Revert r334729 "[DAG] Avoid needing to walk out legalization tables. NFCI."

This reverts commit r334729.

llvm-svn: 334869
This commit is contained in:
Francis Visoiu Mistrih 2018-06-15 23:05:41 +00:00
parent 1c9df30eca
commit dc705a6a89
2 changed files with 193 additions and 155 deletions

View File

@ -84,10 +84,9 @@ void DAGTypeLegalizer::PerformExpensiveChecks() {
SDValue Res(&Node, i); SDValue Res(&Node, i);
EVT VT = Res.getValueType(); EVT VT = Res.getValueType();
bool Failed = false; bool Failed = false;
auto ResId = getTableId(Res);
unsigned Mapped = 0; unsigned Mapped = 0;
if (ReplacedValues.find(ResId) != ReplacedValues.end()) { if (ReplacedValues.find(Res) != ReplacedValues.end()) {
Mapped |= 1; Mapped |= 1;
// Check that remapped values are only used by nodes marked NewNode. // Check that remapped values are only used by nodes marked NewNode.
for (SDNode::use_iterator UI = Node.use_begin(), UE = Node.use_end(); for (SDNode::use_iterator UI = Node.use_begin(), UE = Node.use_end();
@ -98,31 +97,30 @@ void DAGTypeLegalizer::PerformExpensiveChecks() {
// Check that the final result of applying ReplacedValues is not // Check that the final result of applying ReplacedValues is not
// marked NewNode. // marked NewNode.
auto NewValId = ReplacedValues[ResId]; SDValue NewVal = ReplacedValues[Res];
auto I = ReplacedValues.find(NewValId); DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(NewVal);
while (I != ReplacedValues.end()) { while (I != ReplacedValues.end()) {
NewValId = I->second; NewVal = I->second;
I = ReplacedValues.find(NewValId); I = ReplacedValues.find(NewVal);
} }
SDValue NewVal = getSDValue(NewValId);
assert(NewVal.getNode()->getNodeId() != NewNode && assert(NewVal.getNode()->getNodeId() != NewNode &&
"ReplacedValues maps to a new node!"); "ReplacedValues maps to a new node!");
} }
if (PromotedIntegers.find(ResId) != PromotedIntegers.end()) if (PromotedIntegers.find(Res) != PromotedIntegers.end())
Mapped |= 2; Mapped |= 2;
if (SoftenedFloats.find(ResId) != SoftenedFloats.end()) if (SoftenedFloats.find(Res) != SoftenedFloats.end())
Mapped |= 4; Mapped |= 4;
if (ScalarizedVectors.find(ResId) != ScalarizedVectors.end()) if (ScalarizedVectors.find(Res) != ScalarizedVectors.end())
Mapped |= 8; Mapped |= 8;
if (ExpandedIntegers.find(ResId) != ExpandedIntegers.end()) if (ExpandedIntegers.find(Res) != ExpandedIntegers.end())
Mapped |= 16; Mapped |= 16;
if (ExpandedFloats.find(ResId) != ExpandedFloats.end()) if (ExpandedFloats.find(Res) != ExpandedFloats.end())
Mapped |= 32; Mapped |= 32;
if (SplitVectors.find(ResId) != SplitVectors.end()) if (SplitVectors.find(Res) != SplitVectors.end())
Mapped |= 64; Mapped |= 64;
if (WidenedVectors.find(ResId) != WidenedVectors.end()) if (WidenedVectors.find(Res) != WidenedVectors.end())
Mapped |= 128; Mapped |= 128;
if (PromotedFloats.find(ResId) != PromotedFloats.end()) if (PromotedFloats.find(Res) != PromotedFloats.end())
Mapped |= 256; Mapped |= 256;
if (Node.getNodeId() != Processed) { if (Node.getNodeId() != Processed) {
@ -493,6 +491,9 @@ SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
if (N->getNodeId() != NewNode && N->getNodeId() != Unanalyzed) if (N->getNodeId() != NewNode && N->getNodeId() != Unanalyzed)
return N; return N;
// Remove any stale map entries.
ExpungeNode(N);
// Okay, we know that this node is new. Recursively walk all of its operands // Okay, we know that this node is new. Recursively walk all of its operands
// to see if they are new also. The depth of this walk is bounded by the size // to see if they are new also. The depth of this walk is bounded by the size
// of the new tree that was constructed (usually 2-3 nodes), so we don't worry // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
@ -543,6 +544,7 @@ SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
// to remap the operands, since they are the same as the operands we // to remap the operands, since they are the same as the operands we
// remapped above. // remapped above.
N = M; N = M;
ExpungeNode(N);
} }
} }
@ -563,24 +565,106 @@ void DAGTypeLegalizer::AnalyzeNewValue(SDValue &Val) {
RemapValue(Val); RemapValue(Val);
} }
/// If the specified value was already legalized to another value, /// If N has a bogus mapping in ReplacedValues, eliminate it.
/// replace it by that value. /// This can occur when a node is deleted then reallocated as a new node -
void DAGTypeLegalizer::RemapValue(SDValue &V) { /// the mapping in ReplacedValues applies to the deleted node, not the new
auto Id = getTableId(V); /// one.
V = getSDValue(Id); /// The only map that can have a deleted node as a source is ReplacedValues.
/// Other maps can have deleted nodes as targets, but since their looked-up
/// values are always immediately remapped using RemapValue, resulting in a
/// not-deleted node, this is harmless as long as ReplacedValues/RemapValue
/// always performs correct mappings. In order to keep the mapping correct,
/// ExpungeNode should be called on any new nodes *before* adding them as
/// either source or target to ReplacedValues (which typically means calling
/// Expunge when a new node is first seen, since it may no longer be marked
/// NewNode by the time it is added to ReplacedValues).
void DAGTypeLegalizer::ExpungeNode(SDNode *N) {
if (N->getNodeId() != NewNode)
return;
// If N is not remapped by ReplacedValues then there is nothing to do.
unsigned i, e;
for (i = 0, e = N->getNumValues(); i != e; ++i)
if (ReplacedValues.find(SDValue(N, i)) != ReplacedValues.end())
break;
if (i == e)
return;
// Remove N from all maps - this is expensive but rare.
for (DenseMap<SDValue, SDValue>::iterator I = PromotedIntegers.begin(),
E = PromotedIntegers.end(); I != E; ++I) {
assert(I->first.getNode() != N);
RemapValue(I->second);
}
for (DenseMap<SDValue, SDValue>::iterator I = PromotedFloats.begin(),
E = PromotedFloats.end(); I != E; ++I) {
assert(I->first.getNode() != N);
RemapValue(I->second);
}
for (DenseMap<SDValue, SDValue>::iterator I = SoftenedFloats.begin(),
E = SoftenedFloats.end(); I != E; ++I) {
assert(I->first.getNode() != N);
RemapValue(I->second);
}
for (DenseMap<SDValue, SDValue>::iterator I = ScalarizedVectors.begin(),
E = ScalarizedVectors.end(); I != E; ++I) {
assert(I->first.getNode() != N);
RemapValue(I->second);
}
for (DenseMap<SDValue, SDValue>::iterator I = WidenedVectors.begin(),
E = WidenedVectors.end(); I != E; ++I) {
assert(I->first.getNode() != N);
RemapValue(I->second);
}
for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
I = ExpandedIntegers.begin(), E = ExpandedIntegers.end(); I != E; ++I){
assert(I->first.getNode() != N);
RemapValue(I->second.first);
RemapValue(I->second.second);
}
for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
I = ExpandedFloats.begin(), E = ExpandedFloats.end(); I != E; ++I) {
assert(I->first.getNode() != N);
RemapValue(I->second.first);
RemapValue(I->second.second);
}
for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
I = SplitVectors.begin(), E = SplitVectors.end(); I != E; ++I) {
assert(I->first.getNode() != N);
RemapValue(I->second.first);
RemapValue(I->second.second);
}
for (DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.begin(),
E = ReplacedValues.end(); I != E; ++I)
RemapValue(I->second);
for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
ReplacedValues.erase(SDValue(N, i));
} }
void DAGTypeLegalizer::RemapId(TableId &Id) { /// If the specified value was already legalized to another value,
auto I = ReplacedValues.find(Id); /// replace it by that value.
void DAGTypeLegalizer::RemapValue(SDValue &N) {
DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(N);
if (I != ReplacedValues.end()) { if (I != ReplacedValues.end()) {
// Use path compression to speed up future lookups if values get multiply // Use path compression to speed up future lookups if values get multiply
// replaced with other values. // replaced with other values.
RemapId(I->second); RemapValue(I->second);
Id = I->second; N = I->second;
// Note that N = IdToValueMap[Id] it is possible to have // Note that it is possible to have N.getNode()->getNodeId() == NewNode at
// N.getNode()->getNodeId() == NewNode at this point because it is possible // this point because it is possible for a node to be put in the map before
// for a node to be put in the map before being processed. // being processed.
} }
} }
@ -637,22 +721,20 @@ void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) {
assert(From.getNode() != To.getNode() && "Potential legalization loop!"); assert(From.getNode() != To.getNode() && "Potential legalization loop!");
// If expansion produced new nodes, make sure they are properly marked. // If expansion produced new nodes, make sure they are properly marked.
AnalyzeNewValue(To); ExpungeNode(From.getNode());
AnalyzeNewValue(To); // Expunges To.
// Anything that used the old node should now use the new one. Note that this // Anything that used the old node should now use the new one. Note that this
// can potentially cause recursive merging. // can potentially cause recursive merging.
SmallSetVector<SDNode*, 16> NodesToAnalyze; SmallSetVector<SDNode*, 16> NodesToAnalyze;
NodeUpdateListener NUL(*this, NodesToAnalyze); NodeUpdateListener NUL(*this, NodesToAnalyze);
do { do {
// The old node may be present in a map like ExpandedIntegers or
// PromotedIntegers. Inform maps about the replacement.
auto FromId = getTableId(From);
auto ToId = getTableId(To);
ReplacedValues[FromId] = ToId;
DAG.ReplaceAllUsesOfValueWith(From, To); DAG.ReplaceAllUsesOfValueWith(From, To);
// The old node may still be present in a map like ExpandedIntegers or
// PromotedIntegers. Inform maps about the replacement.
ReplacedValues[From] = To;
// Process the list of nodes that need to be reanalyzed. // Process the list of nodes that need to be reanalyzed.
while (!NodesToAnalyze.empty()) { while (!NodesToAnalyze.empty()) {
SDNode *N = NodesToAnalyze.back(); SDNode *N = NodesToAnalyze.back();
@ -676,14 +758,12 @@ void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) {
SDValue NewVal(M, i); SDValue NewVal(M, i);
if (M->getNodeId() == Processed) if (M->getNodeId() == Processed)
RemapValue(NewVal); RemapValue(NewVal);
DAG.ReplaceAllUsesOfValueWith(OldVal, NewVal);
// OldVal may be a target of the ReplacedValues map which was marked // OldVal may be a target of the ReplacedValues map which was marked
// NewNode to force reanalysis because it was updated. Ensure that // NewNode to force reanalysis because it was updated. Ensure that
// anything that ReplacedValues mapped to OldVal will now be mapped // anything that ReplacedValues mapped to OldVal will now be mapped
// all the way to NewVal. // all the way to NewVal.
auto OldValId = getTableId(OldVal); ReplacedValues[OldVal] = NewVal;
auto NewValId = getTableId(NewVal);
DAG.ReplaceAllUsesOfValueWith(OldVal, NewVal);
ReplacedValues[OldValId] = NewValId;
} }
// The original node continues to exist in the DAG, marked NewNode. // The original node continues to exist in the DAG, marked NewNode.
} }
@ -700,9 +780,9 @@ void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) {
"Invalid type for promoted integer"); "Invalid type for promoted integer");
AnalyzeNewValue(Result); AnalyzeNewValue(Result);
auto &OpIdEntry = PromotedIntegers[getTableId(Op)]; SDValue &OpEntry = PromotedIntegers[Op];
assert((OpIdEntry == 0) && "Node is already promoted!"); assert(!OpEntry.getNode() && "Node is already promoted!");
OpIdEntry = getTableId(Result); OpEntry = Result;
DAG.transferDbgValues(Op, Result); DAG.transferDbgValues(Op, Result);
} }
@ -717,15 +797,15 @@ void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) {
"Invalid type for softened float"); "Invalid type for softened float");
AnalyzeNewValue(Result); AnalyzeNewValue(Result);
auto &OpIdEntry = SoftenedFloats[getTableId(Op)]; SDValue &OpEntry = SoftenedFloats[Op];
// Allow repeated calls to save f128 type nodes // Allow repeated calls to save f128 type nodes
// or any node with type that transforms to itself. // or any node with type that transforms to itself.
// Many operations on these types are not softened. // Many operations on these types are not softened.
assert(((OpIdEntry == 0) || assert((!OpEntry.getNode()||
Op.getValueType() == Op.getValueType() ==
TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType())) && TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType())) &&
"Node is already converted to integer!"); "Node is already converted to integer!");
OpIdEntry = getTableId(Result); OpEntry = Result;
} }
void DAGTypeLegalizer::SetPromotedFloat(SDValue Op, SDValue Result) { void DAGTypeLegalizer::SetPromotedFloat(SDValue Op, SDValue Result) {
@ -734,9 +814,9 @@ void DAGTypeLegalizer::SetPromotedFloat(SDValue Op, SDValue Result) {
"Invalid type for promoted float"); "Invalid type for promoted float");
AnalyzeNewValue(Result); AnalyzeNewValue(Result);
auto &OpIdEntry = PromotedFloats[getTableId(Op)]; SDValue &OpEntry = PromotedFloats[Op];
assert((OpIdEntry == 0) && "Node is already promoted!"); assert(!OpEntry.getNode() && "Node is already promoted!");
OpIdEntry = getTableId(Result); OpEntry = Result;
} }
void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) { void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
@ -747,17 +827,19 @@ void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
"Invalid type for scalarized vector"); "Invalid type for scalarized vector");
AnalyzeNewValue(Result); AnalyzeNewValue(Result);
auto &OpIdEntry = ScalarizedVectors[getTableId(Op)]; SDValue &OpEntry = ScalarizedVectors[Op];
assert((OpIdEntry == 0) && "Node is already scalarized!"); assert(!OpEntry.getNode() && "Node is already scalarized!");
OpIdEntry = getTableId(Result); OpEntry = Result;
} }
void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo, void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo,
SDValue &Hi) { SDValue &Hi) {
std::pair<TableId, TableId> &Entry = ExpandedIntegers[getTableId(Op)]; std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
assert((Entry.first != 0) && "Operand isn't expanded"); RemapValue(Entry.first);
Lo = getSDValue(Entry.first); RemapValue(Entry.second);
Hi = getSDValue(Entry.second); assert(Entry.first.getNode() && "Operand isn't expanded");
Lo = Entry.first;
Hi = Entry.second;
} }
void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo, void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo,
@ -783,18 +865,20 @@ void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo,
} }
// Remember that this is the result of the node. // Remember that this is the result of the node.
std::pair<TableId, TableId> &Entry = ExpandedIntegers[getTableId(Op)]; std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
assert((Entry.first == 0) && "Node already expanded"); assert(!Entry.first.getNode() && "Node already expanded");
Entry.first = getTableId(Lo); Entry.first = Lo;
Entry.second = getTableId(Hi); Entry.second = Hi;
} }
void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo, void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo,
SDValue &Hi) { SDValue &Hi) {
std::pair<TableId, TableId> &Entry = ExpandedFloats[getTableId(Op)]; std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
assert((Entry.first != 0) && "Operand isn't expanded"); RemapValue(Entry.first);
Lo = getSDValue(Entry.first); RemapValue(Entry.second);
Hi = getSDValue(Entry.second); assert(Entry.first.getNode() && "Operand isn't expanded");
Lo = Entry.first;
Hi = Entry.second;
} }
void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo, void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo,
@ -807,19 +891,21 @@ void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo,
AnalyzeNewValue(Lo); AnalyzeNewValue(Lo);
AnalyzeNewValue(Hi); AnalyzeNewValue(Hi);
std::pair<TableId, TableId> &Entry = ExpandedFloats[getTableId(Op)]; // Remember that this is the result of the node.
assert((Entry.first == 0) && "Node already expanded"); std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
Entry.first = getTableId(Lo); assert(!Entry.first.getNode() && "Node already expanded");
Entry.second = getTableId(Hi); Entry.first = Lo;
Entry.second = Hi;
} }
void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo, void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo,
SDValue &Hi) { SDValue &Hi) {
std::pair<TableId, TableId> &Entry = SplitVectors[getTableId(Op)]; std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
Lo = getSDValue(Entry.first); RemapValue(Entry.first);
Hi = getSDValue(Entry.second); RemapValue(Entry.second);
assert(Lo.getNode() && "Operand isn't split"); assert(Entry.first.getNode() && "Operand isn't split");
; Lo = Entry.first;
Hi = Entry.second;
} }
void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo, void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
@ -835,10 +921,10 @@ void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
AnalyzeNewValue(Hi); AnalyzeNewValue(Hi);
// Remember that this is the result of the node. // Remember that this is the result of the node.
std::pair<TableId, TableId> &Entry = SplitVectors[getTableId(Op)]; std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
assert((Entry.first == 0) && "Node already split"); assert(!Entry.first.getNode() && "Node already split");
Entry.first = getTableId(Lo); Entry.first = Lo;
Entry.second = getTableId(Hi); Entry.second = Hi;
} }
void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) { void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) {
@ -847,9 +933,9 @@ void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) {
"Invalid type for widened vector"); "Invalid type for widened vector");
AnalyzeNewValue(Result); AnalyzeNewValue(Result);
auto &OpIdEntry = WidenedVectors[getTableId(Op)]; SDValue &OpEntry = WidenedVectors[Op];
assert((OpIdEntry == 0) && "Node already widened!"); assert(!OpEntry.getNode() && "Node already widened!");
OpIdEntry = getTableId(Result); OpEntry = Result;
} }

View File

@ -93,81 +93,46 @@ private:
N->getOpcode() == ISD::Register; N->getOpcode() == ISD::Register;
} }
// Bijection from SDValue to unique id. As each created node gets a
// new id we do not need to worry about reuse expunging. Should we
// run out of ids, we can do a one time expensive compactifcation.
typedef unsigned TableId;
TableId NextValueId = 1;
SmallDenseMap<SDValue, TableId, 8> ValueToIdMap;
SmallDenseMap<TableId, SDValue, 8> IdToValueMap;
/// For integer nodes that are below legal width, this map indicates what /// For integer nodes that are below legal width, this map indicates what
/// promoted value to use. /// promoted value to use.
SmallDenseMap<TableId, TableId, 8> PromotedIntegers; SmallDenseMap<SDValue, SDValue, 8> PromotedIntegers;
/// For integer nodes that need to be expanded this map indicates which /// For integer nodes that need to be expanded this map indicates which
/// operands are the expanded version of the input. /// operands are the expanded version of the input.
SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedIntegers; SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> ExpandedIntegers;
/// For floating-point nodes converted to integers of the same size, this map /// For floating-point nodes converted to integers of the same size, this map
/// indicates the converted value to use. /// indicates the converted value to use.
SmallDenseMap<TableId, TableId, 8> SoftenedFloats; SmallDenseMap<SDValue, SDValue, 8> SoftenedFloats;
/// For floating-point nodes that have a smaller precision than the smallest /// For floating-point nodes that have a smaller precision than the smallest
/// supported precision, this map indicates what promoted value to use. /// supported precision, this map indicates what promoted value to use.
SmallDenseMap<TableId, TableId, 8> PromotedFloats; SmallDenseMap<SDValue, SDValue, 8> PromotedFloats;
/// For float nodes that need to be expanded this map indicates which operands /// For float nodes that need to be expanded this map indicates which operands
/// are the expanded version of the input. /// are the expanded version of the input.
SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedFloats; SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> ExpandedFloats;
/// For nodes that are <1 x ty>, this map indicates the scalar value of type /// For nodes that are <1 x ty>, this map indicates the scalar value of type
/// 'ty' to use. /// 'ty' to use.
SmallDenseMap<TableId, TableId, 8> ScalarizedVectors; SmallDenseMap<SDValue, SDValue, 8> ScalarizedVectors;
/// For nodes that need to be split this map indicates which operands are the /// For nodes that need to be split this map indicates which operands are the
/// expanded version of the input. /// expanded version of the input.
SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> SplitVectors; SmallDenseMap<SDValue, std::pair<SDValue, SDValue>, 8> SplitVectors;
/// For vector nodes that need to be widened, indicates the widened value to /// For vector nodes that need to be widened, indicates the widened value to
/// use. /// use.
SmallDenseMap<TableId, TableId, 8> WidenedVectors; SmallDenseMap<SDValue, SDValue, 8> WidenedVectors;
/// For values that have been replaced with another, indicates the replacement /// For values that have been replaced with another, indicates the replacement
/// value to use. /// value to use.
SmallDenseMap<TableId, TableId, 8> ReplacedValues; SmallDenseMap<SDValue, SDValue, 8> ReplacedValues;
/// This defines a worklist of nodes to process. In order to be pushed onto /// This defines a worklist of nodes to process. In order to be pushed onto
/// this worklist, all operands of a node must have already been processed. /// this worklist, all operands of a node must have already been processed.
SmallVector<SDNode*, 128> Worklist; SmallVector<SDNode*, 128> Worklist;
TableId getTableId(SDValue V) {
assert(V.getNode() && "Getting TableId on SDValue()");
auto I = ValueToIdMap.find(V);
if (I != ValueToIdMap.end()) {
// replace if there's been a shift.
RemapId(I->second);
assert(I->second && "All Ids should be nonzero");
return I->second;
}
// Add if it's not there.
ValueToIdMap.insert(std::make_pair(V, NextValueId));
IdToValueMap.insert(std::make_pair(NextValueId, V));
++NextValueId;
assert(NextValueId != 0 &&
"Ran out of Ids. Increase id type size or add compactification");
return NextValueId - 1;
}
const SDValue &getSDValue(TableId &Id) {
RemapId(Id);
assert(Id && "TableId should be non-zero");
return IdToValueMap[Id];
}
public: public:
explicit DAGTypeLegalizer(SelectionDAG &dag) explicit DAGTypeLegalizer(SelectionDAG &dag)
: TLI(dag.getTargetLoweringInfo()), DAG(dag), : TLI(dag.getTargetLoweringInfo()), DAG(dag),
@ -182,24 +147,10 @@ public:
bool run(); bool run();
void NoteDeletion(SDNode *Old, SDNode *New) { void NoteDeletion(SDNode *Old, SDNode *New) {
for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { ExpungeNode(Old);
TableId NewId = getTableId(SDValue(New, i)); ExpungeNode(New);
TableId OldId = getTableId(SDValue(Old, i)); for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i)
ReplacedValues[SDValue(Old, i)] = SDValue(New, i);
ReplacedValues[OldId] = NewId;
// Delete Node from tables.
ValueToIdMap.erase(SDValue(Old, i));
IdToValueMap.erase(OldId);
PromotedIntegers.erase(OldId);
ExpandedIntegers.erase(OldId);
SoftenedFloats.erase(OldId);
PromotedFloats.erase(OldId);
ExpandedFloats.erase(OldId);
ScalarizedVectors.erase(OldId);
SplitVectors.erase(OldId);
WidenedVectors.erase(OldId);
}
} }
SelectionDAG &getDAG() const { return DAG; } SelectionDAG &getDAG() const { return DAG; }
@ -207,9 +158,9 @@ public:
private: private:
SDNode *AnalyzeNewNode(SDNode *N); SDNode *AnalyzeNewNode(SDNode *N);
void AnalyzeNewValue(SDValue &Val); void AnalyzeNewValue(SDValue &Val);
void ExpungeNode(SDNode *N);
void PerformExpensiveChecks(); void PerformExpensiveChecks();
void RemapId(TableId &N); void RemapValue(SDValue &N);
void RemapValue(SDValue &V);
// Common routines. // Common routines.
SDValue BitConvertToInteger(SDValue Op); SDValue BitConvertToInteger(SDValue Op);
@ -256,8 +207,8 @@ private:
/// returns an i32, the lower 16 bits of which coincide with Op, and the upper /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
/// 16 bits of which contain rubbish. /// 16 bits of which contain rubbish.
SDValue GetPromotedInteger(SDValue Op) { SDValue GetPromotedInteger(SDValue Op) {
TableId &PromotedId = PromotedIntegers[getTableId(Op)]; SDValue &PromotedOp = PromotedIntegers[Op];
SDValue PromotedOp = getSDValue(PromotedId); RemapValue(PromotedOp);
assert(PromotedOp.getNode() && "Operand wasn't promoted?"); assert(PromotedOp.getNode() && "Operand wasn't promoted?");
return PromotedOp; return PromotedOp;
} }
@ -451,15 +402,16 @@ private:
/// stay in a register, the Op is not converted to an integer. /// stay in a register, the Op is not converted to an integer.
/// In that case, the given op is returned. /// In that case, the given op is returned.
SDValue GetSoftenedFloat(SDValue Op) { SDValue GetSoftenedFloat(SDValue Op) {
TableId Id = getTableId(Op); auto Iter = SoftenedFloats.find(Op);
auto Iter = SoftenedFloats.find(Id);
if (Iter == SoftenedFloats.end()) { if (Iter == SoftenedFloats.end()) {
assert(isSimpleLegalType(Op.getValueType()) && assert(isSimpleLegalType(Op.getValueType()) &&
"Operand wasn't converted to integer?"); "Operand wasn't converted to integer?");
return Op; return Op;
} }
SDValue SoftenedOp = getSDValue(Iter->second);
SDValue &SoftenedOp = Iter->second;
assert(SoftenedOp.getNode() && "Unconverted op in SoftenedFloats?"); assert(SoftenedOp.getNode() && "Unconverted op in SoftenedFloats?");
RemapValue(SoftenedOp);
return SoftenedOp; return SoftenedOp;
} }
void SetSoftenedFloat(SDValue Op, SDValue Result); void SetSoftenedFloat(SDValue Op, SDValue Result);
@ -596,8 +548,8 @@ private:
//===--------------------------------------------------------------------===// //===--------------------------------------------------------------------===//
SDValue GetPromotedFloat(SDValue Op) { SDValue GetPromotedFloat(SDValue Op) {
TableId &PromotedId = PromotedFloats[getTableId(Op)]; SDValue &PromotedOp = PromotedFloats[Op];
SDValue PromotedOp = getSDValue(PromotedId); RemapValue(PromotedOp);
assert(PromotedOp.getNode() && "Operand wasn't promoted?"); assert(PromotedOp.getNode() && "Operand wasn't promoted?");
return PromotedOp; return PromotedOp;
} }
@ -636,8 +588,8 @@ private:
/// element type, this returns the element. For example, if Op is a v1i32, /// element type, this returns the element. For example, if Op is a v1i32,
/// Op = < i32 val >, this method returns val, an i32. /// Op = < i32 val >, this method returns val, an i32.
SDValue GetScalarizedVector(SDValue Op) { SDValue GetScalarizedVector(SDValue Op) {
TableId &ScalarizedId = ScalarizedVectors[getTableId(Op)]; SDValue &ScalarizedOp = ScalarizedVectors[Op];
SDValue ScalarizedOp = getSDValue(ScalarizedId); RemapValue(ScalarizedOp);
assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?"); assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
return ScalarizedOp; return ScalarizedOp;
} }
@ -748,8 +700,8 @@ private:
/// method returns a v4i32 for which the first two elements are the same as /// method returns a v4i32 for which the first two elements are the same as
/// those of Op, while the last two elements contain rubbish. /// those of Op, while the last two elements contain rubbish.
SDValue GetWidenedVector(SDValue Op) { SDValue GetWidenedVector(SDValue Op) {
TableId &WidenedId = WidenedVectors[getTableId(Op)]; SDValue &WidenedOp = WidenedVectors[Op];
SDValue WidenedOp = getSDValue(WidenedId); RemapValue(WidenedOp);
assert(WidenedOp.getNode() && "Operand wasn't widened?"); assert(WidenedOp.getNode() && "Operand wasn't widened?");
return WidenedOp; return WidenedOp;
} }