transform obscured FP sign bit ops into a fabs/fneg using TLI hook

This is effectively a revert of:
http://reviews.llvm.org/rL249702 - [InstCombine] transform masking off of an FP sign bit into a fabs() intrinsic call (PR24886)
and:
http://reviews.llvm.org/rL249701 - [ValueTracking] teach computeKnownBits that a fabs() clears sign bits
and a reimplementation as a DAG combine for targets that have IEEE754-compliant fabs/fneg instructions.

This is intended to resolve the objections raised on the dev list:
http://lists.llvm.org/pipermail/llvm-dev/2016-April/098154.html
and:
https://llvm.org/bugs/show_bug.cgi?id=24886#c4

In the interest of patch minimalism, I've only partly enabled AArch64. PowerPC, MIPS, x86 and others can enable later.

Differential Revision: http://reviews.llvm.org/D19391

llvm-svn: 271573
This commit is contained in:
Sanjay Patel 2016-06-02 20:01:37 +00:00
parent 617409f0c0
commit dba8b4c04d
8 changed files with 64 additions and 101 deletions

View File

@ -319,6 +319,14 @@ public:
return false;
}
/// Return true if it is safe to transform an integer-domain bitwise operation
/// into the equivalent floating-point operation. This should be set to true
/// if the target has IEEE-754-compliant fabs/fneg operations for the input
/// type.
virtual bool hasBitPreservingFPLogic(EVT VT) const {
return false;
}
/// \brief Return if the target supports combining a
/// chain like:
/// \code

View File

@ -991,8 +991,7 @@ static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
}
case Instruction::BitCast: {
Type *SrcTy = I->getOperand(0)->getType();
if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() ||
SrcTy->isFloatingPointTy()) &&
if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
// TODO: For now, not handling conversions like:
// (bitcast i64 %x to <2 x i32>)
!I->getType()->isVectorTy()) {
@ -1316,12 +1315,6 @@ static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
// of bits which might be set provided by popcnt KnownOne2.
break;
}
case Intrinsic::fabs: {
Type *Ty = II->getType();
APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits());
KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit);
break;
}
case Intrinsic::x86_sse42_crc32_64_64:
KnownZero |= APInt::getHighBitsSet(64, 32);
break;
@ -1381,9 +1374,8 @@ void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
unsigned BitWidth = KnownZero.getBitWidth();
assert((V->getType()->isIntOrIntVectorTy() ||
V->getType()->isFPOrFPVectorTy() ||
V->getType()->getScalarType()->isPointerTy()) &&
"Not integer, floating point, or pointer type!");
"Not integer or pointer type!");
assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
(!V->getType()->isIntOrIntVectorTy() ||
V->getType()->getScalarSizeInBits() == BitWidth) &&

View File

@ -7351,6 +7351,49 @@ static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) {
return DAG.getDataLayout().isBigEndian() ? 1 : 0;
}
static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG,
const TargetLowering &TLI) {
// If this is not a bitcast to an FP type or if the target doesn't have
// IEEE754-compliant FP logic, we're done.
EVT VT = N->getValueType(0);
if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT))
return SDValue();
// TODO: Use splat values for the constant-checking below and remove this
// restriction.
SDValue N0 = N->getOperand(0);
EVT SourceVT = N0.getValueType();
if (SourceVT.isVector())
return SDValue();
unsigned FPOpcode;
APInt SignMask;
switch (N0.getOpcode()) {
case ISD::AND:
FPOpcode = ISD::FABS;
SignMask = ~APInt::getSignBit(SourceVT.getSizeInBits());
break;
case ISD::XOR:
FPOpcode = ISD::FNEG;
SignMask = APInt::getSignBit(SourceVT.getSizeInBits());
break;
// TODO: ISD::OR --> ISD::FNABS?
default:
return SDValue();
}
// Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X
// Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X
SDValue LogicOp0 = N0.getOperand(0);
ConstantSDNode *LogicOp1 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask &&
LogicOp0.getOpcode() == ISD::BITCAST &&
LogicOp0->getOperand(0).getValueType() == VT)
return DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0->getOperand(0));
return SDValue();
}
SDValue DAGCombiner::visitBITCAST(SDNode *N) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
@ -7415,6 +7458,9 @@ SDValue DAGCombiner::visitBITCAST(SDNode *N) {
}
}
if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI))
return V;
// fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
// fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
//

View File

@ -395,6 +395,12 @@ public:
bool isCheapToSpeculateCtlz() const override {
return true;
}
bool hasBitPreservingFPLogic(EVT VT) const override {
// FIXME: Is this always true? It should be true for vectors at least.
return VT == MVT::f32 || VT == MVT::f64;
}
bool supportSplitCSR(MachineFunction *MF) const override {
return MF->getFunction()->getCallingConv() == CallingConv::CXX_FAST_TLS &&
MF->getFunction()->hasFnAttribute(Attribute::NoUnwind);

View File

@ -1594,24 +1594,6 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
if (Instruction *CastedAnd = foldCastedBitwiseLogic(I))
return CastedAnd;
if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Value *Op0COp = Op0C->getOperand(0);
Type *SrcTy = Op0COp->getType();
// If we are masking off the sign bit of a floating-point value, convert
// this to the canonical fabs intrinsic call and cast back to integer.
// The backend should know how to optimize fabs().
// TODO: This transform should also apply to vectors.
ConstantInt *CI;
if (isa<BitCastInst>(Op0C) && SrcTy->isFloatingPointTy() &&
match(Op1, m_ConstantInt(CI)) && CI->isMaxValue(true)) {
Module *M = I.getModule();
Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, SrcTy);
Value *Call = Builder->CreateCall(Fabs, Op0COp, "fabs");
return CastInst::CreateBitOrPointerCast(Call, I.getType());
}
}
if (Instruction *Select = foldBoolSextMaskToSelect(I))
return Select;

View File

@ -153,9 +153,7 @@ define double @test_bitcasti64todouble(i64 %in) {
define double @bitcast_fabs(double %x) {
; CHECK-LABEL: bitcast_fabs:
; CHECK: ; BB#0:
; CHECK-NEXT: fmov x8, d0
; CHECK-NEXT: and x8, x8, #0x7fffffffffffffff
; CHECK-NEXT: fmov d0, x8
; CHECK-NEXT: fabs d0, d0
; CHECK-NEXT: ret
;
%bc1 = bitcast double %x to i64
@ -167,9 +165,7 @@ define double @bitcast_fabs(double %x) {
define float @bitcast_fneg(float %x) {
; CHECK-LABEL: bitcast_fneg:
; CHECK: ; BB#0:
; CHECK-NEXT: fmov w8, s0
; CHECK-NEXT: eor w8, w8, #0x80000000
; CHECK-NEXT: fmov s0, w8
; CHECK-NEXT: fneg s0, s0
; CHECK-NEXT: ret
;
%bc1 = bitcast float %x to i32

View File

@ -103,45 +103,3 @@ define i64 @test10(i64 %x) {
ret i64 %add
}
define i64 @fabs_double(double %x) {
; CHECK-LABEL: @fabs_double(
; CHECK-NEXT: %fabs = call double @llvm.fabs.f64(double %x)
; CHECK-NEXT: %and = bitcast double %fabs to i64
; CHECK-NEXT: ret i64 %and
%bc = bitcast double %x to i64
%and = and i64 %bc, 9223372036854775807
ret i64 %and
}
define i64 @fabs_double_swap(double %x) {
; CHECK-LABEL: @fabs_double_swap(
; CHECK-NEXT: %fabs = call double @llvm.fabs.f64(double %x)
; CHECK-NEXT: %and = bitcast double %fabs to i64
; CHECK-NEXT: ret i64 %and
%bc = bitcast double %x to i64
%and = and i64 9223372036854775807, %bc
ret i64 %and
}
define i32 @fabs_float(float %x) {
; CHECK-LABEL: @fabs_float(
; CHECK-NEXT: %fabs = call float @llvm.fabs.f32(float %x)
; CHECK-NEXT: %and = bitcast float %fabs to i32
; CHECK-NEXT: ret i32 %and
%bc = bitcast float %x to i32
%and = and i32 %bc, 2147483647
ret i32 %and
}
; Make sure that only a bitcast is transformed.
define i64 @fabs_double_not_bitcast(double %x) {
; CHECK-LABEL: @fabs_double_not_bitcast(
; CHECK-NEXT: %bc = fptoui double %x to i64
; CHECK-NEXT: %and = and i64 %bc, 9223372036854775807
; CHECK-NEXT: ret i64 %and
%bc = fptoui double %x to i64
%and = and i64 %bc, 9223372036854775807
ret i64 %and
}

View File

@ -41,7 +41,6 @@ define fp128 @square_fabs_call_f128(fp128 %x) {
declare float @llvm.fabs.f32(float)
declare double @llvm.fabs.f64(double)
declare fp128 @llvm.fabs.f128(fp128)
declare <4 x float> @llvm.fabs.v4f32(<4 x float>)
define float @square_fabs_intrinsic_f32(float %x) {
%mul = fmul float %x, %x
@ -99,27 +98,3 @@ define float @square_fabs_shrink_call2(float %x) {
; CHECK-NEXT: ret float %sq
}
; A scalar fabs op makes the sign bit zero, so masking off all of the other bits means we can return zero.
define i32 @fabs_value_tracking_f32(float %x) {
%call = call float @llvm.fabs.f32(float %x)
%bc = bitcast float %call to i32
%and = and i32 %bc, 2147483648
ret i32 %and
; CHECK-LABEL: fabs_value_tracking_f32(
; CHECK: ret i32 0
}
; TODO: A vector fabs op makes the sign bits zero, so masking off all of the other bits means we can return zero.
define <4 x i32> @fabs_value_tracking_v4f32(<4 x float> %x) {
%call = call <4 x float> @llvm.fabs.v4f32(<4 x float> %x)
%bc = bitcast <4 x float> %call to <4 x i32>
%and = and <4 x i32> %bc, <i32 2147483648, i32 2147483648, i32 2147483648, i32 2147483648>
ret <4 x i32> %and
; CHECK-LABEL: fabs_value_tracking_v4f32(
; CHECK: ret <4 x i32> %and
}