Revert "[LoopNest] Allow empty basic blocks without loops"

This reverts commit 9a17bff4f7.
This commit is contained in:
Whitney Tsang 2021-01-04 20:41:53 +00:00
parent 191552344b
commit de6d43f16c
5 changed files with 35 additions and 139 deletions

View File

@ -128,12 +128,6 @@ public:
[](const Loop *L) { return L->isLoopSimplifyForm(); }); [](const Loop *L) { return L->isLoopSimplifyForm(); });
} }
/// Return true if all loops in the loop nest are in rotated form.
bool areAllLoopsRotatedForm() const {
return std::all_of(Loops.begin(), Loops.end(),
[](const Loop *L) { return L->isRotatedForm(); });
}
StringRef getName() const { return Loops.front()->getName(); } StringRef getName() const { return Loops.front()->getName(); }
protected: protected:

View File

@ -244,12 +244,6 @@ unsigned SplitAllCriticalEdges(Function &F,
const CriticalEdgeSplittingOptions &Options = const CriticalEdgeSplittingOptions &Options =
CriticalEdgeSplittingOptions()); CriticalEdgeSplittingOptions());
/// Recursivelly traverse all empty 'single successor' basic blocks of \p From
/// (if there are any). Return the last basic block found or \p End if it was
/// reached during the search.
const BasicBlock &skipEmptyBlockUntil(const BasicBlock *From,
const BasicBlock *End);
/// Split the edge connecting the specified blocks, and return the newly created /// Split the edge connecting the specified blocks, and return the newly created
/// basic block between \p From and \p To. /// basic block between \p From and \p To.
BasicBlock *SplitEdge(BasicBlock *From, BasicBlock *To, BasicBlock *SplitEdge(BasicBlock *From, BasicBlock *To,

View File

@ -16,7 +16,6 @@
#include "llvm/ADT/Statistic.h" #include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/PostDominators.h" #include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/ValueTracking.h" #include "llvm/Analysis/ValueTracking.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
using namespace llvm; using namespace llvm;
@ -254,66 +253,49 @@ static bool checkLoopsStructure(const Loop &OuterLoop, const Loop &InnerLoop,
// Ensure the only branch that may exist between the loops is the inner loop // Ensure the only branch that may exist between the loops is the inner loop
// guard. // guard.
if (OuterLoopHeader != InnerLoopPreHeader) { if (OuterLoopHeader != InnerLoopPreHeader) {
const BasicBlock &SingleSucc = const BranchInst *BI =
skipEmptyBlockUntil(OuterLoopHeader, InnerLoopPreHeader); dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
// no conditional branch present if (!BI || BI != InnerLoop.getLoopGuardBranch())
if (&SingleSucc != InnerLoopPreHeader) { return false;
const BranchInst *BI = dyn_cast<BranchInst>(SingleSucc.getTerminator());
if (!BI || BI != InnerLoop.getLoopGuardBranch()) bool InnerLoopExitContainsLCSSA = ContainsLCSSAPhi(*InnerLoopExit);
return false;
bool InnerLoopExitContainsLCSSA = ContainsLCSSAPhi(*InnerLoopExit); // The successors of the inner loop guard should be the inner loop
// preheader and the outer loop latch.
for (const BasicBlock *Succ : BI->successors()) {
if (Succ == InnerLoopPreHeader)
continue;
if (Succ == OuterLoopLatch)
continue;
// The successors of the inner loop guard should be the inner loop // If `InnerLoopExit` contains LCSSA Phi instructions, additional block
// preheader or the outer loop latch possibly through empty blocks. // may be inserted before the `OuterLoopLatch` to which `BI` jumps. The
for (const BasicBlock *Succ : BI->successors()) { // loops are still considered perfectly nested if the extra block only
const BasicBlock *PotentialInnerPreHeader = Succ; // contains Phi instructions from InnerLoopExit and OuterLoopHeader.
const BasicBlock *PotentialOuterLatch = Succ; if (InnerLoopExitContainsLCSSA && IsExtraPhiBlock(*Succ) &&
Succ->getSingleSuccessor() == OuterLoopLatch) {
// Ensure the inner loop guard successor is empty before skipping // Points to the extra block so that we can reference it later in the
// blocks. // final check. We can also conclude that the inner loop is
if (Succ->getInstList().size() == 1) { // guarded and there exists LCSSA Phi node in the exit block later if we
PotentialInnerPreHeader = // see a non-null `ExtraPhiBlock`.
&skipEmptyBlockUntil(Succ, InnerLoopPreHeader); ExtraPhiBlock = Succ;
PotentialOuterLatch = &skipEmptyBlockUntil(Succ, OuterLoopLatch); continue;
}
if (PotentialInnerPreHeader == InnerLoopPreHeader)
continue;
if (PotentialOuterLatch == OuterLoopLatch)
continue;
// If `InnerLoopExit` contains LCSSA Phi instructions, additional block
// may be inserted before the `OuterLoopLatch` to which `BI` jumps. The
// loops are still considered perfectly nested if the extra block only
// contains Phi instructions from InnerLoopExit and OuterLoopHeader.
if (InnerLoopExitContainsLCSSA && IsExtraPhiBlock(*Succ) &&
Succ->getSingleSuccessor() == OuterLoopLatch) {
// Points to the extra block so that we can reference it later in the
// final check. We can also conclude that the inner loop is
// guarded and there exists LCSSA Phi node in the exit block later if
// we see a non-null `ExtraPhiBlock`.
ExtraPhiBlock = Succ;
continue;
}
DEBUG_WITH_TYPE(VerboseDebug, {
dbgs() << "Inner loop guard successor " << Succ->getName()
<< " doesn't lead to inner loop preheader or "
"outer loop latch.\n";
});
return false;
} }
DEBUG_WITH_TYPE(VerboseDebug, {
dbgs() << "Inner loop guard successor " << Succ->getName()
<< " doesn't lead to inner loop preheader or "
"outer loop latch.\n";
});
return false;
} }
} }
// Ensure the inner loop exit block lead to the outer loop latch possibly // Ensure the inner loop exit block leads to the outer loop latch.
// through empty blocks. const BasicBlock *SuccInner = InnerLoopExit->getSingleSuccessor();
const BasicBlock &SuccInner = if (!SuccInner ||
skipEmptyBlockUntil(InnerLoop.getExitBlock(), OuterLoopLatch); (SuccInner != OuterLoopLatch && SuccInner != ExtraPhiBlock)) {
if (&SuccInner != OuterLoopLatch && &SuccInner != ExtraPhiBlock) {
DEBUG_WITH_TYPE( DEBUG_WITH_TYPE(
VerboseDebug, VerboseDebug,
dbgs() << "Inner loop exit block " << *InnerLoopExit dbgs() << "Inner loop exit block " << *InnerLoopExit

View File

@ -494,31 +494,6 @@ void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
} }
const BasicBlock &llvm::skipEmptyBlockUntil(const BasicBlock *From,
const BasicBlock *End) {
assert(From && "Expecting valid From");
assert(End && "Expecting valid End");
if (From == End || !From->getSingleSuccessor())
return *From;
auto IsEmpty = [](const BasicBlock *BB) {
return (BB->getInstList().size() == 1);
};
// Visited is used to avoid running into an infinite loop.
SmallPtrSet<const BasicBlock *, 4> Visited;
const BasicBlock *BB = From->getSingleSuccessor();
const BasicBlock *PredBB = BB;
while (BB && BB != End && IsEmpty(BB) && !Visited.count(BB)) {
Visited.insert(BB);
PredBB = BB;
BB = BB->getSingleSuccessor();
}
return (BB == End) ? *End : *PredBB;
}
BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
LoopInfo *LI, MemorySSAUpdater *MSSAU) { LoopInfo *LI, MemorySSAUpdater *MSSAU) {
unsigned SuccNum = GetSuccessorNumber(BB, Succ); unsigned SuccNum = GetSuccessorNumber(BB, Succ);

View File

@ -85,55 +85,6 @@ perf_nest_2D_2_loop_i_end:
ret void ret void
} }
define void @perf_nest_2D_3(i32** %y, i32** %x, i64 signext %nx, i64 signext %ny) {
; CHECK-LABEL: IsPerfect=true, Depth=1, OutermostLoop: perf_nest_2D_3_loop_j, Loops: ( perf_nest_2D_3_loop_j )
; CHECK-LABEL: IsPerfect=true, Depth=2, OutermostLoop: perf_nest_2D_3_loop_i, Loops: ( perf_nest_2D_3_loop_i perf_nest_2D_3_loop_j )
entry:
br label %perf_nest_2D_3_loop_i
perf_nest_2D_3_loop_i:
%i = phi i64 [ 0, %entry ], [ %inc13, %inc_i ]
%cmp21 = icmp slt i64 0, %ny
br label %singleSucc
singleSucc:
br i1 %cmp21, label %preheader.j, label %for.end
preheader.j:
br label %perf_nest_2D_3_loop_j
perf_nest_2D_3_loop_j:
%j = phi i64 [ 0, %preheader.j ], [ %inc, %inc_j ]
%arrayidx = getelementptr inbounds i32*, i32** %x, i64 %j
%0 = load i32*, i32** %arrayidx, align 8
%arrayidx6 = getelementptr inbounds i32, i32* %0, i64 %j
%1 = load i32, i32* %arrayidx6, align 4
%arrayidx8 = getelementptr inbounds i32*, i32** %y, i64 %j
%2 = load i32*, i32** %arrayidx8, align 8
%arrayidx11 = getelementptr inbounds i32, i32* %2, i64 %i
store i32 %1, i32* %arrayidx11, align 4
br label %inc_j
inc_j:
%inc = add nsw i64 %j, 1
%cmp2 = icmp slt i64 %inc, %ny
br i1 %cmp2, label %perf_nest_2D_3_loop_j, label %for.exit
for.exit:
br label %for.end
for.end:
br label %inc_i
inc_i:
%inc13 = add nsw i64 %i, 1
%cmp = icmp slt i64 %inc13, %nx
br i1 %cmp, label %perf_nest_2D_3_loop_i, label %perf_nest_2D_3_loop_i_end
perf_nest_2D_3_loop_i_end:
ret void
}
; Test a perfect 3-dim loop nest of the form: ; Test a perfect 3-dim loop nest of the form:
; for (i=0; i<nx; ++i) ; for (i=0; i<nx; ++i)
; for (j=0; j<ny; ++j) ; for (j=0; j<ny; ++j)