Remove CompositeType class.

The existence of the class is more confusing than helpful, I think; the
commonality is mostly just "GEP is legal", which can be queried using
APIs on GetElementPtrInst.

Differential Revision: https://reviews.llvm.org/D75660
This commit is contained in:
Eli Friedman 2020-03-03 15:42:16 -08:00
parent c682a605eb
commit e24e95fe90
17 changed files with 128 additions and 151 deletions

View File

@ -199,7 +199,7 @@ static void test_codegen_fns(MyASTConsumer *my) {
dbgs() << "\n";
}
llvm::CompositeType* structTy = dyn_cast<CompositeType>(llvmTy);
auto* structTy = dyn_cast<llvm::StructType>(llvmTy);
ASSERT_TRUE(structTy != NULL);
// Check getLLVMFieldNumber

View File

@ -392,7 +392,7 @@ public:
/// use operands.
class ConstantAggregate : public Constant {
protected:
ConstantAggregate(CompositeType *T, ValueTy VT, ArrayRef<Constant *> V);
ConstantAggregate(Type *T, ValueTy VT, ArrayRef<Constant *> V);
public:
/// Transparently provide more efficient getOperand methods.

View File

@ -195,26 +195,6 @@ private:
Value *Callee = nullptr;
};
/// Common super class of ArrayType, StructType and VectorType.
class CompositeType : public Type {
protected:
explicit CompositeType(LLVMContext &C, TypeID tid) : Type(C, tid) {}
public:
/// Given an index value into the type, return the type of the element.
Type *getTypeAtIndex(const Value *V) const;
Type *getTypeAtIndex(unsigned Idx) const;
bool indexValid(const Value *V) const;
bool indexValid(unsigned Idx) const;
/// Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(const Type *T) {
return T->getTypeID() == ArrayTyID ||
T->getTypeID() == StructTyID ||
T->getTypeID() == VectorTyID;
}
};
/// Class to represent struct types. There are two different kinds of struct
/// types: Literal structs and Identified structs.
///
@ -235,8 +215,8 @@ public:
/// elements as defined by DataLayout (which is required to match what the code
/// generator for a target expects).
///
class StructType : public CompositeType {
StructType(LLVMContext &C) : CompositeType(C, StructTyID) {}
class StructType : public Type {
StructType(LLVMContext &C) : Type(C, StructTyID) {}
enum {
/// This is the contents of the SubClassData field.
@ -350,6 +330,11 @@ public:
assert(N < NumContainedTys && "Element number out of range!");
return ContainedTys[N];
}
/// Given an index value into the type, return the type of the element.
Type *getTypeAtIndex(const Value *V) const;
Type *getTypeAtIndex(unsigned N) const { return getElementType(N); }
bool indexValid(const Value *V) const;
bool indexValid(unsigned Idx) const { return Idx < getNumElements(); }
/// Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(const Type *T) {
@ -375,14 +360,14 @@ Type *Type::getStructElementType(unsigned N) const {
/// for use of SIMD instructions. SequentialType holds the common features of
/// both, which stem from the fact that both lay their components out in memory
/// identically.
class SequentialType : public CompositeType {
class SequentialType : public Type {
Type *ContainedType; ///< Storage for the single contained type.
uint64_t NumElements;
protected:
SequentialType(TypeID TID, Type *ElType, uint64_t NumElements)
: CompositeType(ElType->getContext(), TID), ContainedType(ElType),
NumElements(NumElements) {
: Type(ElType->getContext(), TID), ContainedType(ElType),
NumElements(NumElements) {
ContainedTys = &ContainedType;
NumContainedTys = 1;
}

View File

@ -1008,16 +1008,23 @@ public:
return getPointerAddressSpace();
}
/// Returns the type of the element that would be loaded with
/// a load instruction with the specified parameters.
/// Returns the result type of a getelementptr with the given source
/// element type and indexes.
///
/// Null is returned if the indices are invalid for the specified
/// pointer type.
///
/// source element type.
static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
/// Return the type of the element at the given index of an indexable
/// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})".
///
/// Returns null if the type can't be indexed, or the given index is not
/// legal for the given type.
static Type *getTypeAtIndex(Type *Ty, Value *Idx);
static Type *getTypeAtIndex(Type *Ty, uint64_t Idx);
inline op_iterator idx_begin() { return op_begin()+1; }
inline const_op_iterator idx_begin() const { return op_begin()+1; }
inline op_iterator idx_end() { return op_end(); }

View File

@ -395,7 +395,7 @@ static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
/// For an aggregate type, determine whether a given index is within bounds or
/// not.
static bool indexReallyValid(CompositeType *T, unsigned Idx) {
static bool indexReallyValid(Type *T, unsigned Idx) {
if (ArrayType *AT = dyn_cast<ArrayType>(T))
return Idx < AT->getNumElements();
@ -419,7 +419,7 @@ static bool indexReallyValid(CompositeType *T, unsigned Idx) {
/// function again on a finished iterator will repeatedly return
/// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
/// aggregate or a non-aggregate
static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes,
static bool advanceToNextLeafType(SmallVectorImpl<Type *> &SubTypes,
SmallVectorImpl<unsigned> &Path) {
// First march back up the tree until we can successfully increment one of the
// coordinates in Path.
@ -435,16 +435,16 @@ static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes,
// We know there's *some* valid leaf now, so march back down the tree picking
// out the left-most element at each node.
++Path.back();
Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back());
Type *DeeperType =
ExtractValueInst::getIndexedType(SubTypes.back(), Path.back());
while (DeeperType->isAggregateType()) {
CompositeType *CT = cast<CompositeType>(DeeperType);
if (!indexReallyValid(CT, 0))
if (!indexReallyValid(DeeperType, 0))
return true;
SubTypes.push_back(CT);
SubTypes.push_back(DeeperType);
Path.push_back(0);
DeeperType = CT->getTypeAtIndex(0U);
DeeperType = ExtractValueInst::getIndexedType(DeeperType, 0);
}
return true;
@ -460,17 +460,15 @@ static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes,
/// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
/// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
/// i32 in that type.
static bool firstRealType(Type *Next,
SmallVectorImpl<CompositeType *> &SubTypes,
static bool firstRealType(Type *Next, SmallVectorImpl<Type *> &SubTypes,
SmallVectorImpl<unsigned> &Path) {
// First initialise the iterator components to the first "leaf" node
// (i.e. node with no valid sub-type at any index, so {} does count as a leaf
// despite nominally being an aggregate).
while (Next->isAggregateType() &&
indexReallyValid(cast<CompositeType>(Next), 0)) {
SubTypes.push_back(cast<CompositeType>(Next));
while (Type *FirstInner = ExtractValueInst::getIndexedType(Next, 0)) {
SubTypes.push_back(Next);
Path.push_back(0);
Next = cast<CompositeType>(Next)->getTypeAtIndex(0U);
Next = FirstInner;
}
// If there's no Path now, Next was originally scalar already (or empty
@ -480,7 +478,8 @@ static bool firstRealType(Type *Next,
// Otherwise, use normal iteration to keep looking through the tree until we
// find a non-aggregate type.
while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) {
while (ExtractValueInst::getIndexedType(SubTypes.back(), Path.back())
->isAggregateType()) {
if (!advanceToNextLeafType(SubTypes, Path))
return false;
}
@ -490,14 +489,15 @@ static bool firstRealType(Type *Next,
/// Set the iterator data-structures to the next non-empty, non-aggregate
/// subtype.
static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes,
static bool nextRealType(SmallVectorImpl<Type *> &SubTypes,
SmallVectorImpl<unsigned> &Path) {
do {
if (!advanceToNextLeafType(SubTypes, Path))
return false;
assert(!Path.empty() && "found a leaf but didn't set the path?");
} while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType());
} while (ExtractValueInst::getIndexedType(SubTypes.back(), Path.back())
->isAggregateType());
return true;
}
@ -669,7 +669,7 @@ bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
}
SmallVector<unsigned, 4> RetPath, CallPath;
SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes;
SmallVector<Type *, 4> RetSubTypes, CallSubTypes;
bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
@ -692,7 +692,8 @@ bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
// We've exhausted the values produced by the tail call instruction, the
// rest are essentially undef. The type doesn't really matter, but we need
// *something*.
Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back());
Type *SlotType =
ExtractValueInst::getIndexedType(RetSubTypes.back(), RetPath.back());
CallVal = UndefValue::get(SlotType);
}

View File

@ -244,20 +244,24 @@ static SourcePred matchScalarInAggregate() {
static SourcePred validInsertValueIndex() {
auto Pred = [](ArrayRef<Value *> Cur, const Value *V) {
auto *CTy = cast<CompositeType>(Cur[0]->getType());
if (auto *CI = dyn_cast<ConstantInt>(V))
if (CI->getBitWidth() == 32 &&
CTy->getTypeAtIndex(CI->getZExtValue()) == Cur[1]->getType())
return true;
if (CI->getBitWidth() == 32) {
Type *Indexed = ExtractValueInst::getIndexedType(Cur[0]->getType(),
CI->getZExtValue());
return Indexed == Cur[1]->getType();
}
return false;
};
auto Make = [](ArrayRef<Value *> Cur, ArrayRef<Type *> Ts) {
std::vector<Constant *> Result;
auto *Int32Ty = Type::getInt32Ty(Cur[0]->getContext());
auto *CTy = cast<CompositeType>(Cur[0]->getType());
for (int I = 0, E = getAggregateNumElements(CTy); I < E; ++I)
if (CTy->getTypeAtIndex(I) == Cur[1]->getType())
auto *BaseTy = Cur[0]->getType();
int I = 0;
while (Type *Indexed = ExtractValueInst::getIndexedType(BaseTy, I)) {
if (Indexed == Cur[1]->getType())
Result.push_back(ConstantInt::get(Int32Ty, I));
++I;
}
return Result;
};
return {Pred, Make};

View File

@ -2389,10 +2389,11 @@ Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C,
SmallVector<Constant *, 8> NewIdxs;
Type *Ty = PointeeTy;
Type *Prev = C->getType();
auto GEPIter = gep_type_begin(PointeeTy, Idxs);
bool Unknown =
!isa<ConstantInt>(Idxs[0]) && !isa<ConstantDataVector>(Idxs[0]);
for (unsigned i = 1, e = Idxs.size(); i != e;
Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
Prev = Ty, Ty = (++GEPIter).getIndexedType(), ++i) {
if (!isa<ConstantInt>(Idxs[i]) && !isa<ConstantDataVector>(Idxs[i])) {
// We don't know if it's in range or not.
Unknown = true;

View File

@ -1047,19 +1047,20 @@ static Constant *getSequenceIfElementsMatch(Constant *C,
return nullptr;
}
ConstantAggregate::ConstantAggregate(CompositeType *T, ValueTy VT,
ConstantAggregate::ConstantAggregate(Type *T, ValueTy VT,
ArrayRef<Constant *> V)
: Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(),
V.size()) {
llvm::copy(V, op_begin());
// Check that types match, unless this is an opaque struct.
if (auto *ST = dyn_cast<StructType>(T))
if (auto *ST = dyn_cast<StructType>(T)) {
if (ST->isOpaque())
return;
for (unsigned I = 0, E = V.size(); I != E; ++I)
assert(V[I]->getType() == T->getTypeAtIndex(I) &&
"Initializer for composite element doesn't match!");
for (unsigned I = 0, E = V.size(); I != E; ++I)
assert(V[I]->getType() == ST->getTypeAtIndex(I) &&
"Initializer for struct element doesn't match!");
}
}
ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)

View File

@ -1659,35 +1659,44 @@ GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
SubclassOptionalData = GEPI.SubclassOptionalData;
}
/// getIndexedType - Returns the type of the element that would be accessed with
/// a gep instruction with the specified parameters.
///
/// The Idxs pointer should point to a continuous piece of memory containing the
/// indices, either as Value* or uint64_t.
///
/// A null type is returned if the indices are invalid for the specified
/// pointer type.
///
template <typename IndexTy>
static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) {
// Handle the special case of the empty set index set, which is always valid.
if (IdxList.empty())
return Agg;
// If there is at least one index, the top level type must be sized, otherwise
// it cannot be 'stepped over'.
if (!Agg->isSized())
return nullptr;
unsigned CurIdx = 1;
for (; CurIdx != IdxList.size(); ++CurIdx) {
CompositeType *CT = dyn_cast<CompositeType>(Agg);
if (!CT || CT->isPointerTy()) return nullptr;
IndexTy Index = IdxList[CurIdx];
if (!CT->indexValid(Index)) return nullptr;
Agg = CT->getTypeAtIndex(Index);
Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, Value *Idx) {
if (auto Struct = dyn_cast<StructType>(Ty)) {
if (!Struct->indexValid(Idx))
return nullptr;
return Struct->getTypeAtIndex(Idx);
}
return CurIdx == IdxList.size() ? Agg : nullptr;
if (!Idx->getType()->isIntOrIntVectorTy())
return nullptr;
if (auto Array = dyn_cast<ArrayType>(Ty))
return Array->getElementType();
if (auto Vector = dyn_cast<VectorType>(Ty))
return Vector->getElementType();
return nullptr;
}
Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, uint64_t Idx) {
if (auto Struct = dyn_cast<StructType>(Ty)) {
if (Idx >= Struct->getNumElements())
return nullptr;
return Struct->getElementType(Idx);
}
if (auto Array = dyn_cast<ArrayType>(Ty))
return Array->getElementType();
if (auto Vector = dyn_cast<VectorType>(Ty))
return Vector->getElementType();
return nullptr;
}
template <typename IndexTy>
static Type *getIndexedTypeInternal(Type *Ty, ArrayRef<IndexTy> IdxList) {
if (IdxList.empty())
return Ty;
for (IndexTy V : IdxList.slice(1)) {
Ty = GetElementPtrInst::getTypeAtIndex(Ty, V);
if (!Ty)
return Ty;
}
return Ty;
}
Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
@ -2220,15 +2229,15 @@ Type *ExtractValueInst::getIndexedType(Type *Agg,
if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
if (Index >= AT->getNumElements())
return nullptr;
Agg = AT->getElementType();
} else if (StructType *ST = dyn_cast<StructType>(Agg)) {
if (Index >= ST->getNumElements())
return nullptr;
Agg = ST->getElementType(Index);
} else {
// Not a valid type to index into.
return nullptr;
}
Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
}
return const_cast<Type*>(Agg);
}

View File

@ -529,52 +529,22 @@ StructType *Module::getTypeByName(StringRef Name) const {
return getContext().pImpl->NamedStructTypes.lookup(Name);
}
//===----------------------------------------------------------------------===//
// CompositeType Implementation
//===----------------------------------------------------------------------===//
Type *CompositeType::getTypeAtIndex(const Value *V) const {
if (auto *STy = dyn_cast<StructType>(this)) {
unsigned Idx =
(unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
assert(indexValid(Idx) && "Invalid structure index!");
return STy->getElementType(Idx);
}
return cast<SequentialType>(this)->getElementType();
Type *StructType::getTypeAtIndex(const Value *V) const {
unsigned Idx = (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
assert(indexValid(Idx) && "Invalid structure index!");
return getElementType(Idx);
}
Type *CompositeType::getTypeAtIndex(unsigned Idx) const{
if (auto *STy = dyn_cast<StructType>(this)) {
assert(indexValid(Idx) && "Invalid structure index!");
return STy->getElementType(Idx);
}
return cast<SequentialType>(this)->getElementType();
}
bool CompositeType::indexValid(const Value *V) const {
if (auto *STy = dyn_cast<StructType>(this)) {
// Structure indexes require (vectors of) 32-bit integer constants. In the
// vector case all of the indices must be equal.
if (!V->getType()->isIntOrIntVectorTy(32))
return false;
const Constant *C = dyn_cast<Constant>(V);
if (C && V->getType()->isVectorTy())
C = C->getSplatValue();
const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
return CU && CU->getZExtValue() < STy->getNumElements();
}
// Sequential types can be indexed by any integer.
return V->getType()->isIntOrIntVectorTy();
}
bool CompositeType::indexValid(unsigned Idx) const {
if (auto *STy = dyn_cast<StructType>(this))
return Idx < STy->getNumElements();
// Sequential types can be indexed by any integer.
return true;
bool StructType::indexValid(const Value *V) const {
// Structure indexes require (vectors of) 32-bit integer constants. In the
// vector case all of the indices must be equal.
if (!V->getType()->isIntOrIntVectorTy(32))
return false;
const Constant *C = dyn_cast<Constant>(V);
if (C && V->getType()->isVectorTy())
C = C->getSplatValue();
const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
return CU && CU->getZExtValue() < getNumElements();
}
//===----------------------------------------------------------------------===//

View File

@ -17079,7 +17079,7 @@ bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
case Intrinsic::arm_mve_vld4q: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
// Conservatively set memVT to the entire set of vectors loaded.
Type *VecTy = cast<CompositeType>(I.getType())->getTypeAtIndex(1);
Type *VecTy = cast<StructType>(I.getType())->getElementType(1);
unsigned Factor = Intrinsic == Intrinsic::arm_mve_vld2q ? 2 : 4;
Info.memVT = EVT::getVectorVT(VecTy->getContext(), MVT::i64, Factor * 2);
Info.ptrVal = I.getArgOperand(0);

View File

@ -295,7 +295,7 @@ doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
ElTy = ElPTy->getElementType();
else
ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(II);
ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, II);
}
// And create a GEP to extract those indices.
V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx");
@ -784,7 +784,7 @@ bool ArgumentPromotionPass::isDenselyPacked(Type *type, const DataLayout &DL) {
if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
return false;
if (!isa<CompositeType>(type))
if (!isa<StructType>(type) && !isa<SequentialType>(type))
return true;
// For homogenous sequential types, check for padding within members.

View File

@ -142,7 +142,7 @@ static bool isLeakCheckerRoot(GlobalVariable *GV) {
E = STy->element_end(); I != E; ++I) {
Type *InnerTy = *I;
if (isa<PointerType>(InnerTy)) return true;
if (isa<CompositeType>(InnerTy))
if (isa<StructType>(InnerTy) || isa<SequentialType>(InnerTy))
Types.push_back(InnerTy);
}
break;

View File

@ -147,10 +147,12 @@ static void RemoveDeadConstant(Constant *C) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
if (!GV->hasLocalLinkage()) return; // Don't delete non-static globals.
GV->eraseFromParent();
}
else if (!isa<Function>(C))
if (isa<CompositeType>(C->getType()))
} else if (!isa<Function>(C)) {
// FIXME: Why does the type of the constant matter here?
if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType()) ||
isa<VectorType>(C->getType()))
C->destroyConstant();
}
// If the constant referenced anything, see if we can delete it as well.
for (Constant *O : Operands)

View File

@ -2421,10 +2421,8 @@ Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
// to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
// This can enhance SROA and other transforms that want type-safe pointers.
unsigned NumZeros = 0;
while (SrcElTy != DstElTy &&
isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
SrcElTy->getNumContainedTypes() /* not "{}" */) {
SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(0U);
while (SrcElTy && SrcElTy != DstElTy) {
SrcElTy = GetElementPtrInst::getTypeAtIndex(SrcElTy, (uint64_t)0);
++NumZeros;
}

View File

@ -1961,10 +1961,9 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
if (J > 0) {
if (J == 1) {
CurTy = Op1->getSourceElementType();
} else if (auto *CT = dyn_cast<CompositeType>(CurTy)) {
CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
} else {
CurTy = nullptr;
CurTy =
GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
}
}
}

View File

@ -3131,7 +3131,7 @@ unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
unsigned N = 1;
Type *EltTy = T;
while (isa<CompositeType>(EltTy)) {
while (isa<StructType>(EltTy) || isa<SequentialType>(EltTy)) {
if (auto *ST = dyn_cast<StructType>(EltTy)) {
// Check that struct is homogeneous.
for (const auto *Ty : ST->elements())