[PowerPC] Improvements for BUILD_VECTOR Vol. 1

This patch corresponds to review:
https://reviews.llvm.org/D25912

This is the first patch in a series of 4 that improve the lowering and combining
for BUILD_VECTOR nodes on PowerPC.

llvm-svn: 288152
This commit is contained in:
Nemanja Ivanovic 2016-11-29 16:11:34 +00:00
parent 9b3ae73fc8
commit df1cb520df
6 changed files with 375 additions and 78 deletions

View File

@ -563,10 +563,6 @@ PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
if (Subtarget.hasP8Altivec())
setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
if (Subtarget.hasVSX())
setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
// Altivec does not contain unordered floating-point compare instructions
setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
@ -676,6 +672,10 @@ PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
setOperationAction(ISD::FABS, MVT::v4f32, Legal);
setOperationAction(ISD::FABS, MVT::v2f64, Legal);
if (Subtarget.hasDirectMove())
setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
}
@ -688,9 +688,6 @@ PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
}
if (Subtarget.isISA3_0() && Subtarget.hasDirectMove())
setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
}
if (Subtarget.hasQPX()) {
@ -7129,14 +7126,55 @@ static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
return DAG.getNode(ISD::BITCAST, dl, VT, T);
}
static bool isNonConstSplatBV(BuildVectorSDNode *BVN, EVT Type) {
if (BVN->isConstant() || BVN->getValueType(0) != Type)
/// Do we have an efficient pattern in a .td file for this node?
///
/// \param V - pointer to the BuildVectorSDNode being matched
/// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
///
/// There are some patterns where it is beneficial to keep a BUILD_VECTOR
/// node as a BUILD_VECTOR node rather than expanding it. The patterns where
/// the opposite is true (expansion is beneficial) are:
/// - The node builds a vector out of integers that are not 32 or 64-bits
/// - The node builds a vector out of constants
/// - The node is a "load-and-splat"
/// In all other cases, we will choose to keep the BUILD_VECTOR.
static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
bool HasDirectMove) {
EVT VecVT = V->getValueType(0);
bool RightType = VecVT == MVT::v2f64 || VecVT == MVT::v4f32 ||
(HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
if (!RightType)
return false;
auto OpZero = BVN->getOperand(0);
for (int i = 1, e = BVN->getNumOperands(); i < e; i++)
if (BVN->getOperand(i) != OpZero)
bool IsSplat = true;
bool IsLoad = false;
SDValue Op0 = V->getOperand(0);
// This function is called in a block that confirms the node is not a constant
// splat. So a constant BUILD_VECTOR here means the vector is built out of
// different constants.
if (V->isConstant())
return false;
for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
if (V->getOperand(i).isUndef())
return false;
return true;
// We want to expand nodes that represent load-and-splat even if the
// loaded value is a floating point truncation or conversion to int.
if (V->getOperand(i).getOpcode() == ISD::LOAD ||
(V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
(V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
(V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
IsLoad = true;
// If the operands are different or the input is not a load and has more
// uses than just this BV node, then it isn't a splat.
if (V->getOperand(i) != Op0 ||
(!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
IsSplat = false;
}
return !(IsSplat && IsLoad);
}
// If this is a case we can't handle, return null and let the default
@ -7261,14 +7299,11 @@ SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
SplatBitSize > 32) {
// We can splat a non-const value on CPU's that implement ISA 3.0
// in two ways: LXVWSX (load and splat) and MTVSRWS(move and splat).
auto OpZero = BVN->getOperand(0);
bool CanLoadAndSplat = OpZero.getOpcode() == ISD::LOAD &&
BVN->isOnlyUserOf(OpZero.getNode());
if (Subtarget.isISA3_0() && !CanLoadAndSplat &&
(isNonConstSplatBV(BVN, MVT::v4i32) ||
isNonConstSplatBV(BVN, MVT::v2i64)))
// BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
// lowered to VSX instructions under certain conditions.
// Without VSX, there is no pattern more efficient than expanding the node.
if (Subtarget.hasVSX() &&
haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove()))
return Op;
return SDValue();
}
@ -7290,8 +7325,20 @@ SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
}
// We have XXSPLTIB for constant splats one byte wide
if (Subtarget.isISA3_0() && Op.getValueType() == MVT::v16i8)
if (Subtarget.hasP9Vector() && SplatSize == 1) {
// This is a splat of 1-byte elements with some elements potentially undef.
// Rather than trying to match undef in the SDAG patterns, ensure that all
// elements are the same constant.
if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) {
SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits,
dl, MVT::i32));
SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops);
if (Op.getValueType() != MVT::v16i8)
return DAG.getBitcast(Op.getValueType(), NewBV);
return NewBV;
}
return Op;
}
// If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
@ -7539,7 +7586,7 @@ SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
// If the source for the shuffle is a scalar_to_vector that came from a
// 32-bit load, it will have used LXVWSX so we don't need to splat again.
if (Subtarget.isISA3_0() &&
if (Subtarget.hasP9Vector() &&
((isLittleEndian && SplatIdx == 3) ||
(!isLittleEndian && SplatIdx == 0))) {
SDValue Src = V1.getOperand(0);

View File

@ -327,6 +327,7 @@ def immZExt16 : PatLeaf<(imm), [{
return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
}], LO16>;
def immSExt8 : ImmLeaf<i32, [{ return isInt<8>(Imm); }]>;
def immSExt5NonZero : ImmLeaf<i32, [{ return Imm && isInt<5>(Imm); }]>;
// imm16Shifted* - These match immediates where the low 16-bits are zero. There
// are two forms: imm16ShiftedSExt and imm16ShiftedZExt. These two forms are

View File

@ -570,18 +570,38 @@ let Uses = [RM] in {
(outs vsfrc:$XT), (ins vsfrc:$XB),
"xscvdpsxds $XT, $XB", IIC_VecFP,
[(set f64:$XT, (PPCfctidz f64:$XB))]>;
let isCodeGenOnly = 1 in
def XSCVDPSXDSs : XX2Form<60, 344,
(outs vssrc:$XT), (ins vssrc:$XB),
"xscvdpsxds $XT, $XB", IIC_VecFP,
[(set f32:$XT, (PPCfctidz f32:$XB))]>;
def XSCVDPSXWS : XX2Form<60, 88,
(outs vsfrc:$XT), (ins vsfrc:$XB),
"xscvdpsxws $XT, $XB", IIC_VecFP,
[(set f64:$XT, (PPCfctiwz f64:$XB))]>;
let isCodeGenOnly = 1 in
def XSCVDPSXWSs : XX2Form<60, 88,
(outs vssrc:$XT), (ins vssrc:$XB),
"xscvdpsxws $XT, $XB", IIC_VecFP,
[(set f32:$XT, (PPCfctiwz f32:$XB))]>;
def XSCVDPUXDS : XX2Form<60, 328,
(outs vsfrc:$XT), (ins vsfrc:$XB),
"xscvdpuxds $XT, $XB", IIC_VecFP,
[(set f64:$XT, (PPCfctiduz f64:$XB))]>;
let isCodeGenOnly = 1 in
def XSCVDPUXDSs : XX2Form<60, 328,
(outs vssrc:$XT), (ins vssrc:$XB),
"xscvdpuxds $XT, $XB", IIC_VecFP,
[(set f32:$XT, (PPCfctiduz f32:$XB))]>;
def XSCVDPUXWS : XX2Form<60, 72,
(outs vsfrc:$XT), (ins vsfrc:$XB),
"xscvdpuxws $XT, $XB", IIC_VecFP,
[(set f64:$XT, (PPCfctiwuz f64:$XB))]>;
let isCodeGenOnly = 1 in
def XSCVDPUXWSs : XX2Form<60, 72,
(outs vssrc:$XT), (ins vssrc:$XB),
"xscvdpuxws $XT, $XB", IIC_VecFP,
[(set f32:$XT, (PPCfctiwuz f32:$XB))]>;
def XSCVSPDP : XX2Form<60, 329,
(outs vsfrc:$XT), (ins vsfrc:$XB),
"xscvspdp $XT, $XB", IIC_VecFP, []>;
@ -624,13 +644,15 @@ let Uses = [RM] in {
"xvcvspsxds $XT, $XB", IIC_VecFP, []>;
def XVCVSPSXWS : XX2Form<60, 152,
(outs vsrc:$XT), (ins vsrc:$XB),
"xvcvspsxws $XT, $XB", IIC_VecFP, []>;
"xvcvspsxws $XT, $XB", IIC_VecFP,
[(set v4i32:$XT, (fp_to_sint v4f32:$XB))]>;
def XVCVSPUXDS : XX2Form<60, 392,
(outs vsrc:$XT), (ins vsrc:$XB),
"xvcvspuxds $XT, $XB", IIC_VecFP, []>;
def XVCVSPUXWS : XX2Form<60, 136,
(outs vsrc:$XT), (ins vsrc:$XB),
"xvcvspuxws $XT, $XB", IIC_VecFP, []>;
"xvcvspuxws $XT, $XB", IIC_VecFP,
[(set v4i32:$XT, (fp_to_uint v4f32:$XB))]>;
def XVCVSXDDP : XX2Form<60, 504,
(outs vsrc:$XT), (ins vsrc:$XB),
"xvcvsxddp $XT, $XB", IIC_VecFP,
@ -661,7 +683,8 @@ let Uses = [RM] in {
[(set v2f64:$XT, (int_ppc_vsx_xvcvuxwdp v4i32:$XB))]>;
def XVCVUXWSP : XX2Form<60, 168,
(outs vsrc:$XT), (ins vsrc:$XB),
"xvcvuxwsp $XT, $XB", IIC_VecFP, []>;
"xvcvuxwsp $XT, $XB", IIC_VecFP,
[(set v4f32:$XT, (uint_to_fp v4i32:$XB))]>;
// Rounding Instructions
def XSRDPI : XX2Form<60, 73,
@ -1207,6 +1230,8 @@ let AddedComplexity = 400 in { // Prefer VSX patterns over non-VSX patterns.
def : Pat<(f64 (extloadf32 xoaddr:$src)),
(COPY_TO_REGCLASS (LXSSPX xoaddr:$src), VSFRC)>;
def : Pat<(f32 (fpround (extloadf32 xoaddr:$src))),
(f32 (LXSSPX xoaddr:$src))>;
def : Pat<(f64 (fpextend f32:$src)),
(COPY_TO_REGCLASS $src, VSFRC)>;
@ -1384,7 +1409,7 @@ let AddedComplexity = 400 in { // Prefer VSX patterns over non-VSX patterns.
} // AddedComplexity = 400
} // HasP8Vector
let UseVSXReg = 1 in {
let UseVSXReg = 1, AddedComplexity = 400 in {
let Predicates = [HasDirectMove] in {
// VSX direct move instructions
def MFVSRD : XX1_RS6_RD5_XO<31, 51, (outs g8rc:$rA), (ins vsfrc:$XT),
@ -1730,6 +1755,7 @@ def VectorExtractions {
dag BE_VARIABLE_DOUBLE = (COPY_TO_REGCLASS BE_VDOUBLE_PERMUTE, VSRC);
}
let AddedComplexity = 400 in {
// v4f32 scalar <-> vector conversions (BE)
let Predicates = [IsBigEndian, HasP8Vector] in {
def : Pat<(v4f32 (scalar_to_vector f32:$A)),
@ -1971,15 +1997,16 @@ def : Pat<(f64 (bitconvert i64:$S)),
(f64 (MTVSRD $S))>;
}
// Materialize a zero-vector of long long
def : Pat<(v2i64 immAllZerosV),
(v2i64 (XXLXORz))>;
}
def AlignValues {
dag F32_TO_BE_WORD1 = (v4f32 (XXSLDWI (XSCVDPSPN $B), (XSCVDPSPN $B), 3));
dag I32_TO_BE_WORD1 = (COPY_TO_REGCLASS (MTVSRWZ $B), VSRC);
}
// Materialize a zero-vector of long long
def : Pat<(v2i64 immAllZerosV),
(v2i64 (XXLXORz))>;
// The following VSX instructions were introduced in Power ISA 3.0
def HasP9Vector : Predicate<"PPCSubTarget->hasP9Vector()">;
let AddedComplexity = 400, Predicates = [HasP9Vector] in {
@ -2474,23 +2501,8 @@ let AddedComplexity = 400, Predicates = [HasP9Vector] in {
(v4i32 (LXVWSX xoaddr:$src))>;
def : Pat<(v4f32 (scalar_to_vector (f32 (load xoaddr:$src)))),
(v4f32 (LXVWSX xoaddr:$src))>;
def : Pat<(v4i32 (build_vector i32:$A, i32:$A, i32:$A, i32:$A)),
(v4i32 (MTVSRWS $A))>;
def : Pat<(v16i8 (build_vector immSExt8:$A, immSExt8:$A, immSExt8:$A,
immSExt8:$A, immSExt8:$A, immSExt8:$A,
immSExt8:$A, immSExt8:$A, immSExt8:$A,
immSExt8:$A, immSExt8:$A, immSExt8:$A,
immSExt8:$A, immSExt8:$A, immSExt8:$A,
immSExt8:$A)),
(v16i8 (COPY_TO_REGCLASS (XXSPLTIB imm:$A), VSRC))>;
def : Pat<(v16i8 immAllOnesV),
(v16i8 (COPY_TO_REGCLASS (XXSPLTIB 255), VSRC))>;
def : Pat<(v8i16 immAllOnesV),
(v8i16 (COPY_TO_REGCLASS (XXSPLTIB 255), VSRC))>;
def : Pat<(v4i32 immAllOnesV),
(v4i32 (XXSPLTIB 255))>;
def : Pat<(v2i64 immAllOnesV),
(v2i64 (XXSPLTIB 255))>;
def : Pat<(v4f32 (scalar_to_vector (f32 (fpround (extloadf32 xoaddr:$src))))),
(v4f32 (LXVWSX xoaddr:$src))>;
// Build vectors from i8 loads
def : Pat<(v16i8 (scalar_to_vector ScalarLoads.Li8)),
@ -2631,6 +2643,7 @@ let AddedComplexity = 400, Predicates = [HasP9Vector] in {
(f64 (COPY_TO_REGCLASS (VEXTSB2Ds $A), VSFRC))>;
def : Pat<(f64 (PPCVexts f64:$A, 2)),
(f64 (COPY_TO_REGCLASS (VEXTSH2Ds $A), VSFRC))>;
let isPseudo = 1 in {
def DFLOADf32 : Pseudo<(outs vssrc:$XT), (ins memrix:$src),
"#DFLOADf32",
@ -2647,18 +2660,260 @@ let AddedComplexity = 400, Predicates = [HasP9Vector] in {
}
def : Pat<(f64 (extloadf32 iaddr:$src)),
(COPY_TO_REGCLASS (DFLOADf32 iaddr:$src), VSFRC)>;
def : Pat<(f32 (fpround (extloadf32 iaddr:$src))),
(f32 (DFLOADf32 iaddr:$src))>;
} // end HasP9Vector, AddedComplexity
let Predicates = [IsISA3_0, HasDirectMove, IsLittleEndian] in {
def : Pat<(v2i64 (build_vector i64:$rA, i64:$rB)),
(v2i64 (MTVSRDD $rB, $rA))>;
def : Pat<(i64 (extractelt v2i64:$A, 0)),
(i64 (MFVSRLD $A))>;
// Integer extend helper dags 32 -> 64
def AnyExts {
dag A = (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $A, sub_32);
dag B = (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $B, sub_32);
dag C = (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $C, sub_32);
dag D = (INSERT_SUBREG (i64 (IMPLICIT_DEF)), $D, sub_32);
}
let Predicates = [IsISA3_0, HasDirectMove, IsBigEndian] in {
def : Pat<(v2i64 (build_vector i64:$rB, i64:$rA)),
(v2i64 (MTVSRDD $rB, $rA))>;
def : Pat<(i64 (extractelt v2i64:$A, 1)),
(i64 (MFVSRLD $A))>;
def DblToFlt {
dag A0 = (f32 (fpround (f64 (extractelt v2f64:$A, 0))));
dag A1 = (f32 (fpround (f64 (extractelt v2f64:$A, 1))));
dag B0 = (f32 (fpround (f64 (extractelt v2f64:$B, 0))));
dag B1 = (f32 (fpround (f64 (extractelt v2f64:$B, 1))));
}
def FltToIntLoad {
dag A = (i32 (PPCmfvsr (PPCfctiwz (f64 (extloadf32 xoaddr:$A)))));
}
def FltToUIntLoad {
dag A = (i32 (PPCmfvsr (PPCfctiwuz (f64 (extloadf32 xoaddr:$A)))));
}
def FltToLongLoad {
dag A = (i64 (PPCmfvsr (PPCfctidz (f64 (extloadf32 xoaddr:$A)))));
}
def FltToULongLoad {
dag A = (i64 (PPCmfvsr (PPCfctiduz (f64 (extloadf32 xoaddr:$A)))));
}
def FltToLong {
dag A = (i64 (PPCmfvsr (PPCfctidz (fpextend f32:$A))));
}
def FltToULong {
dag A = (i64 (PPCmfvsr (PPCfctiduz (fpextend f32:$A))));
}
def DblToInt {
dag A = (i32 (PPCmfvsr (f64 (PPCfctiwz f64:$A))));
}
def DblToUInt {
dag A = (i32 (PPCmfvsr (f64 (PPCfctiwuz f64:$A))));
}
def DblToLong {
dag A = (i64 (PPCmfvsr (f64 (PPCfctidz f64:$A))));
}
def DblToULong {
dag A = (i64 (PPCmfvsr (f64 (PPCfctiduz f64:$A))));
}
def DblToIntLoad {
dag A = (i32 (PPCmfvsr (PPCfctiwz (f64 (load xoaddr:$A)))));
}
def DblToUIntLoad {
dag A = (i32 (PPCmfvsr (PPCfctiwuz (f64 (load xoaddr:$A)))));
}
def DblToLongLoad {
dag A = (i64 (PPCmfvsr (PPCfctidz (f64 (load xoaddr:$A)))));
}
def DblToULongLoad {
dag A = (i64 (PPCmfvsr (PPCfctiduz (f64 (load xoaddr:$A)))));
}
// FP merge dags (for f32 -> v4f32)
def MrgFP {
dag AC = (XVCVDPSP (XXPERMDI (COPY_TO_REGCLASS $A, VSRC),
(COPY_TO_REGCLASS $C, VSRC), 0));
dag BD = (XVCVDPSP (XXPERMDI (COPY_TO_REGCLASS $B, VSRC),
(COPY_TO_REGCLASS $D, VSRC), 0));
dag ABhToFlt = (XVCVDPSP (XXPERMDI $A, $B, 0));
dag ABlToFlt = (XVCVDPSP (XXPERMDI $A, $B, 3));
dag BAhToFlt = (XVCVDPSP (XXPERMDI $B, $A, 0));
dag BAlToFlt = (XVCVDPSP (XXPERMDI $B, $A, 3));
}
// Patterns for BUILD_VECTOR nodes.
def NoP9Vector : Predicate<"!PPCSubTarget->hasP9Vector()">;
let AddedComplexity = 400 in {
let Predicates = [HasVSX] in {
// Build vectors of floating point converted to i32.
def : Pat<(v4i32 (build_vector DblToInt.A, DblToInt.A,
DblToInt.A, DblToInt.A)),
(v4i32 (XXSPLTW (COPY_TO_REGCLASS (XSCVDPSXWS $A), VSRC), 1))>;
def : Pat<(v4i32 (build_vector DblToUInt.A, DblToUInt.A,
DblToUInt.A, DblToUInt.A)),
(v4i32 (XXSPLTW (COPY_TO_REGCLASS (XSCVDPUXWS $A), VSRC), 1))>;
def : Pat<(v2i64 (build_vector DblToLong.A, DblToLong.A)),
(v2i64 (XXPERMDI (COPY_TO_REGCLASS (XSCVDPSXDS $A), VSRC),
(COPY_TO_REGCLASS (XSCVDPSXDS $A), VSRC), 0))>;
def : Pat<(v2i64 (build_vector DblToULong.A, DblToULong.A)),
(v2i64 (XXPERMDI (COPY_TO_REGCLASS (XSCVDPUXDS $A), VSRC),
(COPY_TO_REGCLASS (XSCVDPUXDS $A), VSRC), 0))>;
def : Pat<(v4i32 (scalar_to_vector FltToIntLoad.A)),
(v4i32 (XXSPLTW (COPY_TO_REGCLASS
(XSCVDPSXWSs (LXSSPX xoaddr:$A)), VSRC), 1))>;
def : Pat<(v4i32 (scalar_to_vector FltToUIntLoad.A)),
(v4i32 (XXSPLTW (COPY_TO_REGCLASS
(XSCVDPUXWSs (LXSSPX xoaddr:$A)), VSRC), 1))>;
def : Pat<(v4f32 (build_vector f32:$A, f32:$A, f32:$A, f32:$A)),
(v4f32 (XXSPLTW (v4f32 (XSCVDPSPN $A)), 0))>;
// Build vectors of floating point converted to i64.
def : Pat<(v2i64 (build_vector FltToLong.A, FltToLong.A)),
(v2i64 (XXPERMDIs (COPY_TO_REGCLASS (XSCVDPSXDSs $A), VSFRC), 0))>;
def : Pat<(v2i64 (build_vector FltToULong.A, FltToULong.A)),
(v2i64 (XXPERMDIs (COPY_TO_REGCLASS (XSCVDPUXDSs $A), VSFRC), 0))>;
def : Pat<(v2i64 (scalar_to_vector DblToLongLoad.A)),
(v2i64 (XVCVDPSXDS (LXVDSX xoaddr:$A)))>;
def : Pat<(v2i64 (scalar_to_vector DblToULongLoad.A)),
(v2i64 (XVCVDPUXDS (LXVDSX xoaddr:$A)))>;
}
let Predicates = [HasVSX, NoP9Vector] in {
// Load-and-splat with fp-to-int conversion (using X-Form VSX loads).
def : Pat<(v4i32 (scalar_to_vector DblToIntLoad.A)),
(v4i32 (XXSPLTW (COPY_TO_REGCLASS
(XSCVDPSXWS (LXSDX xoaddr:$A)), VSRC), 1))>;
def : Pat<(v4i32 (scalar_to_vector DblToUIntLoad.A)),
(v4i32 (XXSPLTW (COPY_TO_REGCLASS
(XSCVDPUXWS (LXSDX xoaddr:$A)), VSRC), 1))>;
def : Pat<(v2i64 (scalar_to_vector FltToLongLoad.A)),
(v2i64 (XXPERMDIs (XSCVDPSXDS (COPY_TO_REGCLASS
(LXSSPX xoaddr:$A), VSFRC)), 0))>;
def : Pat<(v2i64 (scalar_to_vector FltToULongLoad.A)),
(v2i64 (XXPERMDIs (XSCVDPUXDS (COPY_TO_REGCLASS
(LXSSPX xoaddr:$A), VSFRC)), 0))>;
}
// Big endian, available on all targets with VSX
let Predicates = [IsBigEndian, HasVSX] in {
def : Pat<(v2f64 (build_vector f64:$A, f64:$B)),
(v2f64 (XXPERMDI
(COPY_TO_REGCLASS $A, VSRC),
(COPY_TO_REGCLASS $B, VSRC), 0))>;
def : Pat<(v4f32 (build_vector f32:$A, f32:$B, f32:$C, f32:$D)),
(VMRGEW MrgFP.AC, MrgFP.BD)>;
def : Pat<(v4f32 (build_vector DblToFlt.A0, DblToFlt.A1,
DblToFlt.B0, DblToFlt.B1)),
(v4f32 (VMRGEW MrgFP.ABhToFlt, MrgFP.ABlToFlt))>;
}
let Predicates = [IsLittleEndian, HasVSX] in {
// Little endian, available on all targets with VSX
def : Pat<(v2f64 (build_vector f64:$A, f64:$B)),
(v2f64 (XXPERMDI
(COPY_TO_REGCLASS $B, VSRC),
(COPY_TO_REGCLASS $A, VSRC), 0))>;
def : Pat<(v4f32 (build_vector f32:$D, f32:$C, f32:$B, f32:$A)),
(VMRGEW MrgFP.AC, MrgFP.BD)>;
def : Pat<(v4f32 (build_vector DblToFlt.A0, DblToFlt.A1,
DblToFlt.B0, DblToFlt.B1)),
(v4f32 (VMRGEW MrgFP.BAhToFlt, MrgFP.BAlToFlt))>;
}
let Predicates = [HasDirectMove] in {
// Endianness-neutral constant splat on P8 and newer targets. The reason
// for this pattern is that on targets with direct moves, we don't expand
// BUILD_VECTOR nodes for v4i32.
def : Pat<(v4i32 (build_vector immSExt5NonZero:$A, immSExt5NonZero:$A,
immSExt5NonZero:$A, immSExt5NonZero:$A)),
(v4i32 (VSPLTISW imm:$A))>;
}
let Predicates = [IsBigEndian, HasDirectMove, NoP9Vector] in {
// Big endian integer vectors using direct moves.
def : Pat<(v2i64 (build_vector i64:$A, i64:$B)),
(v2i64 (XXPERMDI
(COPY_TO_REGCLASS (MTVSRD $A), VSRC),
(COPY_TO_REGCLASS (MTVSRD $B), VSRC), 0))>;
def : Pat<(v4i32 (build_vector i32:$A, i32:$B, i32:$C, i32:$D)),
(VMRGOW (XXPERMDI (COPY_TO_REGCLASS (MTVSRWZ $A), VSRC),
(COPY_TO_REGCLASS (MTVSRWZ $C), VSRC), 0),
(XXPERMDI (COPY_TO_REGCLASS (MTVSRWZ $B), VSRC),
(COPY_TO_REGCLASS (MTVSRWZ $D), VSRC), 0))>;
def : Pat<(v4i32 (build_vector i32:$A, i32:$A, i32:$A, i32:$A)),
(XXSPLTW (COPY_TO_REGCLASS (MTVSRWZ $A), VSRC), 1)>;
}
let Predicates = [IsLittleEndian, HasDirectMove, NoP9Vector] in {
// Little endian integer vectors using direct moves.
def : Pat<(v2i64 (build_vector i64:$A, i64:$B)),
(v2i64 (XXPERMDI
(COPY_TO_REGCLASS (MTVSRD $B), VSRC),
(COPY_TO_REGCLASS (MTVSRD $A), VSRC), 0))>;
def : Pat<(v4i32 (build_vector i32:$A, i32:$B, i32:$C, i32:$D)),
(VMRGOW (XXPERMDI (COPY_TO_REGCLASS (MTVSRWZ $D), VSRC),
(COPY_TO_REGCLASS (MTVSRWZ $B), VSRC), 0),
(XXPERMDI (COPY_TO_REGCLASS (MTVSRWZ $C), VSRC),
(COPY_TO_REGCLASS (MTVSRWZ $A), VSRC), 0))>;
def : Pat<(v4i32 (build_vector i32:$A, i32:$A, i32:$A, i32:$A)),
(XXSPLTW (COPY_TO_REGCLASS (MTVSRWZ $A), VSRC), 1)>;
}
let Predicates = [HasP9Vector] in {
// Endianness-neutral patterns for const splats with ISA 3.0 instructions.
def : Pat<(v4i32 (scalar_to_vector i32:$A)),
(v4i32 (MTVSRWS $A))>;
def : Pat<(v4i32 (build_vector i32:$A, i32:$A, i32:$A, i32:$A)),
(v4i32 (MTVSRWS $A))>;
def : Pat<(v16i8 (build_vector immSExt8:$A, immSExt8:$A, immSExt8:$A,
immSExt8:$A, immSExt8:$A, immSExt8:$A,
immSExt8:$A, immSExt8:$A, immSExt8:$A,
immSExt8:$A, immSExt8:$A, immSExt8:$A,
immSExt8:$A, immSExt8:$A, immSExt8:$A,
immSExt8:$A)),
(v16i8 (COPY_TO_REGCLASS (XXSPLTIB imm:$A), VSRC))>;
def : Pat<(v16i8 immAllOnesV),
(v16i8 (COPY_TO_REGCLASS (XXSPLTIB 255), VSRC))>;
def : Pat<(v8i16 immAllOnesV),
(v8i16 (COPY_TO_REGCLASS (XXSPLTIB 255), VSRC))>;
def : Pat<(v4i32 immAllOnesV),
(v4i32 (XXSPLTIB 255))>;
def : Pat<(v2i64 immAllOnesV),
(v2i64 (XXSPLTIB 255))>;
def : Pat<(v4i32 (scalar_to_vector FltToIntLoad.A)),
(v4i32 (XVCVSPSXWS (LXVWSX xoaddr:$A)))>;
def : Pat<(v4i32 (scalar_to_vector FltToUIntLoad.A)),
(v4i32 (XVCVSPUXWS (LXVWSX xoaddr:$A)))>;
def : Pat<(v4i32 (scalar_to_vector DblToIntLoad.A)),
(v4i32 (XXSPLTW (COPY_TO_REGCLASS
(XSCVDPSXWS (DFLOADf64 iaddr:$A)), VSRC), 1))>;
def : Pat<(v4i32 (scalar_to_vector DblToUIntLoad.A)),
(v4i32 (XXSPLTW (COPY_TO_REGCLASS
(XSCVDPUXWS (DFLOADf64 iaddr:$A)), VSRC), 1))>;
def : Pat<(v2i64 (scalar_to_vector FltToLongLoad.A)),
(v2i64 (XXPERMDIs (XSCVDPSXDS (COPY_TO_REGCLASS
(DFLOADf32 iaddr:$A),
VSFRC)), 0))>;
def : Pat<(v2i64 (scalar_to_vector FltToULongLoad.A)),
(v2i64 (XXPERMDIs (XSCVDPUXDS (COPY_TO_REGCLASS
(DFLOADf32 iaddr:$A),
VSFRC)), 0))>;
}
let Predicates = [IsISA3_0, HasDirectMove, IsBigEndian] in {
def : Pat<(i64 (extractelt v2i64:$A, 1)),
(i64 (MFVSRLD $A))>;
// Better way to build integer vectors if we have MTVSRDD. Big endian.
def : Pat<(v2i64 (build_vector i64:$rB, i64:$rA)),
(v2i64 (MTVSRDD $rB, $rA))>;
def : Pat<(v4i32 (build_vector i32:$A, i32:$B, i32:$C, i32:$D)),
(VMRGOW (COPY_TO_REGCLASS (MTVSRDD AnyExts.A, AnyExts.C), VSRC),
(COPY_TO_REGCLASS (MTVSRDD AnyExts.B, AnyExts.D), VSRC))>;
}
let Predicates = [IsISA3_0, HasDirectMove, IsLittleEndian] in {
def : Pat<(i64 (extractelt v2i64:$A, 0)),
(i64 (MFVSRLD $A))>;
// Better way to build integer vectors if we have MTVSRDD. Little endian.
def : Pat<(v2i64 (build_vector i64:$rA, i64:$rB)),
(v2i64 (MTVSRDD $rB, $rA))>;
def : Pat<(v4i32 (build_vector i32:$A, i32:$B, i32:$C, i32:$D)),
(VMRGOW (COPY_TO_REGCLASS (MTVSRDD AnyExts.D, AnyExts.B), VSRC),
(COPY_TO_REGCLASS (MTVSRDD AnyExts.C, AnyExts.A), VSRC))>;
}
}

View File

@ -46,10 +46,10 @@ entry:
%splat.splatinsert = insertelement <4 x i32> undef, i32 %0, i32 0
%splat.splat = shufflevector <4 x i32> %splat.splatinsert, <4 x i32> undef, <4 x i32> zeroinitializer
ret <4 x i32> %splat.splat
; CHECK: sldi [[REG1:[0-9]+]], 3, 32
; CHECK: mtvsrd {{[0-9]+}}, [[REG1]]
; CHECK-LE: mtvsrd [[REG1:[0-9]+]], 3
; CHECK-LE: xxswapd {{[0-9]+}}, [[REG1]]
; CHECK: mtvsrwz [[REG1:[0-9]+]], 3
; CHECK: xxspltw 34, [[REG1]]
; CHECK-LE: mtvsrwz [[REG1:[0-9]+]], 3
; CHECK-LE: xxspltw 34, [[REG1]]
}
; Function Attrs: nounwind

View File

@ -10,15 +10,9 @@ entry:
; The FIXME below is due to the lowering for BUILD_VECTOR needing a re-vamp
; which will happen in a subsequent patch.
; CHECK-LABEL: test1
; FIXME: mtvsrdd 34, 4, 3
; CHECK: mtvsrd {{[0-9]+}}, 3
; CHECK: mtvsrd {{[0-9]+}}, 4
; CHECK: xxmrgld
; CHECK: mtvsrdd 34, 4, 3
; CHECK-BE-LABEL: test1
; FIXME-BE: mtvsrdd 34, 3, 4
; CHECK-BE: mtvsrd {{[0-9]+}}, 4
; CHECK-BE: mtvsrd {{[0-9]+}}, 3
; CHECK-BE: xxmrghd
; CHECK-BE: mtvsrdd 34, 3, 4
%vecins = insertelement <2 x i64> undef, i64 %a, i32 0
%vecins1 = insertelement <2 x i64> %vecins, i64 %b, i32 1
ret <2 x i64> %vecins1
@ -162,10 +156,14 @@ define <4 x i32> @test14(<4 x i32> %a, i32* nocapture readonly %b) {
entry:
; CHECK-LABEL: test14
; CHECK: lwz [[LD:[0-9]+]],
; CHECK: mtvsrws 34, [[LD]]
; FIXME: mtvsrws 34, [[LD]]
; CHECK: mtvsrws [[SPLT:[0-9]+]], [[LD]]
; CHECK: xxspltw 34, [[SPLT]], 3
; CHECK-BE-LABEL: test14
; CHECK-BE: lwz [[LD:[0-9]+]],
; CHECK-BE: mtvsrws 34, [[LD]]
; FIXME: mtvsrws 34, [[LD]]
; CHECK-BE: mtvsrws [[SPLT:[0-9]+]], [[LD]]
; CHECK-BE: xxspltw 34, [[SPLT]], 0
%0 = load i32, i32* %b, align 4
%splat.splatinsert = insertelement <4 x i32> undef, i32 %0, i32 0
%splat.splat = shufflevector <4 x i32> %splat.splatinsert, <4 x i32> undef, <4 x i32> zeroinitializer

View File

@ -1096,9 +1096,7 @@ define <2 x double> @test69(<2 x i16> %a) {
; CHECK-LE: mtvsrwa
; CHECK-LE: xscvsxddp
; CHECK-LE: xscvsxddp
; CHECK-LE: xxspltd
; CHECK-LE: xxspltd
; CHECK-LE: xxmrgld
; CHECK-LE: xxmrghd
; CHECK-LE: blr
}
@ -1121,9 +1119,7 @@ define <2 x double> @test70(<2 x i8> %a) {
; CHECK-LE: mtvsrwa
; CHECK-LE: xscvsxddp
; CHECK-LE: xscvsxddp
; CHECK-LE: xxspltd
; CHECK-LE: xxspltd
; CHECK-LE: xxmrgld
; CHECK-LE: xxmrghd
; CHECK-LE: blr
}