np = sizeof(p) / sizeof(p[0]);
|
||||
D d(b, b+Np+1, p);
|
||||
const int N = 100000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(d.min() <= v && v < d.max());
|
||||
u.push_back(v);
|
||||
}
|
||||
std::vector<double> prob(std::begin(p), std::end(p));
|
||||
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
|
||||
for (int i = 0; i < prob.size(); ++i)
|
||||
prob[i] /= s;
|
||||
std::sort(u.begin(), u.end());
|
||||
for (int i = 0; i < Np; ++i)
|
||||
{
|
||||
typedef std::vector<D::result_type>::iterator I;
|
||||
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
|
||||
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
|
||||
const size_t Ni = ub - lb;
|
||||
if (prob[i] == 0)
|
||||
assert(Ni == 0);
|
||||
else
|
||||
{
|
||||
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
|
||||
double mean = std::accumulate(lb, ub, 0.0) / Ni;
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (I j = lb; j != ub; ++j)
|
||||
{
|
||||
double d = (*j - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= Ni;
|
||||
double dev = std::sqrt(var);
|
||||
skew /= Ni * dev * var;
|
||||
kurtosis /= Ni * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = (b[i+1] + b[i]) / 2;
|
||||
double x_var = sqr(b[i+1] - b[i]) / 12;
|
||||
double x_skew = 0;
|
||||
double x_kurtosis = -6./5;
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
}
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef std::mt19937_64 G;
|
||||
G g;
|
||||
double b[] = {10, 14, 16};
|
||||
double p[] = {75, 25};
|
||||
const size_t Np = sizeof(p) / sizeof(p[0]);
|
||||
D d(b, b+Np+1, p);
|
||||
const int N = 100000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(d.min() <= v && v < d.max());
|
||||
u.push_back(v);
|
||||
}
|
||||
std::vector<double> prob(std::begin(p), std::end(p));
|
||||
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
|
||||
for (int i = 0; i < prob.size(); ++i)
|
||||
prob[i] /= s;
|
||||
std::sort(u.begin(), u.end());
|
||||
for (int i = 0; i < Np; ++i)
|
||||
{
|
||||
typedef std::vector<D::result_type>::iterator I;
|
||||
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
|
||||
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
|
||||
const size_t Ni = ub - lb;
|
||||
if (prob[i] == 0)
|
||||
assert(Ni == 0);
|
||||
else
|
||||
{
|
||||
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
|
||||
double mean = std::accumulate(lb, ub, 0.0) / Ni;
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (I j = lb; j != ub; ++j)
|
||||
{
|
||||
double d = (*j - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= Ni;
|
||||
double dev = std::sqrt(var);
|
||||
skew /= Ni * dev * var;
|
||||
kurtosis /= Ni * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = (b[i+1] + b[i]) / 2;
|
||||
double x_var = sqr(b[i+1] - b[i]) / 12;
|
||||
double x_skew = 0;
|
||||
double x_kurtosis = -6./5;
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
}
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef std::mt19937_64 G;
|
||||
G g;
|
||||
double b[] = {10, 14, 16};
|
||||
double p[] = {0, 25};
|
||||
const size_t Np = sizeof(p) / sizeof(p[0]);
|
||||
D d(b, b+Np+1, p);
|
||||
const int N = 100000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(d.min() <= v && v < d.max());
|
||||
u.push_back(v);
|
||||
}
|
||||
std::vector<double> prob(std::begin(p), std::end(p));
|
||||
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
|
||||
for (int i = 0; i < prob.size(); ++i)
|
||||
prob[i] /= s;
|
||||
std::sort(u.begin(), u.end());
|
||||
for (int i = 0; i < Np; ++i)
|
||||
{
|
||||
typedef std::vector<D::result_type>::iterator I;
|
||||
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
|
||||
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
|
||||
const size_t Ni = ub - lb;
|
||||
if (prob[i] == 0)
|
||||
assert(Ni == 0);
|
||||
else
|
||||
{
|
||||
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
|
||||
double mean = std::accumulate(lb, ub, 0.0) / Ni;
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (I j = lb; j != ub; ++j)
|
||||
{
|
||||
double d = (*j - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= Ni;
|
||||
double dev = std::sqrt(var);
|
||||
skew /= Ni * dev * var;
|
||||
kurtosis /= Ni * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = (b[i+1] + b[i]) / 2;
|
||||
double x_var = sqr(b[i+1] - b[i]) / 12;
|
||||
double x_skew = 0;
|
||||
double x_kurtosis = -6./5;
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
}
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef std::mt19937_64 G;
|
||||
G g;
|
||||
double b[] = {10, 14, 16};
|
||||
double p[] = {1, 0};
|
||||
const size_t Np = sizeof(p) / sizeof(p[0]);
|
||||
D d(b, b+Np+1, p);
|
||||
const int N = 100000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(d.min() <= v && v < d.max());
|
||||
u.push_back(v);
|
||||
}
|
||||
std::vector<double> prob(std::begin(p), std::end(p));
|
||||
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
|
||||
for (int i = 0; i < prob.size(); ++i)
|
||||
prob[i] /= s;
|
||||
std::sort(u.begin(), u.end());
|
||||
for (int i = 0; i < Np; ++i)
|
||||
{
|
||||
typedef std::vector<D::result_type>::iterator I;
|
||||
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
|
||||
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
|
||||
const size_t Ni = ub - lb;
|
||||
if (prob[i] == 0)
|
||||
assert(Ni == 0);
|
||||
else
|
||||
{
|
||||
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
|
||||
double mean = std::accumulate(lb, ub, 0.0) / Ni;
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (I j = lb; j != ub; ++j)
|
||||
{
|
||||
double d = (*j - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= Ni;
|
||||
double dev = std::sqrt(var);
|
||||
skew /= Ni * dev * var;
|
||||
kurtosis /= Ni * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = (b[i+1] + b[i]) / 2;
|
||||
double x_var = sqr(b[i+1] - b[i]) / 12;
|
||||
double x_skew = 0;
|
||||
double x_kurtosis = -6./5;
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
}
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef std::mt19937_64 G;
|
||||
G g;
|
||||
double b[] = {10, 14};
|
||||
double p[] = {1};
|
||||
const size_t Np = sizeof(p) / sizeof(p[0]);
|
||||
D d(b, b+Np+1, p);
|
||||
const int N = 100000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(d.min() <= v && v < d.max());
|
||||
u.push_back(v);
|
||||
}
|
||||
std::vector<double> prob(std::begin(p), std::end(p));
|
||||
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
|
||||
for (int i = 0; i < prob.size(); ++i)
|
||||
prob[i] /= s;
|
||||
std::sort(u.begin(), u.end());
|
||||
for (int i = 0; i < Np; ++i)
|
||||
{
|
||||
typedef std::vector<D::result_type>::iterator I;
|
||||
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
|
||||
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
|
||||
const size_t Ni = ub - lb;
|
||||
if (prob[i] == 0)
|
||||
assert(Ni == 0);
|
||||
else
|
||||
{
|
||||
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
|
||||
double mean = std::accumulate(lb, ub, 0.0) / Ni;
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (I j = lb; j != ub; ++j)
|
||||
{
|
||||
double d = (*j - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= Ni;
|
||||
double dev = std::sqrt(var);
|
||||
skew /= Ni * dev * var;
|
||||
kurtosis /= Ni * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = (b[i+1] + b[i]) / 2;
|
||||
double x_var = sqr(b[i+1] - b[i]) / 12;
|
||||
double x_skew = 0;
|
||||
double x_kurtosis = -6./5;
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,95 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class piecewise_constant_distribution
|
||||
|
||||
// template<class _URNG> result_type operator()(_URNG& g, const param_type& parm);
|
||||
|
||||
#include <random>
|
||||
#include <vector>
|
||||
#include <iterator>
|
||||
#include <numeric>
|
||||
#include <cassert>
|
||||
|
||||
template <class T>
|
||||
inline
|
||||
T
|
||||
sqr(T x)
|
||||
{
|
||||
return x*x;
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
typedef std::mt19937_64 G;
|
||||
G g;
|
||||
double b[] = {10, 14, 16, 17};
|
||||
double p[] = {25, 62.5, 12.5};
|
||||
const size_t Np = sizeof(p) / sizeof(p[0]);
|
||||
D d;
|
||||
P pa(b, b+Np+1, p);
|
||||
const int N = 1000000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
D::result_type v = d(g, pa);
|
||||
assert(10 <= v && v < 17);
|
||||
u.push_back(v);
|
||||
}
|
||||
std::vector<double> prob(std::begin(p), std::end(p));
|
||||
double s = std::accumulate(prob.begin(), prob.end(), 0.0);
|
||||
for (int i = 0; i < prob.size(); ++i)
|
||||
prob[i] /= s;
|
||||
std::sort(u.begin(), u.end());
|
||||
for (int i = 0; i < Np; ++i)
|
||||
{
|
||||
typedef std::vector<D::result_type>::iterator I;
|
||||
I lb = std::lower_bound(u.begin(), u.end(), b[i]);
|
||||
I ub = std::lower_bound(u.begin(), u.end(), b[i+1]);
|
||||
const size_t Ni = ub - lb;
|
||||
if (prob[i] == 0)
|
||||
assert(Ni == 0);
|
||||
else
|
||||
{
|
||||
assert(std::abs((double)Ni/N - prob[i]) / prob[i] < .01);
|
||||
double mean = std::accumulate(lb, ub, 0.0) / Ni;
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (I j = lb; j != ub; ++j)
|
||||
{
|
||||
double d = (*j - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= Ni;
|
||||
double dev = std::sqrt(var);
|
||||
skew /= Ni * dev * var;
|
||||
kurtosis /= Ni * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = (b[i+1] + b[i]) / 2;
|
||||
double x_var = sqr(b[i+1] - b[i]) / 12;
|
||||
double x_skew = 0;
|
||||
double x_kurtosis = -6./5;
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,32 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class piecewise_constant_distribution
|
||||
|
||||
// param_type param() const;
|
||||
|
||||
#include <random>
|
||||
#include <cassert>
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
double b[] = {10, 14, 16, 17};
|
||||
double p[] = {25, 62.5, 12.5};
|
||||
const size_t Np = sizeof(p) / sizeof(p[0]);
|
||||
P pa(b, b+Np+1, p);
|
||||
D d(pa);
|
||||
assert(d.param() == pa);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,44 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class piecewise_constant_distribution
|
||||
|
||||
// template <class charT, class traits>
|
||||
// basic_ostream<charT, traits>&
|
||||
// operator<<(basic_ostream<charT, traits>& os,
|
||||
// const piecewise_constant_distribution& x);
|
||||
//
|
||||
// template <class charT, class traits>
|
||||
// basic_istream<charT, traits>&
|
||||
// operator>>(basic_istream<charT, traits>& is,
|
||||
// piecewise_constant_distribution& x);
|
||||
|
||||
#include <random>
|
||||
#include <sstream>
|
||||
#include <cassert>
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
double b[] = {10, 14, 16, 17};
|
||||
double p[] = {25, 62.5, 12.5};
|
||||
const size_t Np = sizeof(p) / sizeof(p[0]);
|
||||
D d1(b, b+Np+1, p);
|
||||
std::ostringstream os;
|
||||
os << d1;
|
||||
std::istringstream is(os.str());
|
||||
D d2;
|
||||
is >> d2;
|
||||
assert(d1 == d2);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,30 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class piecewise_constant_distribution
|
||||
|
||||
// result_type max() const;
|
||||
|
||||
#include <random>
|
||||
#include <cassert>
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
double b[] = {10, 14, 16, 17};
|
||||
double p[] = {25, 62.5, 12.5};
|
||||
const size_t Np = sizeof(p) / sizeof(p[0]);
|
||||
D d(b, b+Np+1, p);
|
||||
assert(d.max() == 17);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,30 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class piecewise_constant_distribution
|
||||
|
||||
// result_type min() const;
|
||||
|
||||
#include <random>
|
||||
#include <cassert>
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
double b[] = {10, 14, 16, 17};
|
||||
double p[] = {25, 62.5, 12.5};
|
||||
const size_t Np = sizeof(p) / sizeof(p[0]);
|
||||
D d(b, b+Np+1, p);
|
||||
assert(d.min() == 10);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,34 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class piecewise_constant_distribution
|
||||
// {
|
||||
// class param_type;
|
||||
|
||||
#include <random>
|
||||
#include <limits>
|
||||
#include <cassert>
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
double b[] = {10, 14, 16, 17};
|
||||
double p[] = {25, 62.5, 12.5};
|
||||
const size_t Np = sizeof(p) / sizeof(p[0]);
|
||||
P p0(b, b+Np+1, p);
|
||||
P p1;
|
||||
p1 = p0;
|
||||
assert(p1 == p0);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,33 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class piecewise_constant_distribution
|
||||
// {
|
||||
// class param_type;
|
||||
|
||||
#include <random>
|
||||
#include <limits>
|
||||
#include <cassert>
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
double b[] = {10, 14, 16, 17};
|
||||
double p[] = {25, 62.5, 12.5};
|
||||
const size_t Np = sizeof(p) / sizeof(p[0]);
|
||||
P p0(b, b+Np+1, p);
|
||||
P p1 = p0;
|
||||
assert(p1 == p0);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,34 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class piecewise_constant_distribution
|
||||
|
||||
// param_type();
|
||||
|
||||
#include <random>
|
||||
#include <cassert>
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
P pa;
|
||||
std::vector<double> iv = pa.intervals();
|
||||
assert(iv.size() == 2);
|
||||
assert(iv[0] == 0);
|
||||
assert(iv[1] == 1);
|
||||
std::vector<double> dn = pa.densities();
|
||||
assert(dn.size() == 1);
|
||||
assert(dn[0] == 1);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,67 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class piecewise_constant_distribution
|
||||
|
||||
// template<class UnaryOperation>
|
||||
// param_type(size_t nw, double xmin, double xmax,
|
||||
// UnaryOperation fw);
|
||||
|
||||
#include <random>
|
||||
#include <cassert>
|
||||
|
||||
double fw(double x)
|
||||
{
|
||||
return 2*x;
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
P pa(0, 0, 1, fw);
|
||||
std::vector<double> iv = pa.intervals();
|
||||
assert(iv.size() == 2);
|
||||
assert(iv[0] == 0);
|
||||
assert(iv[1] == 1);
|
||||
std::vector<double> dn = pa.densities();
|
||||
assert(dn.size() == 1);
|
||||
assert(dn[0] == 1);
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
P pa(1, 10, 12, fw);
|
||||
std::vector<double> iv = pa.intervals();
|
||||
assert(iv.size() == 2);
|
||||
assert(iv[0] == 10);
|
||||
assert(iv[1] == 12);
|
||||
std::vector<double> dn = pa.densities();
|
||||
assert(dn.size() == 1);
|
||||
assert(dn[0] == 0.5);
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
P pa(2, 6, 14, fw);
|
||||
std::vector<double> iv = pa.intervals();
|
||||
assert(iv.size() == 3);
|
||||
assert(iv[0] == 6);
|
||||
assert(iv[1] == 10);
|
||||
assert(iv[2] == 14);
|
||||
std::vector<double> dn = pa.densities();
|
||||
assert(dn.size() == 2);
|
||||
assert(dn[0] == 0.1);
|
||||
assert(dn[1] == 0.15);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,79 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class piecewise_constant_distribution
|
||||
|
||||
// param_type(initializer_list<result_type> bl, UnaryOperation fw);
|
||||
|
||||
#include <random>
|
||||
#include <cassert>
|
||||
|
||||
double f(double x)
|
||||
{
|
||||
return x*2;
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
#ifdef _LIBCPP_MOVE
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
P pa({}, f);
|
||||
std::vector<double> iv = pa.intervals();
|
||||
assert(iv.size() == 2);
|
||||
assert(iv[0] == 0);
|
||||
assert(iv[1] == 1);
|
||||
std::vector<double> dn = pa.densities();
|
||||
assert(dn.size() == 1);
|
||||
assert(dn[0] == 1);
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
P pa({12}, f);
|
||||
std::vector<double> iv = pa.intervals();
|
||||
assert(iv.size() == 2);
|
||||
assert(iv[0] == 0);
|
||||
assert(iv[1] == 1);
|
||||
std::vector<double> dn = pa.densities();
|
||||
assert(dn.size() == 1);
|
||||
assert(dn[0] == 1);
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
P pa({12, 14}, f);
|
||||
std::vector<double> iv = pa.intervals();
|
||||
assert(iv.size() == 2);
|
||||
assert(iv[0] == 12);
|
||||
assert(iv[1] == 14);
|
||||
std::vector<double> dn = pa.densities();
|
||||
assert(dn.size() == 1);
|
||||
assert(dn[0] == 0.5);
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
P pa({5.5, 7.5, 11.5}, f);
|
||||
std::vector<double> iv = pa.intervals();
|
||||
assert(iv.size() == 3);
|
||||
assert(iv[0] == 5.5);
|
||||
assert(iv[1] == 7.5);
|
||||
assert(iv[2] == 11.5);
|
||||
std::vector<double> dn = pa.densities();
|
||||
assert(dn.size() == 2);
|
||||
assert(dn[0] == 0.203125);
|
||||
assert(dn[1] == 0.1484375);
|
||||
}
|
||||
#endif
|
||||
}
|
|
@ -0,0 +1,100 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class piecewise_constant_distribution
|
||||
|
||||
// template<class InputIterator>
|
||||
// param_type(InputIteratorB firstB, InputIteratorB lastB,
|
||||
// InputIteratorW firstW);
|
||||
|
||||
#include <random>
|
||||
#include <cassert>
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
double b[] = {10};
|
||||
double p[] = {12};
|
||||
P pa(b, b, p);
|
||||
std::vector<double> iv = pa.intervals();
|
||||
assert(iv.size() == 2);
|
||||
assert(iv[0] == 0);
|
||||
assert(iv[1] == 1);
|
||||
std::vector<double> dn = pa.densities();
|
||||
assert(dn.size() == 1);
|
||||
assert(dn[0] == 1);
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
double b[] = {10};
|
||||
double p[] = {12};
|
||||
P pa(b, b+1, p);
|
||||
std::vector<double> iv = pa.intervals();
|
||||
assert(iv.size() == 2);
|
||||
assert(iv[0] == 0);
|
||||
assert(iv[1] == 1);
|
||||
std::vector<double> dn = pa.densities();
|
||||
assert(dn.size() == 1);
|
||||
assert(dn[0] == 1);
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
double b[] = {10, 15};
|
||||
double p[] = {12};
|
||||
P pa(b, b+2, p);
|
||||
std::vector<double> iv = pa.intervals();
|
||||
assert(iv.size() == 2);
|
||||
assert(iv[0] == 10);
|
||||
assert(iv[1] == 15);
|
||||
std::vector<double> dn = pa.densities();
|
||||
assert(dn.size() == 1);
|
||||
assert(dn[0] == 1/5.);
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
double b[] = {10, 15, 16};
|
||||
double p[] = {.25, .75};
|
||||
P pa(b, b+3, p);
|
||||
std::vector<double> iv = pa.intervals();
|
||||
assert(iv.size() == 3);
|
||||
assert(iv[0] == 10);
|
||||
assert(iv[1] == 15);
|
||||
assert(iv[2] == 16);
|
||||
std::vector<double> dn = pa.densities();
|
||||
assert(dn.size() == 2);
|
||||
assert(dn[0] == .25/5.);
|
||||
assert(dn[1] == .75);
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
double b[] = {10, 14, 16, 17};
|
||||
double p[] = {25, 62.5, 12.5};
|
||||
P pa(b, b+4, p);
|
||||
std::vector<double> iv = pa.intervals();
|
||||
assert(iv.size() == 4);
|
||||
assert(iv[0] == 10);
|
||||
assert(iv[1] == 14);
|
||||
assert(iv[2] == 16);
|
||||
assert(iv[3] == 17);
|
||||
std::vector<double> dn = pa.densities();
|
||||
assert(dn.size() == 3);
|
||||
assert(dn[0] == .0625);
|
||||
assert(dn[1] == .3125);
|
||||
assert(dn[2] == .125);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,41 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class piecewise_constant_distribution
|
||||
// {
|
||||
// class param_type;
|
||||
|
||||
#include <random>
|
||||
#include <limits>
|
||||
#include <cassert>
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
double b[] = {10, 14, 16, 17};
|
||||
double p[] = {25, 62.5, 12.5};
|
||||
P p1(b, b+4, p);
|
||||
P p2(b, b+4, p);
|
||||
assert(p1 == p2);
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
double b[] = {10, 14, 16, 17};
|
||||
double p[] = {25, 62.5, 12.5};
|
||||
P p1(b, b+3, p);
|
||||
P p2(b, b+4, p);
|
||||
assert(p1 != p2);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,28 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class piecewise_constant_distribution
|
||||
// {
|
||||
// class param_type;
|
||||
|
||||
#include <random>
|
||||
#include <type_traits>
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef D::param_type param_type;
|
||||
typedef param_type::distribution_type distribution_type;
|
||||
static_assert((std::is_same<D, distribution_type>::value), "");
|
||||
}
|
||||
}
|
|
@ -0,0 +1,32 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class piecewise_constant_distribution
|
||||
|
||||
// void param(const param_type& parm);
|
||||
|
||||
#include <random>
|
||||
#include <cassert>
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
double b[] = {10, 14, 16, 17};
|
||||
double p[] = {25, 62.5, 12.5};
|
||||
P pa(b, b+4, p);
|
||||
D d;
|
||||
d.param(pa);
|
||||
assert(d.param() == pa);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,32 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class piecewise_constant_distribution
|
||||
// {
|
||||
// typedef bool result_type;
|
||||
|
||||
#include <random>
|
||||
#include <type_traits>
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<> D;
|
||||
typedef D::result_type result_type;
|
||||
static_assert((std::is_same<result_type, double>::value), "");
|
||||
}
|
||||
{
|
||||
typedef std::piecewise_constant_distribution<float> D;
|
||||
typedef D::result_type result_type;
|
||||
static_assert((std::is_same<result_type, float>::value), "");
|
||||
}
|
||||
}
|
|
@ -65,10 +65,10 @@ int main()
|
|||
double x_skew = 0;
|
||||
double x_kurtosis = -6. * (sqr((double)d.b() - d.a() + 1) + 1) /
|
||||
(5. * (sqr((double)d.b() - d.a() + 1) - 1));
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::uniform_int_distribution<> D;
|
||||
|
@ -106,10 +106,10 @@ int main()
|
|||
double x_skew = 0;
|
||||
double x_kurtosis = -6. * (sqr((double)d.b() - d.a() + 1) + 1) /
|
||||
(5. * (sqr((double)d.b() - d.a() + 1) - 1));
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::uniform_int_distribution<> D;
|
||||
|
@ -147,10 +147,10 @@ int main()
|
|||
double x_skew = 0;
|
||||
double x_kurtosis = -6. * (sqr((double)d.b() - d.a() + 1) + 1) /
|
||||
(5. * (sqr((double)d.b() - d.a() + 1) - 1));
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::uniform_int_distribution<> D;
|
||||
|
@ -188,10 +188,10 @@ int main()
|
|||
double x_skew = 0;
|
||||
double x_kurtosis = -6. * (sqr((double)d.b() - d.a() + 1) + 1) /
|
||||
(5. * (sqr((double)d.b() - d.a() + 1) - 1));
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::uniform_int_distribution<> D;
|
||||
|
@ -229,10 +229,10 @@ int main()
|
|||
double x_skew = 0;
|
||||
double x_kurtosis = -6. * (sqr((double)d.b() - d.a() + 1) + 1) /
|
||||
(5. * (sqr((double)d.b() - d.a() + 1) - 1));
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::uniform_int_distribution<> D;
|
||||
|
@ -270,10 +270,10 @@ int main()
|
|||
double x_skew = 0;
|
||||
double x_kurtosis = -6. * (sqr((double)d.b() - d.a() + 1) + 1) /
|
||||
(5. * (sqr((double)d.b() - d.a() + 1) - 1));
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::uniform_int_distribution<> D;
|
||||
|
@ -311,10 +311,10 @@ int main()
|
|||
double x_skew = 0;
|
||||
double x_kurtosis = -6. * (sqr((double)d.b() - d.a() + 1) + 1) /
|
||||
(5. * (sqr((double)d.b() - d.a() + 1) - 1));
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::uniform_int_distribution<> D;
|
||||
|
@ -352,10 +352,10 @@ int main()
|
|||
double x_skew = 0;
|
||||
double x_kurtosis = -6. * (sqr((double)d.b() - d.a() + 1) + 1) /
|
||||
(5. * (sqr((double)d.b() - d.a() + 1) - 1));
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::uniform_int_distribution<> D;
|
||||
|
@ -393,10 +393,10 @@ int main()
|
|||
double x_skew = 0;
|
||||
double x_kurtosis = -6. * (sqr((double)d.b() - d.a() + 1) + 1) /
|
||||
(5. * (sqr((double)d.b() - d.a() + 1) - 1));
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::uniform_int_distribution<> D;
|
||||
|
@ -445,9 +445,9 @@ int main()
|
|||
double x_skew = 0;
|
||||
double x_kurtosis = -6. * (sqr((double)d.b() - d.a() + 1) + 1) /
|
||||
(5. * (sqr((double)d.b() - d.a() + 1) - 1));
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -67,9 +67,9 @@ int main()
|
|||
double x_skew = 0;
|
||||
double x_kurtosis = -6. * (sqr((double)p.b() - p.a() + 1) + 1) /
|
||||
(5. * (sqr((double)p.b() - p.a() + 1) - 1));
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -64,10 +64,10 @@ int main()
|
|||
D::result_type x_var = sqr(d.b() - d.a()) / 12;
|
||||
D::result_type x_skew = 0;
|
||||
D::result_type x_kurtosis = -6./5;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::uniform_real_distribution<> D;
|
||||
|
@ -104,10 +104,10 @@ int main()
|
|||
D::result_type x_var = sqr(d.b() - d.a()) / 12;
|
||||
D::result_type x_skew = 0;
|
||||
D::result_type x_kurtosis = -6./5;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::uniform_real_distribution<> D;
|
||||
|
@ -144,10 +144,10 @@ int main()
|
|||
D::result_type x_var = sqr(d.b() - d.a()) / 12;
|
||||
D::result_type x_skew = 0;
|
||||
D::result_type x_kurtosis = -6./5;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::uniform_real_distribution<> D;
|
||||
|
@ -184,10 +184,10 @@ int main()
|
|||
D::result_type x_var = sqr(d.b() - d.a()) / 12;
|
||||
D::result_type x_skew = 0;
|
||||
D::result_type x_kurtosis = -6./5;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::uniform_real_distribution<> D;
|
||||
|
@ -224,10 +224,10 @@ int main()
|
|||
D::result_type x_var = sqr(d.b() - d.a()) / 12;
|
||||
D::result_type x_skew = 0;
|
||||
D::result_type x_kurtosis = -6./5;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.02);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::uniform_real_distribution<> D;
|
||||
|
@ -264,10 +264,10 @@ int main()
|
|||
D::result_type x_var = sqr(d.b() - d.a()) / 12;
|
||||
D::result_type x_skew = 0;
|
||||
D::result_type x_kurtosis = -6./5;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::uniform_real_distribution<> D;
|
||||
|
@ -304,10 +304,10 @@ int main()
|
|||
D::result_type x_var = sqr(d.b() - d.a()) / 12;
|
||||
D::result_type x_skew = 0;
|
||||
D::result_type x_kurtosis = -6./5;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::uniform_real_distribution<> D;
|
||||
|
@ -344,10 +344,10 @@ int main()
|
|||
D::result_type x_var = sqr(d.b() - d.a()) / 12;
|
||||
D::result_type x_skew = 0;
|
||||
D::result_type x_kurtosis = -6./5;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::uniform_real_distribution<> D;
|
||||
|
@ -384,10 +384,10 @@ int main()
|
|||
D::result_type x_var = sqr(d.b() - d.a()) / 12;
|
||||
D::result_type x_skew = 0;
|
||||
D::result_type x_kurtosis = -6./5;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::uniform_real_distribution<> D;
|
||||
|
@ -425,9 +425,9 @@ int main()
|
|||
D::result_type x_skew = 0;
|
||||
D::result_type x_kurtosis = -6./5;
|
||||
assert(std::abs(mean - x_mean) < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
{
|
||||
typedef std::uniform_real_distribution<> D;
|
||||
|
@ -464,9 +464,9 @@ int main()
|
|||
D::result_type x_var = sqr(d.b() - d.a()) / 12;
|
||||
D::result_type x_skew = 0;
|
||||
D::result_type x_kurtosis = -6./5;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -66,9 +66,9 @@ int main()
|
|||
D::result_type x_var = sqr(p.b() - p.a()) / 12;
|
||||
D::result_type x_skew = 0;
|
||||
D::result_type x_kurtosis = -6./5;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
||||
assert(std::abs((var - x_var) / x_var) < 0.01);
|
||||
assert(std::abs(skew - x_skew) < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.01);
|
||||
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -20,5 +20,5 @@ int main()
|
|||
{
|
||||
std::default_random_engine e;
|
||||
e.discard(9999);
|
||||
assert(e() == 1043618065u);
|
||||
assert(e() == 399268537u);
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue