forked from OSchip/llvm-project
[MLIR][Presburger] IntegerPolyhedron: add support for symbolic integer lexmin
Add support for computing the symbolic integer lexmin of a polyhedron. This finds, for every assignment to the symbols, the lexicographically minimum value attained by the dimensions. For example, the symbolic lexmin of the set `(x, y)[a, b, c] : (a <= x, b <= x, x <= c)` can be written as ``` x = a if b <= a, a <= c x = b if a < b, b <= c ``` This also finds the set of assignments to the symbols that make the lexmin unbounded. Reviewed By: Groverkss Differential Revision: https://reviews.llvm.org/D122985
This commit is contained in:
parent
3b9833597e
commit
da92f92621
|
@ -536,6 +536,7 @@ protected:
|
|||
Matrix inequalities;
|
||||
};
|
||||
|
||||
struct SymbolicLexMin;
|
||||
/// An IntegerPolyhedron is a PresburgerSpace subject to affine
|
||||
/// constraints. Affine constraints can be inequalities or equalities in the
|
||||
/// form:
|
||||
|
@ -593,6 +594,28 @@ public:
|
|||
/// column position (i.e., not relative to the kind of identifier) of the
|
||||
/// first added identifier.
|
||||
unsigned insertId(IdKind kind, unsigned pos, unsigned num = 1) override;
|
||||
|
||||
/// Compute the symbolic integer lexmin of the polyhedron.
|
||||
/// This finds, for every assignment to the symbols, the lexicographically
|
||||
/// minimum value attained by the dimensions. For example, the symbolic lexmin
|
||||
/// of the set
|
||||
///
|
||||
/// (x, y)[a, b, c] : (a <= x, b <= x, x <= c)
|
||||
///
|
||||
/// can be written as
|
||||
///
|
||||
/// x = a if b <= a, a <= c
|
||||
/// x = b if a < b, b <= c
|
||||
///
|
||||
/// This function is stored in the `lexmin` function in the result.
|
||||
/// Some assignments to the symbols might make the set empty.
|
||||
/// Such points are not part of the function's domain.
|
||||
/// In the above example, this happens when max(a, b) > c.
|
||||
///
|
||||
/// For some values of the symbols, the lexmin may be unbounded.
|
||||
/// `SymbolicLexMin` stores these parts of the symbolic domain in a separate
|
||||
/// `PresburgerSet`, `unboundedDomain`.
|
||||
SymbolicLexMin findSymbolicIntegerLexMin() const;
|
||||
};
|
||||
|
||||
} // namespace presburger
|
||||
|
|
|
@ -151,6 +151,9 @@ public:
|
|||
|
||||
/// Add an extra row at the bottom of the matrix and return its position.
|
||||
unsigned appendExtraRow();
|
||||
/// Same as above, but copy the given elements into the row. The length of
|
||||
/// `elems` must be equal to the number of columns.
|
||||
unsigned appendExtraRow(ArrayRef<int64_t> elems);
|
||||
|
||||
/// Print the matrix.
|
||||
void print(raw_ostream &os) const;
|
||||
|
|
|
@ -106,6 +106,11 @@ public:
|
|||
/// outside the domain, an empty optional is returned.
|
||||
Optional<SmallVector<int64_t, 8>> valueAt(ArrayRef<int64_t> point) const;
|
||||
|
||||
/// Truncate the output dimensions to the first `count` dimensions.
|
||||
///
|
||||
/// TODO: refactor so that this can be accomplished through removeIdRange.
|
||||
void truncateOutput(unsigned count);
|
||||
|
||||
void print(raw_ostream &os) const;
|
||||
void dump() const;
|
||||
|
||||
|
@ -165,6 +170,11 @@ public:
|
|||
/// value at every point in the domain.
|
||||
bool isEqual(const PWMAFunction &other) const;
|
||||
|
||||
/// Truncate the output dimensions to the first `count` dimensions.
|
||||
///
|
||||
/// TODO: refactor so that this can be accomplished through removeIdRange.
|
||||
void truncateOutput(unsigned count);
|
||||
|
||||
void print(raw_ostream &os) const;
|
||||
void dump() const;
|
||||
|
||||
|
|
|
@ -18,6 +18,7 @@
|
|||
#include "mlir/Analysis/Presburger/Fraction.h"
|
||||
#include "mlir/Analysis/Presburger/IntegerRelation.h"
|
||||
#include "mlir/Analysis/Presburger/Matrix.h"
|
||||
#include "mlir/Analysis/Presburger/PWMAFunction.h"
|
||||
#include "mlir/Analysis/Presburger/Utils.h"
|
||||
#include "mlir/Support/LogicalResult.h"
|
||||
#include "llvm/ADT/ArrayRef.h"
|
||||
|
@ -41,8 +42,9 @@ class GBRSimplex;
|
|||
/// these constraints that are redundant, i.e. a subset of constraints that
|
||||
/// doesn't constrain the affine set further after adding the non-redundant
|
||||
/// constraints. The LexSimplex class provides support for computing the
|
||||
/// lexicographical minimum of an IntegerRelation. Both these classes can be
|
||||
/// constructed from an IntegerRelation, and both inherit common
|
||||
/// lexicographic minimum of an IntegerRelation. The SymbolicLexMin class
|
||||
/// provides support for computing symbolic lexicographic minimums. All of these
|
||||
/// classes can be constructed from an IntegerRelation, and all inherit common
|
||||
/// functionality from SimplexBase.
|
||||
///
|
||||
/// The implementations of the Simplex and SimplexBase classes, other than the
|
||||
|
@ -72,19 +74,22 @@ class GBRSimplex;
|
|||
/// respectively. As described above, the first column is the common
|
||||
/// denominator. The second column represents the constant term, explained in
|
||||
/// more detail below. These two are _fixed columns_; they always retain their
|
||||
/// position as the first and second columns. Additionally, LexSimplex stores
|
||||
/// a so-call big M parameter (explained below) in the third column, so
|
||||
/// LexSimplex has three fixed columns.
|
||||
/// position as the first and second columns. Additionally, LexSimplexBase
|
||||
/// stores a so-call big M parameter (explained below) in the third column, so
|
||||
/// LexSimplexBase has three fixed columns. Finally, SymbolicLexSimplex has
|
||||
/// `nSymbol` variables designated as symbols. These occupy the next `nSymbol`
|
||||
/// columns, viz. the columns [3, 3 + nSymbol). For more information on symbols,
|
||||
/// see LexSimplexBase and SymbolicLexSimplex.
|
||||
///
|
||||
/// LexSimplex does not directly support variables which can be negative, so we
|
||||
/// introduce the so-called big M parameter, an artificial variable that is
|
||||
/// LexSimplexBase does not directly support variables which can be negative, so
|
||||
/// we introduce the so-called big M parameter, an artificial variable that is
|
||||
/// considered to have an arbitrarily large value. We then transform the
|
||||
/// variables, say x, y, z, ... to M, M + x, M + y, M + z. Since M has been
|
||||
/// added to these variables, they are now known to have non-negative values.
|
||||
/// For more details, see the documentation for LexSimplex. The big M parameter
|
||||
/// is not considered a real unknown and is not stored in the `var` data
|
||||
/// structure; rather the tableau just has an extra fixed column for it just
|
||||
/// like the constant term.
|
||||
/// For more details, see the documentation for LexSimplexBase. The big M
|
||||
/// parameter is not considered a real unknown and is not stored in the `var`
|
||||
/// data structure; rather the tableau just has an extra fixed column for it
|
||||
/// just like the constant term.
|
||||
///
|
||||
/// The vectors var and con store information about the variables and
|
||||
/// constraints respectively, namely, whether they are in row or column
|
||||
|
@ -146,8 +151,8 @@ class GBRSimplex;
|
|||
/// operation from the end until we reach the snapshot's location. SimplexBase
|
||||
/// also supports taking a snapshot including the exact set of basis unknowns;
|
||||
/// if this functionality is used, then on rolling back the exact basis will
|
||||
/// also be restored. This is used by LexSimplex because its algorithm, unlike
|
||||
/// Simplex, is sensitive to the exact basis used at a point.
|
||||
/// also be restored. This is used by LexSimplexBase because the lex algorithm,
|
||||
/// unlike `Simplex`, is sensitive to the exact basis used at a point.
|
||||
class SimplexBase {
|
||||
public:
|
||||
SimplexBase() = delete;
|
||||
|
@ -211,7 +216,8 @@ protected:
|
|||
/// constant term, whereas LexSimplex has an extra fixed column for the
|
||||
/// so-called big M parameter. For more information see the documentation for
|
||||
/// LexSimplex.
|
||||
SimplexBase(unsigned nVar, bool mustUseBigM);
|
||||
SimplexBase(unsigned nVar, bool mustUseBigM, unsigned symbolOffset,
|
||||
unsigned nSymbol);
|
||||
|
||||
enum class Orientation { Row, Column };
|
||||
|
||||
|
@ -223,11 +229,14 @@ protected:
|
|||
/// always be non-negative and if it cannot be made non-negative without
|
||||
/// violating other constraints, the tableau is empty.
|
||||
struct Unknown {
|
||||
Unknown(Orientation oOrientation, bool oRestricted, unsigned oPos)
|
||||
: pos(oPos), orientation(oOrientation), restricted(oRestricted) {}
|
||||
Unknown(Orientation oOrientation, bool oRestricted, unsigned oPos,
|
||||
bool oIsSymbol = false)
|
||||
: pos(oPos), orientation(oOrientation), restricted(oRestricted),
|
||||
isSymbol(oIsSymbol) {}
|
||||
unsigned pos;
|
||||
Orientation orientation;
|
||||
bool restricted : 1;
|
||||
bool isSymbol : 1;
|
||||
|
||||
void print(raw_ostream &os) const {
|
||||
os << (orientation == Orientation::Row ? "r" : "c");
|
||||
|
@ -326,6 +335,10 @@ protected:
|
|||
/// nRedundant rows.
|
||||
unsigned nRedundant;
|
||||
|
||||
/// The number of parameters. This must be consistent with the number of
|
||||
/// Unknowns in `var` below that have `isSymbol` set to true.
|
||||
unsigned nSymbol;
|
||||
|
||||
/// The matrix representing the tableau.
|
||||
Matrix tableau;
|
||||
|
||||
|
@ -363,62 +376,45 @@ protected:
|
|||
/// introduce an artifical variable M that is considered to have a value of
|
||||
/// +infinity and instead of the variables x, y, z, we internally use variables
|
||||
/// M + x, M + y, M + z, which are now guaranteed to be non-negative. See the
|
||||
/// documentation for Simplex for more details. The whole algorithm is performed
|
||||
/// without having to fix a "big enough" value of the big M parameter; it is
|
||||
/// just considered to be infinite throughout and it never appears in the final
|
||||
/// outputs. We will deal with sample values throughout that may in general be
|
||||
/// some linear expression involving M like pM + q or aM + b. We can compare
|
||||
/// these with each other. They have a total order:
|
||||
/// aM + b < pM + q iff a < p or (a == p and b < q).
|
||||
/// documentation for SimplexBase for more details. M is also considered to be
|
||||
/// an integer that is divisible by everything.
|
||||
///
|
||||
/// The whole algorithm is performed with M treated as a symbol;
|
||||
/// it is just considered to be infinite throughout and it never appears in the
|
||||
/// final outputs. We will deal with sample values throughout that may in
|
||||
/// general be some affine expression involving M, like pM + q or aM + b. We can
|
||||
/// compare these with each other. They have a total order:
|
||||
///
|
||||
/// aM + b < pM + q iff a < p or (a == p and b < q).
|
||||
/// In particular, aM + b < 0 iff a < 0 or (a == 0 and b < 0).
|
||||
///
|
||||
/// When performing symbolic optimization, sample values will be affine
|
||||
/// expressions in M and the symbols. For example, we could have sample values
|
||||
/// aM + bS + c and pM + qS + r, where S is a symbol. Now we have
|
||||
/// aM + bS + c < pM + qS + r iff (a < p) or (a == p and bS + c < qS + r).
|
||||
/// bS + c < qS + r can be always true, always false, or neither,
|
||||
/// depending on the set of values S can take. The symbols are always stored
|
||||
/// in columns [3, 3 + nSymbols). For more details, see the
|
||||
/// documentation for SymbolicLexSimplex.
|
||||
///
|
||||
/// Initially all the constraints to be added are added as rows, with no attempt
|
||||
/// to keep the tableau consistent. Pivots are only performed when some query
|
||||
/// is made, such as a call to getRationalLexMin. Care is taken to always
|
||||
/// maintain a lexicopositive basis transform, explained below.
|
||||
///
|
||||
/// Let the variables be x = (x_1, ... x_n). Let the basis unknowns at a
|
||||
/// particular point be y = (y_1, ... y_n). We know that x = A*y + b for some
|
||||
/// n x n matrix A and n x 1 column vector b. We want every column in A to be
|
||||
/// lexicopositive, i.e., have at least one non-zero element, with the first
|
||||
/// such element being positive. This property is preserved throughout the
|
||||
/// operation of LexSimplex. Note that on construction, the basis transform A is
|
||||
/// the indentity matrix and so every column is lexicopositive. Note that for
|
||||
/// LexSimplex, for the tableau to be consistent we must have non-negative
|
||||
/// sample values not only for the constraints but also for the variables.
|
||||
/// So if the tableau is consistent then x >= 0 and y >= 0, by which we mean
|
||||
/// every element in these vectors is non-negative. (note that this is a
|
||||
/// different concept from lexicopositivity!)
|
||||
///
|
||||
/// When we arrive at a basis such the basis transform is lexicopositive and the
|
||||
/// tableau is consistent, the sample point is the lexiographically minimum
|
||||
/// point in the polytope. We will show that A*y is zero or lexicopositive when
|
||||
/// y >= 0. Adding a lexicopositive vector to b will make it lexicographically
|
||||
/// bigger, so A*y + b is lexicographically bigger than b for any y >= 0 except
|
||||
/// y = 0. This shows that no point lexicographically smaller than x = b can be
|
||||
/// obtained. Since we already know that x = b is valid point in the space, this
|
||||
/// shows that x = b is the lexicographic minimum.
|
||||
///
|
||||
/// Proof that A*y is lexicopositive or zero when y > 0. Recall that every
|
||||
/// column of A is lexicopositive. Begin by considering A_1, the first row of A.
|
||||
/// If this row is all zeros, then (A*y)_1 = (A_1)*y = 0; proceed to the next
|
||||
/// row. If we run out of rows, A*y is zero and we are done; otherwise, we
|
||||
/// encounter some row A_i that has a non-zero element. Every column is
|
||||
/// lexicopositive and so has some positive element before any negative elements
|
||||
/// occur, so the element in this row for any column, if non-zero, must be
|
||||
/// positive. Consider (A*y)_i = (A_i)*y. All the elements in both vectors are
|
||||
/// non-negative, so if this is non-zero then it must be positive. Then the
|
||||
/// first non-zero element of A*y is positive so A*y is lexicopositive.
|
||||
///
|
||||
/// Otherwise, if (A_i)*y is zero, then for every column j that had a non-zero
|
||||
/// element in A_i, y_j is zero. Thus these columns have no contribution to A*y
|
||||
/// and we can completely ignore these columns of A. We now continue downwards,
|
||||
/// looking for rows of A that have a non-zero element other than in the ignored
|
||||
/// columns. If we find one, say A_k, once again these elements must be positive
|
||||
/// since they are the first non-zero element in each of these columns, so if
|
||||
/// (A_k)*y is not zero then we have that A*y is lexicopositive and if not we
|
||||
/// ignore more columns; eventually if all these dot products become zero then
|
||||
/// A*y is zero and we are done.
|
||||
/// Let the variables be x = (x_1, ... x_n).
|
||||
/// Let the symbols be s = (s_1, ... s_m). Let the basis unknowns at a
|
||||
/// particular point be y = (y_1, ... y_n). We know that x = A*y + T*s + b for
|
||||
/// some n x n matrix A, n x m matrix s, and n x 1 column vector b. We want
|
||||
/// every column in A to be lexicopositive, i.e., have at least one non-zero
|
||||
/// element, with the first such element being positive. This property is
|
||||
/// preserved throughout the operation of LexSimplexBase. Note that on
|
||||
/// construction, the basis transform A is the identity matrix and so every
|
||||
/// column is lexicopositive. Note that for LexSimplexBase, for the tableau to
|
||||
/// be consistent we must have non-negative sample values not only for the
|
||||
/// constraints but also for the variables. So if the tableau is consistent then
|
||||
/// x >= 0 and y >= 0, by which we mean every element in these vectors is
|
||||
/// non-negative. (note that this is a different concept from lexicopositivity!)
|
||||
class LexSimplexBase : public SimplexBase {
|
||||
public:
|
||||
~LexSimplexBase() override = default;
|
||||
|
@ -435,25 +431,37 @@ public:
|
|||
unsigned getSnapshot() { return SimplexBase::getSnapshotBasis(); }
|
||||
|
||||
protected:
|
||||
LexSimplexBase(unsigned nVar) : SimplexBase(nVar, /*mustUseBigM=*/true) {}
|
||||
LexSimplexBase(unsigned nVar, unsigned symbolOffset, unsigned nSymbol)
|
||||
: SimplexBase(nVar, /*mustUseBigM=*/true, symbolOffset, nSymbol) {}
|
||||
explicit LexSimplexBase(const IntegerRelation &constraints)
|
||||
: LexSimplexBase(constraints.getNumIds()) {
|
||||
: LexSimplexBase(constraints.getNumIds(),
|
||||
constraints.getIdKindOffset(IdKind::Symbol),
|
||||
constraints.getNumSymbolIds()) {
|
||||
intersectIntegerRelation(constraints);
|
||||
}
|
||||
|
||||
/// Add new symbolic variables to the end of the list of variables.
|
||||
void appendSymbol();
|
||||
|
||||
/// Try to move the specified row to column orientation while preserving the
|
||||
/// lexicopositivity of the basis transform. If this is not possible, return
|
||||
/// failure. This only occurs when the constraints have no solution; the
|
||||
/// tableau will be marked empty in such a case.
|
||||
/// lexicopositivity of the basis transform. The row must have a negative
|
||||
/// sample value. If this is not possible, return failure. This only occurs
|
||||
/// when the constraints have no solution; the tableau will be marked empty in
|
||||
/// such a case.
|
||||
LogicalResult moveRowUnknownToColumn(unsigned row);
|
||||
|
||||
/// Given a row that has a non-integer sample value, add an inequality such
|
||||
/// that this fractional sample value is cut away from the polytope. The added
|
||||
/// inequality will be such that no integer points are removed.
|
||||
/// Given a row that has a non-integer sample value, add an inequality to cut
|
||||
/// away this fractional sample value from the polytope without removing any
|
||||
/// integer points. The integer lexmin, if one existed, remains the same on
|
||||
/// return.
|
||||
///
|
||||
/// Returns whether the cut constraint could be enforced, i.e. failure if the
|
||||
/// cut made the polytope empty, and success if it didn't. Failure status
|
||||
/// indicates that the polytope didn't have any integer points.
|
||||
/// This assumes that the symbolic part of the sample is integral,
|
||||
/// i.e., if the symbolic sample is (c + aM + b_1*s_1 + ... b_n*s_n)/d,
|
||||
/// where s_1, ... s_n are symbols, this assumes that
|
||||
/// (b_1*s_1 + ... + b_n*s_n)/s is integral.
|
||||
///
|
||||
/// Return failure if the tableau became empty, and success if it didn't.
|
||||
/// Failure status indicates that the polytope was integer empty.
|
||||
LogicalResult addCut(unsigned row);
|
||||
|
||||
/// Undo the addition of the last constraint. This is only called while
|
||||
|
@ -461,14 +469,19 @@ protected:
|
|||
void undoLastConstraint() final;
|
||||
|
||||
/// Given two potential pivot columns for a row, return the one that results
|
||||
/// in the lexicographically smallest sample vector.
|
||||
/// in the lexicographically smallest sample vector. The row's sample value
|
||||
/// must be negative. If symbols are involved, the sample value must be
|
||||
/// negative for all possible assignments to the symbols.
|
||||
unsigned getLexMinPivotColumn(unsigned row, unsigned colA,
|
||||
unsigned colB) const;
|
||||
};
|
||||
|
||||
/// A class for lexicographic optimization without any symbols. This also
|
||||
/// provides support for integer-exact redundancy and separateness checks.
|
||||
class LexSimplex : public LexSimplexBase {
|
||||
public:
|
||||
explicit LexSimplex(unsigned nVar) : LexSimplexBase(nVar) {}
|
||||
explicit LexSimplex(unsigned nVar)
|
||||
: LexSimplexBase(nVar, /*symbolOffset=*/0, /*nSymbol=*/0) {}
|
||||
explicit LexSimplex(const IntegerRelation &constraints)
|
||||
: LexSimplexBase(constraints) {
|
||||
assert(constraints.getNumSymbolIds() == 0 &&
|
||||
|
@ -502,7 +515,7 @@ private:
|
|||
MaybeOptimum<SmallVector<Fraction, 8>> getRationalSample() const;
|
||||
|
||||
/// Make the tableau configuration consistent.
|
||||
void restoreRationalConsistency();
|
||||
LogicalResult restoreRationalConsistency();
|
||||
|
||||
/// Return whether the specified row is violated;
|
||||
bool rowIsViolated(unsigned row) const;
|
||||
|
@ -514,11 +527,122 @@ private:
|
|||
/// Get a row corresponding to a var that has a non-integral sample value, if
|
||||
/// one exists. Otherwise, return an empty optional.
|
||||
Optional<unsigned> maybeGetNonIntegralVarRow() const;
|
||||
};
|
||||
|
||||
/// Given two potential pivot columns for a row, return the one that results
|
||||
/// in the lexicographically smallest sample vector.
|
||||
unsigned getLexMinPivotColumn(unsigned row, unsigned colA,
|
||||
unsigned colB) const;
|
||||
/// Represents the result of a symbolic lexicographic minimization computation.
|
||||
struct SymbolicLexMin {
|
||||
SymbolicLexMin(unsigned nSymbols, unsigned nNonSymbols)
|
||||
: lexmin(PresburgerSpace::getSetSpace(nSymbols), nNonSymbols),
|
||||
unboundedDomain(
|
||||
PresburgerSet::getEmpty(PresburgerSpace::getSetSpace(nSymbols))) {}
|
||||
|
||||
/// This maps assignments of symbols to the corresponding lexmin.
|
||||
/// Takes no value when no integer sample exists for the assignment or if the
|
||||
/// lexmin is unbounded.
|
||||
PWMAFunction lexmin;
|
||||
/// Contains all assignments to the symbols that made the lexmin unbounded.
|
||||
/// Note that the symbols of the input set to the symbolic lexmin are dims
|
||||
/// of this PrebsurgerSet.
|
||||
PresburgerSet unboundedDomain;
|
||||
};
|
||||
|
||||
/// A class to perform symbolic lexicographic optimization,
|
||||
/// i.e., to find, for every assignment to the symbols the specified
|
||||
/// `symbolDomain`, the lexicographically minimum value integer value attained
|
||||
/// by the non-symbol variables.
|
||||
///
|
||||
/// The input is a set parametrized by some symbols, i.e., the constant terms
|
||||
/// of the constraints in the set are affine expressions in the symbols, and
|
||||
/// every assignment to the symbols defines a non-symbolic set.
|
||||
///
|
||||
/// Accordingly, the sample values of the rows in our tableau will be affine
|
||||
/// expressions in the symbols, and every assignment to the symbols will define
|
||||
/// a non-symbolic LexSimplex. We then run the algorithm of
|
||||
/// LexSimplex::findIntegerLexMin simultaneously for every value of the symbols
|
||||
/// in the domain.
|
||||
///
|
||||
/// Often, the pivot to be performed is the same for all values of the symbols,
|
||||
/// in which case we just do it. For example, if the symbolic sample of a row is
|
||||
/// negative for all values in the symbol domain, the row needs to be pivoted
|
||||
/// irrespective of the precise value of the symbols. To answer queries like
|
||||
/// "Is this symbolic sample always negative in the symbol domain?", we maintain
|
||||
/// a `LexSimplex domainSimplex` correponding to the symbol domain.
|
||||
///
|
||||
/// In other cases, it may be that the symbolic sample is violated at some
|
||||
/// values in the symbol domain and not violated at others. In this case,
|
||||
/// the pivot to be performed does depend on the value of the symbols. We
|
||||
/// handle this by splitting the symbol domain. We run the algorithm for the
|
||||
/// case where the row isn't violated, and then come back and run the case
|
||||
/// where it is.
|
||||
class SymbolicLexSimplex : public LexSimplexBase {
|
||||
public:
|
||||
/// `constraints` is the set for which the symbolic lexmin will be computed.
|
||||
/// `symbolDomain` is the set of values of the symbols for which the lexmin
|
||||
/// will be computed. `symbolDomain` should have a dim id for every symbol in
|
||||
/// `constraints`, and no other ids.
|
||||
SymbolicLexSimplex(const IntegerPolyhedron &constraints,
|
||||
const IntegerPolyhedron &symbolDomain)
|
||||
: LexSimplexBase(constraints), domainPoly(symbolDomain),
|
||||
domainSimplex(symbolDomain) {
|
||||
assert(domainPoly.getNumIds() == constraints.getNumSymbolIds());
|
||||
assert(domainPoly.getNumDimIds() == constraints.getNumSymbolIds());
|
||||
}
|
||||
|
||||
/// The lexmin will be stored as a function `lexmin` from symbols to
|
||||
/// non-symbols in the result.
|
||||
///
|
||||
/// For some values of the symbols, the lexmin may be unbounded.
|
||||
/// These parts of the symbol domain will be stored in `unboundedDomain`.
|
||||
SymbolicLexMin computeSymbolicIntegerLexMin();
|
||||
|
||||
private:
|
||||
/// Perform all pivots that do not require branching.
|
||||
///
|
||||
/// Return failure if the tableau became empty, indicating that the polytope
|
||||
/// is always integer empty in the current symbol domain.
|
||||
/// Return success otherwise.
|
||||
LogicalResult doNonBranchingPivots();
|
||||
|
||||
/// Get a row that is always violated in the current domain, if one exists.
|
||||
Optional<unsigned> maybeGetAlwaysViolatedRow();
|
||||
|
||||
/// Get a row corresponding to a variable with non-integral sample value, if
|
||||
/// one exists.
|
||||
Optional<unsigned> maybeGetNonIntegralVarRow();
|
||||
|
||||
/// Given a row that has a non-integer sample value, cut away this fractional
|
||||
/// sample value witahout removing any integer points, i.e., the integer
|
||||
/// lexmin, if it exists, remains the same after a call to this function. This
|
||||
/// may add constraints or local variables to the tableau, as well as to the
|
||||
/// domain.
|
||||
///
|
||||
/// Returns whether the cut constraint could be enforced, i.e. failure if the
|
||||
/// cut made the polytope empty, and success if it didn't. Failure status
|
||||
/// indicates that the polytope is always integer empty in the symbol domain
|
||||
/// at the time of the call. (This function may modify the symbol domain, but
|
||||
/// failure statu indicates that the polytope was empty for all symbol values
|
||||
/// in the initial domain.)
|
||||
LogicalResult addSymbolicCut(unsigned row);
|
||||
|
||||
/// Get the numerator of the symbolic sample of the specific row.
|
||||
/// This is an affine expression in the symbols with integer coefficients.
|
||||
/// The last element is the constant term. This ignores the big M coefficient.
|
||||
SmallVector<int64_t, 8> getSymbolicSampleNumerator(unsigned row) const;
|
||||
|
||||
/// Return whether all the coefficients of the symbolic sample are integers.
|
||||
///
|
||||
/// This does not consult the domain to check if the specified expression
|
||||
/// is always integral despite coefficients being fractional.
|
||||
bool isSymbolicSampleIntegral(unsigned row) const;
|
||||
|
||||
/// Record a lexmin. The tableau must be consistent with all variables
|
||||
/// having symbolic samples with integer coefficients.
|
||||
void recordOutput(SymbolicLexMin &result) const;
|
||||
|
||||
/// The symbol domain.
|
||||
IntegerPolyhedron domainPoly;
|
||||
/// Simplex corresponding to the symbol domain.
|
||||
LexSimplex domainSimplex;
|
||||
};
|
||||
|
||||
/// The Simplex class uses the Normal pivot rule and supports integer emptiness
|
||||
|
@ -540,7 +664,9 @@ public:
|
|||
enum class Direction { Up, Down };
|
||||
|
||||
Simplex() = delete;
|
||||
explicit Simplex(unsigned nVar) : SimplexBase(nVar, /*mustUseBigM=*/false) {}
|
||||
explicit Simplex(unsigned nVar)
|
||||
: SimplexBase(nVar, /*mustUseBigM=*/false, /*symbolOffset=*/0,
|
||||
/*nSymbol=*/0) {}
|
||||
explicit Simplex(const IntegerRelation &constraints)
|
||||
: Simplex(constraints.getNumIds()) {
|
||||
intersectIntegerRelation(constraints);
|
||||
|
|
|
@ -14,6 +14,7 @@
|
|||
|
||||
#include "mlir/Analysis/Presburger/IntegerRelation.h"
|
||||
#include "mlir/Analysis/Presburger/LinearTransform.h"
|
||||
#include "mlir/Analysis/Presburger/PWMAFunction.h"
|
||||
#include "mlir/Analysis/Presburger/PresburgerRelation.h"
|
||||
#include "mlir/Analysis/Presburger/Simplex.h"
|
||||
#include "mlir/Analysis/Presburger/Utils.h"
|
||||
|
@ -145,6 +146,21 @@ void IntegerRelation::truncate(const CountsSnapshot &counts) {
|
|||
removeEqualityRange(counts.getNumEqs(), getNumEqualities());
|
||||
}
|
||||
|
||||
SymbolicLexMin IntegerPolyhedron::findSymbolicIntegerLexMin() const {
|
||||
// Compute the symbolic lexmin of the dims and locals, with the symbols being
|
||||
// the actual symbols of this set.
|
||||
SymbolicLexMin result =
|
||||
SymbolicLexSimplex(
|
||||
*this, PresburgerSpace::getSetSpace(/*numDims=*/getNumSymbolIds()))
|
||||
.computeSymbolicIntegerLexMin();
|
||||
|
||||
// We want to return only the lexmin over the dims, so strip the locals from
|
||||
// the computed lexmin.
|
||||
result.lexmin.truncateOutput(result.lexmin.getNumOutputs() -
|
||||
getNumLocalIds());
|
||||
return result;
|
||||
}
|
||||
|
||||
unsigned IntegerRelation::insertId(IdKind kind, unsigned pos, unsigned num) {
|
||||
assert(pos <= getNumIdKind(kind));
|
||||
|
||||
|
|
|
@ -66,6 +66,14 @@ unsigned Matrix::appendExtraRow() {
|
|||
return nRows - 1;
|
||||
}
|
||||
|
||||
unsigned Matrix::appendExtraRow(ArrayRef<int64_t> elems) {
|
||||
assert(elems.size() == nColumns && "elems must match row length!");
|
||||
unsigned row = appendExtraRow();
|
||||
for (unsigned col = 0; col < nColumns; ++col)
|
||||
at(row, col) = elems[col];
|
||||
return row;
|
||||
}
|
||||
|
||||
void Matrix::resizeHorizontally(unsigned newNColumns) {
|
||||
if (newNColumns < nColumns)
|
||||
removeColumns(newNColumns, nColumns - newNColumns);
|
||||
|
|
|
@ -114,6 +114,18 @@ void MultiAffineFunction::eliminateRedundantLocalId(unsigned posA,
|
|||
IntegerPolyhedron::eliminateRedundantLocalId(posA, posB);
|
||||
}
|
||||
|
||||
void MultiAffineFunction::truncateOutput(unsigned count) {
|
||||
assert(count <= output.getNumRows());
|
||||
output.resizeVertically(count);
|
||||
}
|
||||
|
||||
void PWMAFunction::truncateOutput(unsigned count) {
|
||||
assert(count <= numOutputs);
|
||||
for (MultiAffineFunction &piece : pieces)
|
||||
piece.truncateOutput(count);
|
||||
numOutputs = count;
|
||||
}
|
||||
|
||||
bool MultiAffineFunction::isEqualWhereDomainsOverlap(
|
||||
MultiAffineFunction other) const {
|
||||
if (!isSpaceCompatible(other))
|
||||
|
|
|
@ -18,15 +18,24 @@ using Direction = Simplex::Direction;
|
|||
|
||||
const int nullIndex = std::numeric_limits<int>::max();
|
||||
|
||||
SimplexBase::SimplexBase(unsigned nVar, bool mustUseBigM)
|
||||
SimplexBase::SimplexBase(unsigned nVar, bool mustUseBigM, unsigned symbolOffset,
|
||||
unsigned nSymbol)
|
||||
: usingBigM(mustUseBigM), nRow(0), nCol(getNumFixedCols() + nVar),
|
||||
nRedundant(0), tableau(0, nCol), empty(false) {
|
||||
nRedundant(0), nSymbol(nSymbol), tableau(0, nCol), empty(false) {
|
||||
assert(symbolOffset + nSymbol <= nVar);
|
||||
|
||||
colUnknown.insert(colUnknown.begin(), getNumFixedCols(), nullIndex);
|
||||
for (unsigned i = 0; i < nVar; ++i) {
|
||||
var.emplace_back(Orientation::Column, /*restricted=*/false,
|
||||
/*pos=*/getNumFixedCols() + i);
|
||||
colUnknown.push_back(i);
|
||||
}
|
||||
|
||||
// Move the symbols to be in columns [3, 3 + nSymbol).
|
||||
for (unsigned i = 0; i < nSymbol; ++i) {
|
||||
var[symbolOffset + i].isSymbol = true;
|
||||
swapColumns(var[symbolOffset + i].pos, getNumFixedCols() + i);
|
||||
}
|
||||
}
|
||||
|
||||
const Simplex::Unknown &SimplexBase::unknownFromIndex(int index) const {
|
||||
|
@ -96,9 +105,13 @@ unsigned SimplexBase::addRow(ArrayRef<int64_t> coeffs, bool makeRestricted) {
|
|||
// where M is the big M parameter. As such, when the user tries to add
|
||||
// a row ax + by + cz + d, we express it in terms of our internal variables
|
||||
// as -(a + b + c)M + a(M + x) + b(M + y) + c(M + z) + d.
|
||||
//
|
||||
// Symbols don't use the big M parameter since they do not get lex
|
||||
// optimized.
|
||||
int64_t bigMCoeff = 0;
|
||||
for (unsigned i = 0; i < coeffs.size() - 1; ++i)
|
||||
bigMCoeff -= coeffs[i];
|
||||
if (!var[i].isSymbol)
|
||||
bigMCoeff -= coeffs[i];
|
||||
// The coefficient to the big M parameter is stored in column 2.
|
||||
tableau(nRow - 1, 2) = bigMCoeff;
|
||||
}
|
||||
|
@ -164,19 +177,97 @@ Direction flippedDirection(Direction direction) {
|
|||
}
|
||||
} // namespace
|
||||
|
||||
/// We simply make the tableau consistent while maintaining a lexicopositive
|
||||
/// basis transform, and then return the sample value. If the tableau becomes
|
||||
/// empty, we return empty.
|
||||
///
|
||||
/// Let the variables be x = (x_1, ... x_n).
|
||||
/// Let the basis unknowns be y = (y_1, ... y_n).
|
||||
/// We have that x = A*y + b for some n x n matrix A and n x 1 column vector b.
|
||||
///
|
||||
/// As we will show below, A*y is either zero or lexicopositive.
|
||||
/// Adding a lexicopositive vector to b will make it lexicographically
|
||||
/// greater, so A*y + b is always equal to or lexicographically greater than b.
|
||||
/// Thus, since we can attain x = b, that is the lexicographic minimum.
|
||||
///
|
||||
/// We have that that every column in A is lexicopositive, i.e., has at least
|
||||
/// one non-zero element, with the first such element being positive. Since for
|
||||
/// the tableau to be consistent we must have non-negative sample values not
|
||||
/// only for the constraints but also for the variables, we also have x >= 0 and
|
||||
/// y >= 0, by which we mean every element in these vectors is non-negative.
|
||||
///
|
||||
/// Proof that if every column in A is lexicopositive, and y >= 0, then
|
||||
/// A*y is zero or lexicopositive. Begin by considering A_1, the first row of A.
|
||||
/// If this row is all zeros, then (A*y)_1 = (A_1)*y = 0; proceed to the next
|
||||
/// row. If we run out of rows, A*y is zero and we are done; otherwise, we
|
||||
/// encounter some row A_i that has a non-zero element. Every column is
|
||||
/// lexicopositive and so has some positive element before any negative elements
|
||||
/// occur, so the element in this row for any column, if non-zero, must be
|
||||
/// positive. Consider (A*y)_i = (A_i)*y. All the elements in both vectors are
|
||||
/// non-negative, so if this is non-zero then it must be positive. Then the
|
||||
/// first non-zero element of A*y is positive so A*y is lexicopositive.
|
||||
///
|
||||
/// Otherwise, if (A_i)*y is zero, then for every column j that had a non-zero
|
||||
/// element in A_i, y_j is zero. Thus these columns have no contribution to A*y
|
||||
/// and we can completely ignore these columns of A. We now continue downwards,
|
||||
/// looking for rows of A that have a non-zero element other than in the ignored
|
||||
/// columns. If we find one, say A_k, once again these elements must be positive
|
||||
/// since they are the first non-zero element in each of these columns, so if
|
||||
/// (A_k)*y is not zero then we have that A*y is lexicopositive and if not we
|
||||
/// add these to the set of ignored columns and continue to the next row. If we
|
||||
/// run out of rows, then A*y is zero and we are done.
|
||||
MaybeOptimum<SmallVector<Fraction, 8>> LexSimplex::findRationalLexMin() {
|
||||
restoreRationalConsistency();
|
||||
if (restoreRationalConsistency().failed())
|
||||
return OptimumKind::Empty;
|
||||
return getRationalSample();
|
||||
}
|
||||
|
||||
/// Given a row that has a non-integer sample value, add an inequality such
|
||||
/// that this fractional sample value is cut away from the polytope. The added
|
||||
/// inequality will be such that no integer points are removed. i.e., the
|
||||
/// integer lexmin, if it exists, is the same with and without this constraint.
|
||||
///
|
||||
/// Let the row be
|
||||
/// (c + coeffM*M + a_1*s_1 + ... + a_m*s_m + b_1*y_1 + ... + b_n*y_n)/d,
|
||||
/// where s_1, ... s_m are the symbols and
|
||||
/// y_1, ... y_n are the other basis unknowns.
|
||||
///
|
||||
/// For this to be an integer, we want
|
||||
/// coeffM*M + a_1*s_1 + ... + a_m*s_m + b_1*y_1 + ... + b_n*y_n = -c (mod d)
|
||||
/// Note that this constraint must always hold, independent of the basis,
|
||||
/// becuse the row unknown's value always equals this expression, even if *we*
|
||||
/// later compute the sample value from a different expression based on a
|
||||
/// different basis.
|
||||
///
|
||||
/// Let us assume that M has a factor of d in it. Imposing this constraint on M
|
||||
/// does not in any way hinder us from finding a value of M that is big enough.
|
||||
/// Moreover, this function is only called when the symbolic part of the sample,
|
||||
/// a_1*s_1 + ... + a_m*s_m, is known to be an integer.
|
||||
///
|
||||
/// Also, we can safely reduce the coefficients modulo d, so we have:
|
||||
///
|
||||
/// (b_1%d)y_1 + ... + (b_n%d)y_n = (-c%d) + k*d for some integer `k`
|
||||
///
|
||||
/// Note that all coefficient modulos here are non-negative. Also, all the
|
||||
/// unknowns are non-negative here as both constraints and variables are
|
||||
/// non-negative in LexSimplexBase. (We used the big M trick to make the
|
||||
/// variables non-negative). Therefore, the LHS here is non-negative.
|
||||
/// Since 0 <= (-c%d) < d, k is the quotient of dividing the LHS by d and
|
||||
/// is therefore non-negative as well.
|
||||
///
|
||||
/// So we have
|
||||
/// ((b_1%d)y_1 + ... + (b_n%d)y_n - (-c%d))/d >= 0.
|
||||
///
|
||||
/// The constraint is violated when added (it would be useless otherwise)
|
||||
/// so we immediately try to move it to a column.
|
||||
LogicalResult LexSimplexBase::addCut(unsigned row) {
|
||||
int64_t denom = tableau(row, 0);
|
||||
int64_t d = tableau(row, 0);
|
||||
addZeroRow(/*makeRestricted=*/true);
|
||||
tableau(nRow - 1, 0) = denom;
|
||||
tableau(nRow - 1, 1) = -mod(-tableau(row, 1), denom);
|
||||
tableau(nRow - 1, 2) = 0; // M has all factors in it.
|
||||
for (unsigned col = 3; col < nCol; ++col)
|
||||
tableau(nRow - 1, col) = mod(tableau(row, col), denom);
|
||||
tableau(nRow - 1, 0) = d;
|
||||
tableau(nRow - 1, 1) = -mod(-tableau(row, 1), d); // -c%d.
|
||||
tableau(nRow - 1, 2) = 0;
|
||||
for (unsigned col = 3 + nSymbol; col < nCol; ++col)
|
||||
tableau(nRow - 1, col) = mod(tableau(row, col), d); // b_i%d.
|
||||
return moveRowUnknownToColumn(nRow - 1);
|
||||
}
|
||||
|
||||
|
@ -185,7 +276,7 @@ Optional<unsigned> LexSimplex::maybeGetNonIntegralVarRow() const {
|
|||
if (u.orientation == Orientation::Column)
|
||||
continue;
|
||||
// If the sample value is of the form (a/d)M + b/d, we need b to be
|
||||
// divisible by d. We assume M is very large and contains all possible
|
||||
// divisible by d. We assume M contains all possible
|
||||
// factors and is divisible by everything.
|
||||
unsigned row = u.pos;
|
||||
if (tableau(row, 1) % tableau(row, 0) != 0)
|
||||
|
@ -195,28 +286,34 @@ Optional<unsigned> LexSimplex::maybeGetNonIntegralVarRow() const {
|
|||
}
|
||||
|
||||
MaybeOptimum<SmallVector<int64_t, 8>> LexSimplex::findIntegerLexMin() {
|
||||
while (!empty) {
|
||||
restoreRationalConsistency();
|
||||
if (empty)
|
||||
// We first try to make the tableau consistent.
|
||||
if (restoreRationalConsistency().failed())
|
||||
return OptimumKind::Empty;
|
||||
|
||||
// Then, if the sample value is integral, we are done.
|
||||
while (Optional<unsigned> maybeRow = maybeGetNonIntegralVarRow()) {
|
||||
// Otherwise, for the variable whose row has a non-integral sample value,
|
||||
// we add a cut, a constraint that remove this rational point
|
||||
// while preserving all integer points, thus keeping the lexmin the same.
|
||||
// We then again try to make the tableau with the new constraint
|
||||
// consistent. This continues until the tableau becomes empty, in which
|
||||
// case there is no integer point, or until there are no variables with
|
||||
// non-integral sample values.
|
||||
//
|
||||
// Failure indicates that the tableau became empty, which occurs when the
|
||||
// polytope is integer empty.
|
||||
if (addCut(*maybeRow).failed())
|
||||
return OptimumKind::Empty;
|
||||
if (restoreRationalConsistency().failed())
|
||||
return OptimumKind::Empty;
|
||||
|
||||
if (Optional<unsigned> maybeRow = maybeGetNonIntegralVarRow()) {
|
||||
// Failure occurs when the polytope is integer empty.
|
||||
if (failed(addCut(*maybeRow)))
|
||||
return OptimumKind::Empty;
|
||||
continue;
|
||||
}
|
||||
|
||||
MaybeOptimum<SmallVector<Fraction, 8>> sample = getRationalSample();
|
||||
assert(!sample.isEmpty() && "If we reached here the sample should exist!");
|
||||
if (sample.isUnbounded())
|
||||
return OptimumKind::Unbounded;
|
||||
return llvm::to_vector<8>(
|
||||
llvm::map_range(*sample, std::mem_fn(&Fraction::getAsInteger)));
|
||||
}
|
||||
|
||||
// Polytope is integer empty.
|
||||
return OptimumKind::Empty;
|
||||
MaybeOptimum<SmallVector<Fraction, 8>> sample = getRationalSample();
|
||||
assert(!sample.isEmpty() && "If we reached here the sample should exist!");
|
||||
if (sample.isUnbounded())
|
||||
return OptimumKind::Unbounded;
|
||||
return llvm::to_vector<8>(
|
||||
llvm::map_range(*sample, std::mem_fn(&Fraction::getAsInteger)));
|
||||
}
|
||||
|
||||
bool LexSimplex::isSeparateInequality(ArrayRef<int64_t> coeffs) {
|
||||
|
@ -228,6 +325,319 @@ bool LexSimplex::isSeparateInequality(ArrayRef<int64_t> coeffs) {
|
|||
bool LexSimplex::isRedundantInequality(ArrayRef<int64_t> coeffs) {
|
||||
return isSeparateInequality(getComplementIneq(coeffs));
|
||||
}
|
||||
|
||||
SmallVector<int64_t, 8>
|
||||
SymbolicLexSimplex::getSymbolicSampleNumerator(unsigned row) const {
|
||||
SmallVector<int64_t, 8> sample;
|
||||
sample.reserve(nSymbol + 1);
|
||||
for (unsigned col = 3; col < 3 + nSymbol; ++col)
|
||||
sample.push_back(tableau(row, col));
|
||||
sample.push_back(tableau(row, 1));
|
||||
return sample;
|
||||
}
|
||||
|
||||
void LexSimplexBase::appendSymbol() {
|
||||
appendVariable();
|
||||
swapColumns(3 + nSymbol, nCol - 1);
|
||||
var.back().isSymbol = true;
|
||||
nSymbol++;
|
||||
}
|
||||
|
||||
static bool isRangeDivisibleBy(ArrayRef<int64_t> range, int64_t divisor) {
|
||||
assert(divisor > 0 && "divisor must be positive!");
|
||||
return llvm::all_of(range, [divisor](int64_t x) { return x % divisor == 0; });
|
||||
}
|
||||
|
||||
bool SymbolicLexSimplex::isSymbolicSampleIntegral(unsigned row) const {
|
||||
int64_t denom = tableau(row, 0);
|
||||
return tableau(row, 1) % denom == 0 &&
|
||||
isRangeDivisibleBy(tableau.getRow(row).slice(3, nSymbol), denom);
|
||||
}
|
||||
|
||||
/// This proceeds similarly to LexSimplex::addCut(). We are given a row that has
|
||||
/// a symbolic sample value with fractional coefficients.
|
||||
///
|
||||
/// Let the row be
|
||||
/// (c + coeffM*M + sum_i a_i*s_i + sum_j b_j*y_j)/d,
|
||||
/// where s_1, ... s_m are the symbols and
|
||||
/// y_1, ... y_n are the other basis unknowns.
|
||||
///
|
||||
/// As in LexSimplex::addCut, for this to be an integer, we want
|
||||
///
|
||||
/// coeffM*M + sum_j b_j*y_j = -c + sum_i (-a_i*s_i) (mod d)
|
||||
///
|
||||
/// This time, a_1*s_1 + ... + a_m*s_m may not be an integer. We find that
|
||||
///
|
||||
/// sum_i (b_i%d)y_i = ((-c%d) + sum_i (-a_i%d)s_i)%d + k*d for some integer k
|
||||
///
|
||||
/// where we take a modulo of the whole symbolic expression on the right to
|
||||
/// bring it into the range [0, d - 1]. Therefore, as in LexSimplex::addCut,
|
||||
/// k is the quotient on dividing the LHS by d, and since LHS >= 0, we have
|
||||
/// k >= 0 as well. We realize the modulo of the symbolic expression by adding a
|
||||
/// division variable
|
||||
///
|
||||
/// q = ((-c%d) + sum_i (-a_i%d)s_i)/d
|
||||
///
|
||||
/// to the symbol domain, so the equality becomes
|
||||
///
|
||||
/// sum_i (b_i%d)y_i = (-c%d) + sum_i (-a_i%d)s_i - q*d + k*d for some integer k
|
||||
///
|
||||
/// So the cut is
|
||||
/// (sum_i (b_i%d)y_i - (-c%d) - sum_i (-a_i%d)s_i + q*d)/d >= 0
|
||||
/// This constraint is violated when added so we immediately try to move it to a
|
||||
/// column.
|
||||
LogicalResult SymbolicLexSimplex::addSymbolicCut(unsigned row) {
|
||||
int64_t d = tableau(row, 0);
|
||||
|
||||
// Add the division variable `q` described above to the symbol domain.
|
||||
// q = ((-c%d) + sum_i (-a_i%d)s_i)/d.
|
||||
SmallVector<int64_t, 8> domainDivCoeffs;
|
||||
domainDivCoeffs.reserve(nSymbol + 1);
|
||||
for (unsigned col = 3; col < 3 + nSymbol; ++col)
|
||||
domainDivCoeffs.push_back(mod(-tableau(row, col), d)); // (-a_i%d)s_i
|
||||
domainDivCoeffs.push_back(mod(-tableau(row, 1), d)); // -c%d.
|
||||
|
||||
domainSimplex.addDivisionVariable(domainDivCoeffs, d);
|
||||
domainPoly.addLocalFloorDiv(domainDivCoeffs, d);
|
||||
|
||||
// Update `this` to account for the additional symbol we just added.
|
||||
appendSymbol();
|
||||
|
||||
// Add the cut (sum_i (b_i%d)y_i - (-c%d) + sum_i -(-a_i%d)s_i + q*d)/d >= 0.
|
||||
addZeroRow(/*makeRestricted=*/true);
|
||||
tableau(nRow - 1, 0) = d;
|
||||
tableau(nRow - 1, 2) = 0;
|
||||
|
||||
tableau(nRow - 1, 1) = -mod(-tableau(row, 1), d); // -(-c%d).
|
||||
for (unsigned col = 3; col < 3 + nSymbol - 1; ++col)
|
||||
tableau(nRow - 1, col) = -mod(-tableau(row, col), d); // -(-a_i%d)s_i.
|
||||
tableau(nRow - 1, 3 + nSymbol - 1) = d; // q*d.
|
||||
|
||||
for (unsigned col = 3 + nSymbol; col < nCol; ++col)
|
||||
tableau(nRow - 1, col) = mod(tableau(row, col), d); // (b_i%d)y_i.
|
||||
return moveRowUnknownToColumn(nRow - 1);
|
||||
}
|
||||
|
||||
void SymbolicLexSimplex::recordOutput(SymbolicLexMin &result) const {
|
||||
Matrix output(0, domainPoly.getNumIds() + 1);
|
||||
output.reserveRows(result.lexmin.getNumOutputs());
|
||||
for (const Unknown &u : var) {
|
||||
if (u.isSymbol)
|
||||
continue;
|
||||
|
||||
if (u.orientation == Orientation::Column) {
|
||||
// M + u has a sample value of zero so u has a sample value of -M, i.e,
|
||||
// unbounded.
|
||||
result.unboundedDomain.unionInPlace(domainPoly);
|
||||
return;
|
||||
}
|
||||
|
||||
int64_t denom = tableau(u.pos, 0);
|
||||
if (tableau(u.pos, 2) < denom) {
|
||||
// M + u has a sample value of fM + something, where f < 1, so
|
||||
// u = (f - 1)M + something, which has a negative coefficient for M,
|
||||
// and so is unbounded.
|
||||
result.unboundedDomain.unionInPlace(domainPoly);
|
||||
return;
|
||||
}
|
||||
assert(tableau(u.pos, 2) == denom &&
|
||||
"Coefficient of M should not be greater than 1!");
|
||||
|
||||
SmallVector<int64_t, 8> sample = getSymbolicSampleNumerator(u.pos);
|
||||
for (int64_t &elem : sample) {
|
||||
assert(elem % denom == 0 && "coefficients must be integral!");
|
||||
elem /= denom;
|
||||
}
|
||||
output.appendExtraRow(sample);
|
||||
}
|
||||
result.lexmin.addPiece(domainPoly, output);
|
||||
}
|
||||
|
||||
Optional<unsigned> SymbolicLexSimplex::maybeGetAlwaysViolatedRow() {
|
||||
// First look for rows that are clearly violated just from the big M
|
||||
// coefficient, without needing to perform any simplex queries on the domain.
|
||||
for (unsigned row = 0; row < nRow; ++row)
|
||||
if (tableau(row, 2) < 0)
|
||||
return row;
|
||||
|
||||
for (unsigned row = 0; row < nRow; ++row) {
|
||||
if (tableau(row, 2) > 0)
|
||||
continue;
|
||||
if (domainSimplex.isSeparateInequality(getSymbolicSampleNumerator(row))) {
|
||||
// Sample numerator always takes negative values in the symbol domain.
|
||||
return row;
|
||||
}
|
||||
}
|
||||
return {};
|
||||
}
|
||||
|
||||
Optional<unsigned> SymbolicLexSimplex::maybeGetNonIntegralVarRow() {
|
||||
for (const Unknown &u : var) {
|
||||
if (u.orientation == Orientation::Column)
|
||||
continue;
|
||||
assert(!u.isSymbol && "Symbol should not be in row orientation!");
|
||||
if (!isSymbolicSampleIntegral(u.pos))
|
||||
return u.pos;
|
||||
}
|
||||
return {};
|
||||
}
|
||||
|
||||
/// The non-branching pivots are just the ones moving the rows
|
||||
/// that are always violated in the symbol domain.
|
||||
LogicalResult SymbolicLexSimplex::doNonBranchingPivots() {
|
||||
while (Optional<unsigned> row = maybeGetAlwaysViolatedRow())
|
||||
if (moveRowUnknownToColumn(*row).failed())
|
||||
return failure();
|
||||
return success();
|
||||
}
|
||||
|
||||
SymbolicLexMin SymbolicLexSimplex::computeSymbolicIntegerLexMin() {
|
||||
SymbolicLexMin result(nSymbol, var.size() - nSymbol);
|
||||
|
||||
/// The algorithm is more naturally expressed recursively, but we implement
|
||||
/// it iteratively here to avoid potential issues with stack overflows in the
|
||||
/// compiler. We explicitly maintain the stack frames in a vector.
|
||||
///
|
||||
/// To "recurse", we store the current "stack frame", i.e., state variables
|
||||
/// that we will need when we "return", into `stack`, increment `level`, and
|
||||
/// `continue`. To "tail recurse", we just `continue`.
|
||||
/// To "return", we decrement `level` and `continue`.
|
||||
///
|
||||
/// When there is no stack frame for the current `level`, this indicates that
|
||||
/// we have just "recursed" or "tail recursed". When there does exist one,
|
||||
/// this indicates that we have just "returned" from recursing. There is only
|
||||
/// one point at which non-tail calls occur so we always "return" there.
|
||||
unsigned level = 1;
|
||||
struct StackFrame {
|
||||
int splitIndex;
|
||||
unsigned snapshot;
|
||||
unsigned domainSnapshot;
|
||||
IntegerRelation::CountsSnapshot domainPolyCounts;
|
||||
};
|
||||
SmallVector<StackFrame, 8> stack;
|
||||
|
||||
while (level > 0) {
|
||||
assert(level >= stack.size());
|
||||
if (level > stack.size()) {
|
||||
if (empty || domainSimplex.findIntegerLexMin().isEmpty()) {
|
||||
// No integer points; return.
|
||||
--level;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (doNonBranchingPivots().failed()) {
|
||||
// Could not find pivots for violated constraints; return.
|
||||
--level;
|
||||
continue;
|
||||
}
|
||||
|
||||
unsigned splitRow;
|
||||
SmallVector<int64_t, 8> symbolicSample;
|
||||
for (splitRow = 0; splitRow < nRow; ++splitRow) {
|
||||
if (tableau(splitRow, 2) > 0)
|
||||
continue;
|
||||
assert(tableau(splitRow, 2) == 0 &&
|
||||
"Non-branching pivots should have been handled already!");
|
||||
|
||||
symbolicSample = getSymbolicSampleNumerator(splitRow);
|
||||
if (domainSimplex.isRedundantInequality(symbolicSample))
|
||||
continue;
|
||||
|
||||
// It's neither redundant nor separate, so it takes both positive and
|
||||
// negative values, and hence constitutes a row for which we need to
|
||||
// split the domain and separately run each case.
|
||||
assert(!domainSimplex.isSeparateInequality(symbolicSample) &&
|
||||
"Non-branching pivots should have been handled already!");
|
||||
break;
|
||||
}
|
||||
|
||||
if (splitRow < nRow) {
|
||||
unsigned domainSnapshot = domainSimplex.getSnapshot();
|
||||
IntegerRelation::CountsSnapshot domainPolyCounts =
|
||||
domainPoly.getCounts();
|
||||
|
||||
// First, we consider the part of the domain where the row is not
|
||||
// violated. We don't have to do any pivots for the row in this case,
|
||||
// but we record the additional constraint that defines this part of
|
||||
// the domain.
|
||||
domainSimplex.addInequality(symbolicSample);
|
||||
domainPoly.addInequality(symbolicSample);
|
||||
|
||||
// Recurse.
|
||||
//
|
||||
// On return, the basis as a set is preserved but not the internal
|
||||
// ordering within rows or columns. Thus, we take note of the index of
|
||||
// the Unknown that caused the split, which may be in a different
|
||||
// row when we come back from recursing. We will need this to recurse
|
||||
// on the other part of the split domain, where the row is violated.
|
||||
//
|
||||
// Note that we have to capture the index above and not a reference to
|
||||
// the Unknown itself, since the array it lives in might get
|
||||
// reallocated.
|
||||
int splitIndex = rowUnknown[splitRow];
|
||||
unsigned snapshot = getSnapshot();
|
||||
stack.push_back(
|
||||
{splitIndex, snapshot, domainSnapshot, domainPolyCounts});
|
||||
++level;
|
||||
continue;
|
||||
}
|
||||
|
||||
// The tableau is rationally consistent for the current domain.
|
||||
// Now we look for non-integral sample values and add cuts for them.
|
||||
if (Optional<unsigned> row = maybeGetNonIntegralVarRow()) {
|
||||
if (addSymbolicCut(*row).failed()) {
|
||||
// No integral points; return.
|
||||
--level;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Rerun this level with the added cut constraint (tail recurse).
|
||||
continue;
|
||||
}
|
||||
|
||||
// Record output and return.
|
||||
recordOutput(result);
|
||||
--level;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (level == stack.size()) {
|
||||
// We have "returned" from "recursing".
|
||||
const StackFrame &frame = stack.back();
|
||||
domainPoly.truncate(frame.domainPolyCounts);
|
||||
domainSimplex.rollback(frame.domainSnapshot);
|
||||
rollback(frame.snapshot);
|
||||
const Unknown &u = unknownFromIndex(frame.splitIndex);
|
||||
|
||||
// Drop the frame. We don't need it anymore.
|
||||
stack.pop_back();
|
||||
|
||||
// Now we consider the part of the domain where the unknown `splitIndex`
|
||||
// was negative.
|
||||
assert(u.orientation == Orientation::Row &&
|
||||
"The split row should have been returned to row orientation!");
|
||||
SmallVector<int64_t, 8> splitIneq =
|
||||
getComplementIneq(getSymbolicSampleNumerator(u.pos));
|
||||
if (moveRowUnknownToColumn(u.pos).failed()) {
|
||||
// The unknown can't be made non-negative; return.
|
||||
--level;
|
||||
continue;
|
||||
}
|
||||
|
||||
// The unknown can be made negative; recurse with the corresponding domain
|
||||
// constraints.
|
||||
domainSimplex.addInequality(splitIneq);
|
||||
domainPoly.addInequality(splitIneq);
|
||||
|
||||
// We are now taking care of the second half of the domain and we don't
|
||||
// need to do anything else here after returning, so it's a tail recurse.
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
bool LexSimplex::rowIsViolated(unsigned row) const {
|
||||
if (tableau(row, 2) < 0)
|
||||
return true;
|
||||
|
@ -243,19 +653,20 @@ Optional<unsigned> LexSimplex::maybeGetViolatedRow() const {
|
|||
return {};
|
||||
}
|
||||
|
||||
// We simply look for violated rows and keep trying to move them to column
|
||||
// orientation, which always succeeds unless the constraints have no solution
|
||||
// in which case we just give up and return.
|
||||
void LexSimplex::restoreRationalConsistency() {
|
||||
while (Optional<unsigned> maybeViolatedRow = maybeGetViolatedRow()) {
|
||||
LogicalResult status = moveRowUnknownToColumn(*maybeViolatedRow);
|
||||
if (failed(status))
|
||||
return;
|
||||
}
|
||||
/// We simply look for violated rows and keep trying to move them to column
|
||||
/// orientation, which always succeeds unless the constraints have no solution
|
||||
/// in which case we just give up and return.
|
||||
LogicalResult LexSimplex::restoreRationalConsistency() {
|
||||
if (empty)
|
||||
return failure();
|
||||
while (Optional<unsigned> maybeViolatedRow = maybeGetViolatedRow())
|
||||
if (moveRowUnknownToColumn(*maybeViolatedRow).failed())
|
||||
return failure();
|
||||
return success();
|
||||
}
|
||||
|
||||
// Move the row unknown to column orientation while preserving lexicopositivity
|
||||
// of the basis transform.
|
||||
// of the basis transform. The sample value of the row must be negative.
|
||||
//
|
||||
// We only consider pivots where the pivot element is positive. Suppose no such
|
||||
// pivot exists, i.e., some violated row has no positive coefficient for any
|
||||
|
@ -318,7 +729,7 @@ void LexSimplex::restoreRationalConsistency() {
|
|||
// minimizes the change in sample value.
|
||||
LogicalResult LexSimplexBase::moveRowUnknownToColumn(unsigned row) {
|
||||
Optional<unsigned> maybeColumn;
|
||||
for (unsigned col = 3; col < nCol; ++col) {
|
||||
for (unsigned col = 3 + nSymbol; col < nCol; ++col) {
|
||||
if (tableau(row, col) <= 0)
|
||||
continue;
|
||||
maybeColumn =
|
||||
|
@ -336,6 +747,7 @@ LogicalResult LexSimplexBase::moveRowUnknownToColumn(unsigned row) {
|
|||
|
||||
unsigned LexSimplexBase::getLexMinPivotColumn(unsigned row, unsigned colA,
|
||||
unsigned colB) const {
|
||||
// First, let's consider the non-symbolic case.
|
||||
// A pivot causes the following change. (in the diagram the matrix elements
|
||||
// are shown as rationals and there is no common denominator used)
|
||||
//
|
||||
|
@ -359,7 +771,7 @@ unsigned LexSimplexBase::getLexMinPivotColumn(unsigned row, unsigned colA,
|
|||
// (-p/a)M + (-b/a), i.e. 0 to -(pM + b)/a. Thus the change in the sample
|
||||
// value is -s/a.
|
||||
//
|
||||
// If the variable is the pivot row, it sampel value goes from s to 0, for a
|
||||
// If the variable is the pivot row, its sample value goes from s to 0, for a
|
||||
// change of -s.
|
||||
//
|
||||
// If the variable is a non-pivot row, its sample value changes from
|
||||
|
@ -373,8 +785,12 @@ unsigned LexSimplexBase::getLexMinPivotColumn(unsigned row, unsigned colA,
|
|||
// comparisons involved and can be ignored, since -s is strictly positive.
|
||||
//
|
||||
// Thus we take away this common factor and just return 0, 1/a, 1, or c/a as
|
||||
// appropriate. This allows us to run the entire algorithm without ever having
|
||||
// to fix a value of M.
|
||||
// appropriate. This allows us to run the entire algorithm treating M
|
||||
// symbolically, as the pivot to be performed does not depend on the value
|
||||
// of M, so long as the sample value s is negative. Note that this is not
|
||||
// because of any special feature of M; by the same argument, we ignore the
|
||||
// symbols too. The caller ensure that the sample value s is negative for
|
||||
// all possible values of the symbols.
|
||||
auto getSampleChangeCoeffForVar = [this, row](unsigned col,
|
||||
const Unknown &u) -> Fraction {
|
||||
int64_t a = tableau(row, col);
|
||||
|
@ -489,6 +905,7 @@ void SimplexBase::pivot(Pivot pair) { pivot(pair.row, pair.column); }
|
|||
/// element.
|
||||
void SimplexBase::pivot(unsigned pivotRow, unsigned pivotCol) {
|
||||
assert(pivotCol >= getNumFixedCols() && "Refusing to pivot invalid column");
|
||||
assert(!unknownFromColumn(pivotCol).isSymbol);
|
||||
|
||||
swapRowWithCol(pivotRow, pivotCol);
|
||||
std::swap(tableau(pivotRow, 0), tableau(pivotRow, pivotCol));
|
||||
|
@ -778,6 +1195,9 @@ void SimplexBase::undo(UndoLogEntry entry) {
|
|||
assert(var.back().orientation == Orientation::Column &&
|
||||
"Variable to be removed must be in column orientation!");
|
||||
|
||||
if (var.back().isSymbol)
|
||||
nSymbol--;
|
||||
|
||||
// Move this variable to the last column and remove the column from the
|
||||
// tableau.
|
||||
swapColumns(var.back().pos, nCol - 1);
|
||||
|
|
|
@ -8,6 +8,7 @@
|
|||
|
||||
#include "./Utils.h"
|
||||
#include "mlir/Analysis/Presburger/IntegerRelation.h"
|
||||
#include "mlir/Analysis/Presburger/PWMAFunction.h"
|
||||
#include "mlir/Analysis/Presburger/Simplex.h"
|
||||
|
||||
#include <gmock/gmock.h>
|
||||
|
@ -1134,6 +1135,229 @@ TEST(IntegerPolyhedronTest, findIntegerLexMin) {
|
|||
">= 0, -11*z + 5*y - 3*x + 7 >= 0)"));
|
||||
}
|
||||
|
||||
void expectSymbolicIntegerLexMin(
|
||||
StringRef polyStr,
|
||||
ArrayRef<std::pair<StringRef, SmallVector<SmallVector<int64_t, 8>, 8>>>
|
||||
expectedLexminRepr,
|
||||
ArrayRef<StringRef> expectedUnboundedDomainRepr) {
|
||||
IntegerPolyhedron poly = parsePoly(polyStr);
|
||||
|
||||
ASSERT_NE(poly.getNumDimIds(), 0u);
|
||||
ASSERT_NE(poly.getNumSymbolIds(), 0u);
|
||||
|
||||
PWMAFunction expectedLexmin =
|
||||
parsePWMAF(/*numInputs=*/poly.getNumSymbolIds(),
|
||||
/*numOutputs=*/poly.getNumDimIds(), expectedLexminRepr);
|
||||
|
||||
PresburgerSet expectedUnboundedDomain = parsePresburgerSetFromPolyStrings(
|
||||
poly.getNumSymbolIds(), expectedUnboundedDomainRepr);
|
||||
|
||||
SymbolicLexMin result = poly.findSymbolicIntegerLexMin();
|
||||
|
||||
EXPECT_TRUE(result.lexmin.isEqual(expectedLexmin));
|
||||
if (!result.lexmin.isEqual(expectedLexmin)) {
|
||||
llvm::errs() << "got:\n";
|
||||
result.lexmin.dump();
|
||||
llvm::errs() << "expected:\n";
|
||||
expectedLexmin.dump();
|
||||
}
|
||||
|
||||
EXPECT_TRUE(result.unboundedDomain.isEqual(expectedUnboundedDomain));
|
||||
if (!result.unboundedDomain.isEqual(expectedUnboundedDomain))
|
||||
result.unboundedDomain.dump();
|
||||
}
|
||||
|
||||
void expectSymbolicIntegerLexMin(
|
||||
StringRef polyStr,
|
||||
ArrayRef<std::pair<StringRef, SmallVector<SmallVector<int64_t, 8>, 8>>>
|
||||
result) {
|
||||
expectSymbolicIntegerLexMin(polyStr, result, {});
|
||||
}
|
||||
|
||||
TEST(IntegerPolyhedronTest, findSymbolicIntegerLexMin) {
|
||||
expectSymbolicIntegerLexMin("(x)[a] : (x - a >= 0)",
|
||||
{
|
||||
{"(a) : ()", {{1, 0}}}, // a
|
||||
});
|
||||
|
||||
expectSymbolicIntegerLexMin(
|
||||
"(x)[a, b] : (x - a >= 0, x - b >= 0)",
|
||||
{
|
||||
{"(a, b) : (a - b >= 0)", {{1, 0, 0}}}, // a
|
||||
{"(a, b) : (b - a - 1 >= 0)", {{0, 1, 0}}}, // b
|
||||
});
|
||||
|
||||
expectSymbolicIntegerLexMin(
|
||||
"(x)[a, b, c] : (x -a >= 0, x - b >= 0, x - c >= 0)",
|
||||
{
|
||||
{"(a, b, c) : (a - b >= 0, a - c >= 0)", {{1, 0, 0, 0}}}, // a
|
||||
{"(a, b, c) : (b - a - 1 >= 0, b - c >= 0)", {{0, 1, 0, 0}}}, // b
|
||||
{"(a, b, c) : (c - a - 1 >= 0, c - b - 1 >= 0)", {{0, 0, 1, 0}}}, // c
|
||||
});
|
||||
|
||||
expectSymbolicIntegerLexMin("(x, y)[a] : (x - a >= 0, x + y >= 0)",
|
||||
{
|
||||
{"(a) : ()", {{1, 0}, {-1, 0}}}, // (a, -a)
|
||||
});
|
||||
|
||||
expectSymbolicIntegerLexMin(
|
||||
"(x, y)[a] : (x - a >= 0, x + y >= 0, y >= 0)",
|
||||
{
|
||||
{"(a) : (a >= 0)", {{1, 0}, {0, 0}}}, // (a, 0)
|
||||
{"(a) : (-a - 1 >= 0)", {{1, 0}, {-1, 0}}}, // (a, -a)
|
||||
});
|
||||
|
||||
expectSymbolicIntegerLexMin(
|
||||
"(x, y)[a, b, c] : (x - a >= 0, y - b >= 0, c - x - y >= 0)",
|
||||
{
|
||||
{"(a, b, c) : (c - a - b >= 0)",
|
||||
{{1, 0, 0, 0}, {0, 1, 0, 0}}}, // (a, b)
|
||||
});
|
||||
|
||||
expectSymbolicIntegerLexMin(
|
||||
"(x, y, z)[a, b, c] : (c - z >= 0, b - y >= 0, x + y + z - a == 0)",
|
||||
{
|
||||
{"(a, b, c) : ()",
|
||||
{{1, -1, -1, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}}}, // (a - b - c, b, c)
|
||||
});
|
||||
|
||||
expectSymbolicIntegerLexMin(
|
||||
"(x)[a, b] : (a >= 0, b >= 0, x >= 0, a + b + x - 1 >= 0)",
|
||||
{
|
||||
{"(a, b) : (a >= 0, b >= 0, a + b - 1 >= 0)", {{0, 0, 0}}}, // 0
|
||||
{"(a, b) : (a == 0, b == 0)", {{0, 0, 1}}}, // 1
|
||||
});
|
||||
|
||||
expectSymbolicIntegerLexMin(
|
||||
"(x)[a, b] : (1 - a >= 0, a >= 0, 1 - b >= 0, b >= 0, 1 - x >= 0, x >= "
|
||||
"0, a + b + x - 1 >= 0)",
|
||||
{
|
||||
{"(a, b) : (1 - a >= 0, a >= 0, 1 - b >= 0, b >= 0, a + b - 1 >= 0)",
|
||||
{{0, 0, 0}}}, // 0
|
||||
{"(a, b) : (a == 0, b == 0)", {{0, 0, 1}}}, // 1
|
||||
});
|
||||
|
||||
expectSymbolicIntegerLexMin(
|
||||
"(x, y, z)[a, b] : (x - a == 0, y - b == 0, x >= 0, y >= 0, z >= 0, x + "
|
||||
"y + z - 1 >= 0)",
|
||||
{
|
||||
{"(a, b) : (a >= 0, b >= 0, 1 - a - b >= 0)",
|
||||
{{1, 0, 0}, {0, 1, 0}, {-1, -1, 1}}}, // (a, b, 1 - a - b)
|
||||
{"(a, b) : (a >= 0, b >= 0, a + b - 2 >= 0)",
|
||||
{{1, 0, 0}, {0, 1, 0}, {0, 0, 0}}}, // (a, b, 0)
|
||||
});
|
||||
|
||||
expectSymbolicIntegerLexMin("(x)[a, b] : (x - a == 0, x - b >= 0)",
|
||||
{
|
||||
{"(a, b) : (a - b >= 0)", {{1, 0, 0}}}, // a
|
||||
});
|
||||
|
||||
expectSymbolicIntegerLexMin(
|
||||
"(q)[a] : (a - 1 - 3*q == 0, q >= 0)",
|
||||
{
|
||||
{"(a) : (a - 1 - 3*(a floordiv 3) == 0, a >= 0)",
|
||||
{{0, 1, 0}}}, // a floordiv 3
|
||||
});
|
||||
|
||||
expectSymbolicIntegerLexMin(
|
||||
"(r, q)[a] : (a - r - 3*q == 0, q >= 0, 1 - r >= 0, r >= 0)",
|
||||
{
|
||||
{"(a) : (a - 0 - 3*(a floordiv 3) == 0, a >= 0)",
|
||||
{{0, 0, 0}, {0, 1, 0}}}, // (0, a floordiv 3)
|
||||
{"(a) : (a - 1 - 3*(a floordiv 3) == 0, a >= 0)",
|
||||
{{0, 0, 1}, {0, 1, 0}}}, // (1 a floordiv 3)
|
||||
});
|
||||
|
||||
expectSymbolicIntegerLexMin(
|
||||
"(r, q)[a] : (a - r - 3*q == 0, q >= 0, 2 - r >= 0, r - 1 >= 0)",
|
||||
{
|
||||
{"(a) : (a - 1 - 3*(a floordiv 3) == 0, a >= 0)",
|
||||
{{0, 0, 1}, {0, 1, 0}}}, // (1, a floordiv 3)
|
||||
{"(a) : (a - 2 - 3*(a floordiv 3) == 0, a >= 0)",
|
||||
{{0, 0, 2}, {0, 1, 0}}}, // (2, a floordiv 3)
|
||||
});
|
||||
|
||||
expectSymbolicIntegerLexMin(
|
||||
"(r, q)[a] : (a - r - 3*q == 0, q >= 0, r >= 0)",
|
||||
{
|
||||
{"(a) : (a - 3*(a floordiv 3) == 0, a >= 0)",
|
||||
{{0, 0, 0}, {0, 1, 0}}}, // (0, a floordiv 3)
|
||||
{"(a) : (a - 1 - 3*(a floordiv 3) == 0, a >= 0)",
|
||||
{{0, 0, 1}, {0, 1, 0}}}, // (1, a floordiv 3)
|
||||
{"(a) : (a - 2 - 3*(a floordiv 3) == 0, a >= 0)",
|
||||
{{0, 0, 2}, {0, 1, 0}}}, // (2, a floordiv 3)
|
||||
});
|
||||
|
||||
expectSymbolicIntegerLexMin(
|
||||
"(x, y, z, w)[g] : ("
|
||||
// x, y, z, w are boolean variables.
|
||||
"1 - x >= 0, x >= 0, 1 - y >= 0, y >= 0,"
|
||||
"1 - z >= 0, z >= 0, 1 - w >= 0, w >= 0,"
|
||||
// We have some constraints on them:
|
||||
"x + y + z - 1 >= 0," // x or y or z
|
||||
"x + y + w - 1 >= 0," // x or y or w
|
||||
"1 - x + 1 - y + 1 - w - 1 >= 0," // ~x or ~y or ~w
|
||||
// What's the lexmin solution using exactly g true vars?
|
||||
"g - x - y - z - w == 0)",
|
||||
{
|
||||
{"(g) : (g - 1 == 0)",
|
||||
{{0, 0}, {0, 1}, {0, 0}, {0, 0}}}, // (0, 1, 0, 0)
|
||||
{"(g) : (g - 2 == 0)",
|
||||
{{0, 0}, {0, 0}, {0, 1}, {0, 1}}}, // (0, 0, 1, 1)
|
||||
{"(g) : (g - 3 == 0)",
|
||||
{{0, 0}, {0, 1}, {0, 1}, {0, 1}}}, // (0, 1, 1, 1)
|
||||
});
|
||||
|
||||
// Bezout's lemma: if a, b are constants,
|
||||
// the set of values that ax + by can take is all multiples of gcd(a, b).
|
||||
expectSymbolicIntegerLexMin(
|
||||
// If (x, y) is a solution for a given [a, r], then so is (x - 5, y + 2).
|
||||
// So the lexmin is unbounded if it exists.
|
||||
"(x, y)[a, r] : (a >= 0, r - a + 14*x + 35*y == 0)", {},
|
||||
// According to Bezout's lemma, 14x + 35y can take on all multiples
|
||||
// of 7 and no other values. So the solution exists iff r - a is a
|
||||
// multiple of 7.
|
||||
{"(a, r) : (a >= 0, r - a - 7*((r - a) floordiv 7) == 0)"});
|
||||
|
||||
// The lexmins are unbounded.
|
||||
expectSymbolicIntegerLexMin("(x, y)[a] : (9*x - 4*y - 2*a >= 0)", {},
|
||||
{"(a) : ()"});
|
||||
|
||||
// Test cases adapted from isl.
|
||||
expectSymbolicIntegerLexMin(
|
||||
// a = 2b - 2(c - b), c - b >= 0.
|
||||
// So b is minimized when c = b.
|
||||
"(b, c)[a] : (a - 4*b + 2*c == 0, c - b >= 0)",
|
||||
{
|
||||
{"(a) : (a - 2*(a floordiv 2) == 0)",
|
||||
{{0, 1, 0}, {0, 1, 0}}}, // (a floordiv 2, a floordiv 2)
|
||||
});
|
||||
|
||||
expectSymbolicIntegerLexMin(
|
||||
// 0 <= b <= 255, 1 <= a - 512b <= 509,
|
||||
// b + 8 >= 1 + 16*(b + 8 floordiv 16) // i.e. b % 16 != 8
|
||||
"(b)[a] : (255 - b >= 0, b >= 0, a - 512*b - 1 >= 0, 512*b -a + 509 >= "
|
||||
"0, b + 7 - 16*((8 + b) floordiv 16) >= 0)",
|
||||
{
|
||||
{"(a) : (255 - (a floordiv 512) >= 0, a >= 0, a - 512*(a floordiv "
|
||||
"512) - 1 >= 0, 512*(a floordiv 512) - a + 509 >= 0, (a floordiv "
|
||||
"512) + 7 - 16*((8 + (a floordiv 512)) floordiv 16) >= 0)",
|
||||
{{0, 1, 0, 0}}}, // (a floordiv 2, a floordiv 2)
|
||||
});
|
||||
|
||||
expectSymbolicIntegerLexMin(
|
||||
"(a, b)[K, N, x, y] : (N - K - 2 >= 0, K + 4 - N >= 0, x - 4 >= 0, x + 6 "
|
||||
"- 2*N >= 0, K+N - x - 1 >= 0, a - N + 1 >= 0, K+N-1-a >= 0,a + 6 - b - "
|
||||
"N >= 0, 2*N - 4 - a >= 0,"
|
||||
"2*N - 3*K + a - b >= 0, 4*N - K + 1 - 3*b >= 0, b - N >= 0, a - x - 1 "
|
||||
">= 0)",
|
||||
{{
|
||||
"(K, N, x, y) : (x + 6 - 2*N >= 0, 2*N - 5 - x >= 0, x + 1 -3*K + N "
|
||||
">= 0, N + K - 2 - x >= 0, x - 4 >= 0)",
|
||||
{{0, 0, 1, 0, 1}, {0, 1, 0, 0, 0}} // (1 + x, N)
|
||||
}});
|
||||
}
|
||||
|
||||
static void
|
||||
expectComputedVolumeIsValidOverapprox(const IntegerPolyhedron &poly,
|
||||
Optional<uint64_t> trueVolume,
|
||||
|
|
Loading…
Reference in New Issue