forked from OSchip/llvm-project
Initial implementation of the DAG legalization. This still has a long way
to go, but it does work for some non-trivial cases now. llvm-svn: 19329
This commit is contained in:
parent
510fa4bbf8
commit
dc75059005
|
@ -0,0 +1,703 @@
|
|||
//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by the LLVM research group and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file implements the SelectionDAG::Legalize method.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/CodeGen/SelectionDAG.h"
|
||||
#include "llvm/CodeGen/MachineConstantPool.h"
|
||||
#include "llvm/CodeGen/MachineFunction.h"
|
||||
#include "llvm/Target/TargetLowering.h"
|
||||
#include "llvm/Constants.h"
|
||||
#include <iostream>
|
||||
using namespace llvm;
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
|
||||
/// hacks on it until the target machine can handle it. This involves
|
||||
/// eliminating value sizes the machine cannot handle (promoting small sizes to
|
||||
/// large sizes or splitting up large values into small values) as well as
|
||||
/// eliminating operations the machine cannot handle.
|
||||
///
|
||||
/// This code also does a small amount of optimization and recognition of idioms
|
||||
/// as part of its processing. For example, if a target does not support a
|
||||
/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
|
||||
/// will attempt merge setcc and brc instructions into brcc's.
|
||||
///
|
||||
namespace {
|
||||
class SelectionDAGLegalize {
|
||||
TargetLowering &TLI;
|
||||
SelectionDAG &DAG;
|
||||
|
||||
/// LegalizeAction - This enum indicates what action we should take for each
|
||||
/// value type the can occur in the program.
|
||||
enum LegalizeAction {
|
||||
Legal, // The target natively supports this value type.
|
||||
Promote, // This should be promoted to the next larger type.
|
||||
Expand, // This integer type should be broken into smaller pieces.
|
||||
};
|
||||
|
||||
/// TransformToType - For any value types we are promoting or expanding, this
|
||||
/// contains the value type that we are changing to. For Expanded types, this
|
||||
/// contains one step of the expand (e.g. i64 -> i32), even if there are
|
||||
/// multiple steps required (e.g. i64 -> i16)
|
||||
MVT::ValueType TransformToType[MVT::LAST_VALUETYPE];
|
||||
|
||||
/// ValueTypeActions - This is a bitvector that contains two bits for each
|
||||
/// value type, where the two bits correspond to the LegalizeAction enum.
|
||||
/// This can be queried with "getTypeAction(VT)".
|
||||
unsigned ValueTypeActions;
|
||||
|
||||
/// NeedsAnotherIteration - This is set when we expand a large integer
|
||||
/// operation into smaller integer operations, but the smaller operations are
|
||||
/// not set. This occurs only rarely in practice, for targets that don't have
|
||||
/// 32-bit or larger integer registers.
|
||||
bool NeedsAnotherIteration;
|
||||
|
||||
/// LegalizedNodes - For nodes that are of legal width, and that have more
|
||||
/// than one use, this map indicates what regularized operand to use. This
|
||||
/// allows us to avoid legalizing the same thing more than once.
|
||||
std::map<SDOperand, SDOperand> LegalizedNodes;
|
||||
|
||||
/// ExpandedNodes - For nodes that need to be expanded, and which have more
|
||||
/// than one use, this map indicates which which operands are the expanded
|
||||
/// version of the input. This allows us to avoid expanding the same node
|
||||
/// more than once.
|
||||
std::map<SDOperand, std::pair<SDOperand, SDOperand> > ExpandedNodes;
|
||||
|
||||
/// setValueTypeAction - Set the action for a particular value type. This
|
||||
/// assumes an action has not already been set for this value type.
|
||||
void setValueTypeAction(MVT::ValueType VT, LegalizeAction A) {
|
||||
ValueTypeActions |= A << (VT*2);
|
||||
if (A == Promote) {
|
||||
MVT::ValueType PromoteTo;
|
||||
if (VT == MVT::f32)
|
||||
PromoteTo = MVT::f64;
|
||||
else {
|
||||
unsigned LargerReg = VT+1;
|
||||
while (!TLI.hasNativeSupportFor((MVT::ValueType)LargerReg)) {
|
||||
++LargerReg;
|
||||
assert(MVT::isInteger((MVT::ValueType)LargerReg) &&
|
||||
"Nothing to promote to??");
|
||||
}
|
||||
PromoteTo = (MVT::ValueType)LargerReg;
|
||||
}
|
||||
|
||||
assert(MVT::isInteger(VT) == MVT::isInteger(PromoteTo) &&
|
||||
MVT::isFloatingPoint(VT) == MVT::isFloatingPoint(PromoteTo) &&
|
||||
"Can only promote from int->int or fp->fp!");
|
||||
assert(VT < PromoteTo && "Must promote to a larger type!");
|
||||
TransformToType[VT] = PromoteTo;
|
||||
} else if (A == Expand) {
|
||||
assert(MVT::isInteger(VT) && VT > MVT::i8 &&
|
||||
"Cannot expand this type: target must support SOME integer reg!");
|
||||
// Expand to the next smaller integer type!
|
||||
TransformToType[VT] = (MVT::ValueType)(VT-1);
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
SelectionDAGLegalize(TargetLowering &TLI, SelectionDAG &DAG);
|
||||
|
||||
/// Run - While there is still lowering to do, perform a pass over the DAG.
|
||||
/// Most regularization can be done in a single pass, but targets that require
|
||||
/// large values to be split into registers multiple times (e.g. i64 -> 4x
|
||||
/// i16) require iteration for these values (the first iteration will demote
|
||||
/// to i32, the second will demote to i16).
|
||||
void Run() {
|
||||
do {
|
||||
NeedsAnotherIteration = false;
|
||||
LegalizeDAG();
|
||||
} while (NeedsAnotherIteration);
|
||||
}
|
||||
|
||||
/// getTypeAction - Return how we should legalize values of this type, either
|
||||
/// it is already legal or we need to expand it into multiple registers of
|
||||
/// smaller integer type, or we need to promote it to a larger type.
|
||||
LegalizeAction getTypeAction(MVT::ValueType VT) const {
|
||||
return (LegalizeAction)((ValueTypeActions >> (2*VT)) & 3);
|
||||
}
|
||||
|
||||
/// isTypeLegal - Return true if this type is legal on this target.
|
||||
///
|
||||
bool isTypeLegal(MVT::ValueType VT) const {
|
||||
return getTypeAction(VT) == Legal;
|
||||
}
|
||||
|
||||
private:
|
||||
void LegalizeDAG();
|
||||
|
||||
SDOperand LegalizeOp(SDOperand O);
|
||||
void ExpandOp(SDOperand O, SDOperand &Lo, SDOperand &Hi);
|
||||
|
||||
SDOperand getIntPtrConstant(uint64_t Val) {
|
||||
return DAG.getConstant(Val, TLI.getPointerTy());
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
SelectionDAGLegalize::SelectionDAGLegalize(TargetLowering &tli,
|
||||
SelectionDAG &dag)
|
||||
: TLI(tli), DAG(dag), ValueTypeActions(0) {
|
||||
|
||||
assert(MVT::LAST_VALUETYPE <= 16 &&
|
||||
"Too many value types for ValueTypeActions to hold!");
|
||||
|
||||
// Inspect all of the ValueType's possible, deciding how to process them.
|
||||
for (unsigned IntReg = MVT::i1; IntReg <= MVT::i128; ++IntReg)
|
||||
// If TLI says we are expanding this type, expand it!
|
||||
if (TLI.getNumElements((MVT::ValueType)IntReg) != 1)
|
||||
setValueTypeAction((MVT::ValueType)IntReg, Expand);
|
||||
else if (!TLI.hasNativeSupportFor((MVT::ValueType)IntReg))
|
||||
// Otherwise, if we don't have native support, we must promote to a
|
||||
// larger type.
|
||||
setValueTypeAction((MVT::ValueType)IntReg, Promote);
|
||||
|
||||
// If the target does not have native support for F32, promote it to F64.
|
||||
if (!TLI.hasNativeSupportFor(MVT::f32))
|
||||
setValueTypeAction(MVT::f32, Promote);
|
||||
}
|
||||
|
||||
|
||||
void SelectionDAGLegalize::LegalizeDAG() {
|
||||
SDOperand OldRoot = DAG.getRoot();
|
||||
SDOperand NewRoot = LegalizeOp(OldRoot);
|
||||
DAG.setRoot(NewRoot);
|
||||
|
||||
ExpandedNodes.clear();
|
||||
LegalizedNodes.clear();
|
||||
|
||||
// Remove dead nodes now.
|
||||
if (OldRoot != NewRoot)
|
||||
// Delete all of these efficiently first.
|
||||
;
|
||||
|
||||
// Then scan AllNodes.
|
||||
}
|
||||
|
||||
SDOperand SelectionDAGLegalize::LegalizeOp(SDOperand Op) {
|
||||
// If this operation defines any values that cannot be represented in a
|
||||
// register on this target, make sure to expand it.
|
||||
if (Op.Val->getNumValues() == 1) {// Fast path == assertion only
|
||||
assert(getTypeAction(Op.Val->getValueType(0)) == Legal &&
|
||||
"For a single use value, caller should check for legality!");
|
||||
} else {
|
||||
for (unsigned i = 0, e = Op.Val->getNumValues(); i != e; ++i)
|
||||
switch (getTypeAction(Op.Val->getValueType(i))) {
|
||||
case Legal: break; // Nothing to do.
|
||||
case Expand: {
|
||||
SDOperand T1, T2;
|
||||
ExpandOp(Op.getValue(i), T1, T2);
|
||||
assert(LegalizedNodes.count(Op) &&
|
||||
"Expansion didn't add legal operands!");
|
||||
return LegalizedNodes[Op];
|
||||
}
|
||||
case Promote:
|
||||
// FIXME: Implement promotion!
|
||||
assert(0 && "Promotion not implemented at all yet!");
|
||||
}
|
||||
}
|
||||
|
||||
// If there is more than one use of this, see if we already legalized it.
|
||||
// There is no use remembering values that only have a single use, as the map
|
||||
// entries will never be reused.
|
||||
if (!Op.Val->hasOneUse()) {
|
||||
std::map<SDOperand, SDOperand>::iterator I = LegalizedNodes.find(Op);
|
||||
if (I != LegalizedNodes.end()) return I->second;
|
||||
}
|
||||
|
||||
SDOperand Tmp1, Tmp2;
|
||||
|
||||
SDOperand Result = Op;
|
||||
SDNode *Node = Op.Val;
|
||||
LegalizeAction Action;
|
||||
|
||||
switch (Node->getOpcode()) {
|
||||
default:
|
||||
std::cerr << "NODE: "; Node->dump(); std::cerr << "\n";
|
||||
assert(0 && "Do not know how to legalize this operator!");
|
||||
abort();
|
||||
case ISD::EntryToken:
|
||||
case ISD::FrameIndex:
|
||||
case ISD::GlobalAddress:
|
||||
case ISD::ConstantPool:
|
||||
case ISD::CopyFromReg: // Nothing to do.
|
||||
assert(getTypeAction(Node->getValueType(0)) == Legal &&
|
||||
"This must be legal!");
|
||||
break;
|
||||
case ISD::Constant:
|
||||
// We know we don't need to expand constants here, constants only have one
|
||||
// value and we check that it is fine above.
|
||||
|
||||
// FIXME: Maybe we should handle things like targets that don't support full
|
||||
// 32-bit immediates?
|
||||
break;
|
||||
case ISD::ConstantFP: {
|
||||
// Spill FP immediates to the constant pool if the target cannot directly
|
||||
// codegen them. Targets often have some immediate values that can be
|
||||
// efficiently generated into an FP register without a load. We explicitly
|
||||
// leave these constants as ConstantFP nodes for the target to deal with.
|
||||
|
||||
ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
|
||||
|
||||
// Check to see if this FP immediate is already legal.
|
||||
bool isLegal = false;
|
||||
for (TargetLowering::legal_fpimm_iterator I = TLI.legal_fpimm_begin(),
|
||||
E = TLI.legal_fpimm_end(); I != E; ++I)
|
||||
if (CFP->isExactlyValue(*I)) {
|
||||
isLegal = true;
|
||||
break;
|
||||
}
|
||||
|
||||
if (!isLegal) {
|
||||
// Otherwise we need to spill the constant to memory.
|
||||
MachineConstantPool *CP = DAG.getMachineFunction().getConstantPool();
|
||||
|
||||
bool Extend = false;
|
||||
|
||||
// If a FP immediate is precise when represented as a float, we put it
|
||||
// into the constant pool as a float, even if it's is statically typed
|
||||
// as a double.
|
||||
MVT::ValueType VT = CFP->getValueType(0);
|
||||
bool isDouble = VT == MVT::f64;
|
||||
ConstantFP *LLVMC = ConstantFP::get(isDouble ? Type::DoubleTy :
|
||||
Type::FloatTy, CFP->getValue());
|
||||
if (isDouble && CFP->isExactlyValue((float)CFP->getValue())) {
|
||||
LLVMC = cast<ConstantFP>(ConstantExpr::getCast(LLVMC, Type::FloatTy));
|
||||
VT = MVT::f32;
|
||||
Extend = true;
|
||||
}
|
||||
|
||||
SDOperand CPIdx = DAG.getConstantPool(CP->getConstantPoolIndex(LLVMC),
|
||||
TLI.getPointerTy());
|
||||
Result = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx);
|
||||
|
||||
if (Extend) Result = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Result);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case ISD::ADJCALLSTACKDOWN:
|
||||
case ISD::ADJCALLSTACKUP:
|
||||
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
|
||||
// There is no need to legalize the size argument (Operand #1)
|
||||
if (Tmp1 != Node->getOperand(0))
|
||||
Result = DAG.getNode(Node->getOpcode(), MVT::Other, Tmp1,
|
||||
Node->getOperand(1));
|
||||
break;
|
||||
case ISD::CALL:
|
||||
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
|
||||
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the callee.
|
||||
if (Tmp2 != Node->getOperand(0) || Tmp2 != Node->getOperand(1)) {
|
||||
std::vector<MVT::ValueType> RetTyVTs;
|
||||
RetTyVTs.reserve(Node->getNumValues());
|
||||
for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
|
||||
RetTyVTs.push_back(Node->getValueType(0));
|
||||
Result = SDOperand(DAG.getCall(RetTyVTs, Tmp1, Tmp2), Op.ResNo);
|
||||
}
|
||||
break;
|
||||
|
||||
case ISD::LOAD:
|
||||
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
|
||||
Tmp2 = LegalizeOp(Node->getOperand(1)); // Legalize the pointer.
|
||||
if (Tmp1 != Node->getOperand(0) ||
|
||||
Tmp2 != Node->getOperand(1))
|
||||
Result = DAG.getLoad(Node->getValueType(0), Tmp1, Tmp2);
|
||||
break;
|
||||
|
||||
case ISD::EXTRACT_ELEMENT:
|
||||
// Get both the low and high parts.
|
||||
ExpandOp(Node->getOperand(0), Tmp1, Tmp2);
|
||||
if (cast<ConstantSDNode>(Node->getOperand(1))->getValue())
|
||||
Result = Tmp2; // 1 -> Hi
|
||||
else
|
||||
Result = Tmp1; // 0 -> Lo
|
||||
break;
|
||||
|
||||
case ISD::CopyToReg:
|
||||
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
|
||||
|
||||
switch (getTypeAction(Node->getOperand(1).getValueType())) {
|
||||
case Legal:
|
||||
// Legalize the incoming value (must be legal).
|
||||
Tmp2 = LegalizeOp(Node->getOperand(1));
|
||||
if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1))
|
||||
Result = DAG.getCopyToReg(Tmp1, Tmp2,
|
||||
cast<CopyRegSDNode>(Node)->getReg());
|
||||
break;
|
||||
case Expand: {
|
||||
SDOperand Lo, Hi;
|
||||
ExpandOp(Node->getOperand(1), Lo, Hi);
|
||||
unsigned Reg = cast<CopyRegSDNode>(Node)->getReg();
|
||||
Result = DAG.getCopyToReg(Tmp1, Lo, Reg);
|
||||
Result = DAG.getCopyToReg(Result, Hi, Reg+1);
|
||||
assert(isTypeLegal(Result.getValueType()) &&
|
||||
"Cannot expand multiple times yet (i64 -> i16)");
|
||||
break;
|
||||
}
|
||||
case Promote:
|
||||
assert(0 && "Don't know what it means to promote this!");
|
||||
abort();
|
||||
}
|
||||
break;
|
||||
|
||||
case ISD::RET:
|
||||
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
|
||||
switch (Node->getNumOperands()) {
|
||||
case 2: // ret val
|
||||
switch (getTypeAction(Node->getOperand(1).getValueType())) {
|
||||
case Legal:
|
||||
Tmp2 = LegalizeOp(Node->getOperand(1));
|
||||
if (Tmp2 != Node->getOperand(1))
|
||||
Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Tmp2);
|
||||
break;
|
||||
case Expand: {
|
||||
SDOperand Lo, Hi;
|
||||
ExpandOp(Node->getOperand(1), Lo, Hi);
|
||||
Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1, Lo, Hi);
|
||||
break;
|
||||
}
|
||||
case Promote:
|
||||
assert(0 && "Can't promote return value!");
|
||||
}
|
||||
break;
|
||||
case 1: // ret void
|
||||
if (Tmp1 != Node->getOperand(0))
|
||||
Result = DAG.getNode(ISD::RET, MVT::Other, Tmp1);
|
||||
break;
|
||||
default: { // ret <values>
|
||||
std::vector<SDOperand> NewValues;
|
||||
NewValues.push_back(Tmp1);
|
||||
for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
|
||||
switch (getTypeAction(Node->getOperand(i).getValueType())) {
|
||||
case Legal:
|
||||
NewValues.push_back(LegalizeOp(Node->getOperand(1)));
|
||||
break;
|
||||
case Expand: {
|
||||
SDOperand Lo, Hi;
|
||||
ExpandOp(Node->getOperand(i), Lo, Hi);
|
||||
NewValues.push_back(Lo);
|
||||
NewValues.push_back(Hi);
|
||||
break;
|
||||
}
|
||||
case Promote:
|
||||
assert(0 && "Can't promote return value!");
|
||||
}
|
||||
Result = DAG.getNode(ISD::RET, MVT::Other, NewValues);
|
||||
break;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case ISD::STORE:
|
||||
Tmp1 = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
|
||||
Tmp2 = LegalizeOp(Node->getOperand(2)); // Legalize the pointer.
|
||||
|
||||
switch (getTypeAction(Node->getOperand(1).getValueType())) {
|
||||
case Legal: {
|
||||
SDOperand Val = LegalizeOp(Node->getOperand(1));
|
||||
if (Val != Node->getOperand(1) || Tmp1 != Node->getOperand(0) ||
|
||||
Tmp2 != Node->getOperand(2))
|
||||
Result = DAG.getNode(ISD::STORE, MVT::Other, Tmp1, Val, Tmp2);
|
||||
break;
|
||||
}
|
||||
case Promote:
|
||||
assert(0 && "FIXME: promote for stores not implemented!");
|
||||
case Expand:
|
||||
SDOperand Lo, Hi;
|
||||
ExpandOp(Node->getOperand(1), Lo, Hi);
|
||||
|
||||
if (!TLI.isLittleEndian())
|
||||
std::swap(Lo, Hi);
|
||||
|
||||
// FIXME: These two stores are independent of each other!
|
||||
Result = DAG.getNode(ISD::STORE, MVT::Other, Tmp1, Lo, Tmp2);
|
||||
|
||||
unsigned IncrementSize;
|
||||
switch (Lo.getValueType()) {
|
||||
default: assert(0 && "Unknown ValueType to expand to!");
|
||||
case MVT::i32: IncrementSize = 4; break;
|
||||
case MVT::i16: IncrementSize = 2; break;
|
||||
case MVT::i8: IncrementSize = 1; break;
|
||||
}
|
||||
Tmp2 = DAG.getNode(ISD::ADD, Tmp2.getValueType(), Tmp2,
|
||||
getIntPtrConstant(IncrementSize));
|
||||
assert(isTypeLegal(Tmp2.getValueType()) &&
|
||||
"Pointers must be legal!");
|
||||
Result = DAG.getNode(ISD::STORE, MVT::Other, Result, Hi, Tmp2);
|
||||
}
|
||||
break;
|
||||
case ISD::SELECT: {
|
||||
// FIXME: BOOLS MAY REQUIRE PROMOTION!
|
||||
Tmp1 = LegalizeOp(Node->getOperand(0)); // Cond
|
||||
Tmp2 = LegalizeOp(Node->getOperand(1)); // TrueVal
|
||||
SDOperand Tmp3 = LegalizeOp(Node->getOperand(2)); // FalseVal
|
||||
|
||||
if (Tmp1 != Node->getOperand(0) ||
|
||||
Tmp2 != Node->getOperand(1) ||
|
||||
Tmp3 != Node->getOperand(2))
|
||||
Result = DAG.getNode(ISD::SELECT, Node->getValueType(0), Tmp1, Tmp2,Tmp3);
|
||||
break;
|
||||
}
|
||||
case ISD::SETCC:
|
||||
switch (getTypeAction(Node->getOperand(0).getValueType())) {
|
||||
case Legal:
|
||||
Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS
|
||||
Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS
|
||||
if (Tmp1 != Node->getOperand(0) || Tmp2 != Node->getOperand(1))
|
||||
Result = DAG.getSetCC(cast<SetCCSDNode>(Node)->getCondition(),
|
||||
Tmp1, Tmp2);
|
||||
break;
|
||||
case Promote:
|
||||
assert(0 && "Can't promote setcc operands yet!");
|
||||
break;
|
||||
case Expand:
|
||||
SDOperand LHSLo, LHSHi, RHSLo, RHSHi;
|
||||
ExpandOp(Node->getOperand(0), LHSLo, LHSHi);
|
||||
ExpandOp(Node->getOperand(1), RHSLo, RHSHi);
|
||||
switch (cast<SetCCSDNode>(Node)->getCondition()) {
|
||||
case ISD::SETEQ:
|
||||
case ISD::SETNE:
|
||||
Tmp1 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSLo, RHSLo);
|
||||
Tmp2 = DAG.getNode(ISD::XOR, LHSLo.getValueType(), LHSHi, RHSHi);
|
||||
Tmp1 = DAG.getNode(ISD::OR, Tmp1.getValueType(), Tmp1, Tmp2);
|
||||
Result = DAG.getSetCC(cast<SetCCSDNode>(Node)->getCondition(), Tmp1,
|
||||
DAG.getConstant(0, Tmp1.getValueType()));
|
||||
break;
|
||||
default:
|
||||
// FIXME: This generated code sucks.
|
||||
ISD::CondCode LowCC;
|
||||
switch (cast<SetCCSDNode>(Node)->getCondition()) {
|
||||
default: assert(0 && "Unknown integer setcc!");
|
||||
case ISD::SETLT:
|
||||
case ISD::SETULT: LowCC = ISD::SETULT; break;
|
||||
case ISD::SETGT:
|
||||
case ISD::SETUGT: LowCC = ISD::SETUGT; break;
|
||||
case ISD::SETLE:
|
||||
case ISD::SETULE: LowCC = ISD::SETULE; break;
|
||||
case ISD::SETGE:
|
||||
case ISD::SETUGE: LowCC = ISD::SETUGE; break;
|
||||
}
|
||||
|
||||
// Tmp1 = lo(op1) < lo(op2) // Always unsigned comparison
|
||||
// Tmp2 = hi(op1) < hi(op2) // Signedness depends on operands
|
||||
// dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2;
|
||||
|
||||
// NOTE: on targets without efficient SELECT of bools, we can always use
|
||||
// this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3)
|
||||
Tmp1 = DAG.getSetCC(LowCC, LHSLo, RHSLo);
|
||||
Tmp2 = DAG.getSetCC(cast<SetCCSDNode>(Node)->getCondition(),
|
||||
LHSHi, RHSHi);
|
||||
Result = DAG.getSetCC(ISD::SETEQ, LHSHi, RHSHi);
|
||||
Result = DAG.getNode(ISD::SELECT, MVT::i1, Result, Tmp1, Tmp2);
|
||||
break;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case ISD::ADD:
|
||||
case ISD::SUB:
|
||||
case ISD::MUL:
|
||||
case ISD::UDIV:
|
||||
case ISD::SDIV:
|
||||
case ISD::UREM:
|
||||
case ISD::SREM:
|
||||
case ISD::AND:
|
||||
case ISD::OR:
|
||||
case ISD::XOR:
|
||||
Tmp1 = LegalizeOp(Node->getOperand(0)); // LHS
|
||||
Tmp2 = LegalizeOp(Node->getOperand(1)); // RHS
|
||||
if (Tmp1 != Node->getOperand(0) ||
|
||||
Tmp2 != Node->getOperand(1))
|
||||
Result = DAG.getNode(Node->getOpcode(), Node->getValueType(0), Tmp1,Tmp2);
|
||||
break;
|
||||
case ISD::ZERO_EXTEND:
|
||||
case ISD::SIGN_EXTEND:
|
||||
switch (getTypeAction(Node->getOperand(0).getValueType())) {
|
||||
case Legal:
|
||||
Tmp1 = LegalizeOp(Node->getOperand(0));
|
||||
if (Tmp1 != Node->getOperand(0))
|
||||
Result = DAG.getNode(Node->getOpcode(), Node->getValueType(0), Tmp1);
|
||||
break;
|
||||
default:
|
||||
assert(0 && "Do not know how to expand or promote this yet!");
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
if (!Op.Val->hasOneUse()) {
|
||||
bool isNew = LegalizedNodes.insert(std::make_pair(Op, Result)).second;
|
||||
assert(isNew && "Got into the map somehow?");
|
||||
}
|
||||
|
||||
return Result;
|
||||
}
|
||||
|
||||
|
||||
/// ExpandOp - Expand the specified SDOperand into its two component pieces
|
||||
/// Lo&Hi. Note that the Op MUST be an expanded type. As a result of this, the
|
||||
/// LegalizeNodes map is filled in for any results that are not expanded, the
|
||||
/// ExpandedNodes map is filled in for any results that are expanded, and the
|
||||
/// Lo/Hi values are returned.
|
||||
void SelectionDAGLegalize::ExpandOp(SDOperand Op, SDOperand &Lo, SDOperand &Hi){
|
||||
MVT::ValueType VT = Op.getValueType();
|
||||
MVT::ValueType NVT = TransformToType[VT];
|
||||
SDNode *Node = Op.Val;
|
||||
assert(getTypeAction(VT) == Expand && "Not an expanded type!");
|
||||
assert(MVT::isInteger(VT) && "Cannot expand FP values!");
|
||||
assert(MVT::isInteger(NVT) && NVT < VT &&
|
||||
"Cannot expand to FP value or to larger int value!");
|
||||
|
||||
// If there is more than one use of this, see if we already expanded it.
|
||||
// There is no use remembering values that only have a single use, as the map
|
||||
// entries will never be reused.
|
||||
if (!Node->hasOneUse()) {
|
||||
std::map<SDOperand, std::pair<SDOperand, SDOperand> >::iterator I
|
||||
= ExpandedNodes.find(Op);
|
||||
if (I != ExpandedNodes.end()) {
|
||||
Lo = I->second.first;
|
||||
Hi = I->second.second;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// If we are lowering to a type that the target doesn't support, we will have
|
||||
// to iterate lowering.
|
||||
if (!isTypeLegal(NVT))
|
||||
NeedsAnotherIteration = true;
|
||||
|
||||
LegalizeAction Action;
|
||||
switch (Node->getOpcode()) {
|
||||
default:
|
||||
std::cerr << "NODE: "; Node->dump(); std::cerr << "\n";
|
||||
assert(0 && "Do not know how to expand this operator!");
|
||||
abort();
|
||||
case ISD::Constant: {
|
||||
uint64_t Cst = cast<ConstantSDNode>(Node)->getValue();
|
||||
Lo = DAG.getConstant(Cst, NVT);
|
||||
Hi = DAG.getConstant(Cst >> MVT::getSizeInBits(NVT), NVT);
|
||||
break;
|
||||
}
|
||||
|
||||
case ISD::CopyFromReg: {
|
||||
unsigned Reg = cast<CopyRegSDNode>(Node)->getReg();
|
||||
// Aggregate register values are always in consequtive pairs.
|
||||
Lo = DAG.getCopyFromReg(Reg, NVT);
|
||||
Hi = DAG.getCopyFromReg(Reg+1, NVT);
|
||||
assert(isTypeLegal(NVT) && "Cannot expand this multiple times yet!");
|
||||
break;
|
||||
}
|
||||
|
||||
case ISD::LOAD: {
|
||||
SDOperand Ch = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
|
||||
SDOperand Ptr = LegalizeOp(Node->getOperand(1)); // Legalize the pointer.
|
||||
Lo = DAG.getLoad(NVT, Ch, Ptr);
|
||||
|
||||
// Increment the pointer to the other half.
|
||||
unsigned IncrementSize;
|
||||
switch (Lo.getValueType()) {
|
||||
default: assert(0 && "Unknown ValueType to expand to!");
|
||||
case MVT::i32: IncrementSize = 4; break;
|
||||
case MVT::i16: IncrementSize = 2; break;
|
||||
case MVT::i8: IncrementSize = 1; break;
|
||||
}
|
||||
Ptr = DAG.getNode(ISD::ADD, Ptr.getValueType(), Ptr,
|
||||
getIntPtrConstant(IncrementSize));
|
||||
// FIXME: This load is independent of the first one.
|
||||
Hi = DAG.getLoad(NVT, Lo.getValue(1), Ptr);
|
||||
|
||||
// Remember that we legalized the chain.
|
||||
bool isNew = LegalizedNodes.insert(std::make_pair(Op.getValue(1),
|
||||
Hi.getValue(1))).second;
|
||||
assert(isNew && "This node was already legalized!");
|
||||
if (!TLI.isLittleEndian())
|
||||
std::swap(Lo, Hi);
|
||||
break;
|
||||
}
|
||||
case ISD::CALL: {
|
||||
SDOperand Chain = LegalizeOp(Node->getOperand(0)); // Legalize the chain.
|
||||
SDOperand Callee = LegalizeOp(Node->getOperand(1)); // Legalize the callee.
|
||||
|
||||
assert(Node->getNumValues() == 2 && Op.ResNo == 0 &&
|
||||
"Can only expand a call once so far, not i64 -> i16!");
|
||||
|
||||
std::vector<MVT::ValueType> RetTyVTs;
|
||||
RetTyVTs.reserve(3);
|
||||
RetTyVTs.push_back(NVT);
|
||||
RetTyVTs.push_back(NVT);
|
||||
RetTyVTs.push_back(MVT::Other);
|
||||
SDNode *NC = DAG.getCall(RetTyVTs, Chain, Callee);
|
||||
Lo = SDOperand(NC, 0);
|
||||
Hi = SDOperand(NC, 1);
|
||||
|
||||
// Insert the new chain mapping.
|
||||
bool isNew = LegalizedNodes.insert(std::make_pair(Op.getValue(1),
|
||||
Hi.getValue(2))).second;
|
||||
assert(isNew && "This node was already legalized!");
|
||||
break;
|
||||
}
|
||||
case ISD::AND:
|
||||
case ISD::OR:
|
||||
case ISD::XOR: { // Simple logical operators -> two trivial pieces.
|
||||
SDOperand LL, LH, RL, RH;
|
||||
ExpandOp(Node->getOperand(0), LL, LH);
|
||||
ExpandOp(Node->getOperand(1), RL, RH);
|
||||
Lo = DAG.getNode(Node->getOpcode(), NVT, LL, RL);
|
||||
Hi = DAG.getNode(Node->getOpcode(), NVT, LH, RH);
|
||||
break;
|
||||
}
|
||||
case ISD::SELECT: {
|
||||
SDOperand C, LL, LH, RL, RH;
|
||||
// FIXME: BOOLS MAY REQUIRE PROMOTION!
|
||||
C = LegalizeOp(Node->getOperand(0));
|
||||
ExpandOp(Node->getOperand(1), LL, LH);
|
||||
ExpandOp(Node->getOperand(2), RL, RH);
|
||||
Lo = DAG.getNode(ISD::SELECT, NVT, C, LL, RL);
|
||||
Hi = DAG.getNode(ISD::SELECT, NVT, C, LH, RH);
|
||||
break;
|
||||
}
|
||||
case ISD::SIGN_EXTEND: {
|
||||
// The low part is just a sign extension of the input (which degenerates to
|
||||
// a copy).
|
||||
Lo = DAG.getNode(ISD::SIGN_EXTEND, NVT, LegalizeOp(Node->getOperand(0)));
|
||||
|
||||
// The high part is obtained by SRA'ing all but one of the bits of the lo
|
||||
// part.
|
||||
unsigned SrcSize = MVT::getSizeInBits(Node->getOperand(0).getValueType());
|
||||
Hi = DAG.getNode(ISD::SRA, NVT, Lo, DAG.getConstant(SrcSize-1, MVT::i8));
|
||||
break;
|
||||
}
|
||||
case ISD::ZERO_EXTEND:
|
||||
// The low part is just a zero extension of the input (which degenerates to
|
||||
// a copy).
|
||||
Lo = DAG.getNode(ISD::ZERO_EXTEND, NVT, LegalizeOp(Node->getOperand(0)));
|
||||
|
||||
// The high part is just a zero.
|
||||
Hi = DAG.getConstant(0, NVT);
|
||||
break;
|
||||
}
|
||||
|
||||
// Remember in a map if the values will be reused later.
|
||||
if (!Node->hasOneUse()) {
|
||||
bool isNew = ExpandedNodes.insert(std::make_pair(Op,
|
||||
std::make_pair(Lo, Hi))).second;
|
||||
assert(isNew && "Value already expanded?!?");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// SelectionDAG::Legalize - This is the entry point for the file.
|
||||
//
|
||||
void SelectionDAG::Legalize(TargetLowering &TLI) {
|
||||
/// run - This is the main entry point to this class.
|
||||
///
|
||||
SelectionDAGLegalize(TLI, *this).Run();
|
||||
}
|
||||
|
Loading…
Reference in New Issue