[VectorOps] Add vector.print definition, with lowering support

Examples:

  vector.print %f : f32
  vector.print %x : vector<4xf32>
  vector.print %y : vector<3x4xf32>
  vector.print %z : vector<2x3x4xf32>

LLVM lowering replaces these with fully unrolled calls
into a small runtime support library that provides some
basic printing operations (single value, opening closing
bracket, comma, newline).

PiperOrigin-RevId: 286230325
This commit is contained in:
Aart Bik 2019-12-18 11:23:16 -08:00 committed by A. Unique TensorFlower
parent c169852fc5
commit d9b500d3bb
8 changed files with 245 additions and 2 deletions

View File

@ -987,4 +987,36 @@ def Vector_TupleGetOp :
}];
}
def Vector_PrintOp :
Vector_Op<"print", []>, Arguments<(ins AnyType:$source)> {
let summary = "print operation (for testing and debugging)";
let description = [{
Prints the source vector (or scalar) to stdout in human readable
format (for testing and debugging). No return value.
Examples:
```
%0 = constant 0.0 : f32
%1 = vector.broadcast %0 : f32 to vector<4xf32>
vector.print %1 : vector<4xf32>
when lowered to LLVM, the vector print is unrolled into
elementary printing method calls that at runtime will yield
( 0.0, 0.0, 0.0, 0.0 )
on stdout when linked with a small runtime support library,
which only needs to provide a few printing methods (single
value for all data types, opening/closing bracket, comma,
newline).
```
}];
let verifier = ?;
let extraClassDeclaration = [{
Type getPrintType() {
return source()->getType();
}
}];
}
#endif // VECTOR_OPS

View File

@ -612,14 +612,136 @@ public:
}
};
class VectorPrintOpConversion : public LLVMOpLowering {
public:
explicit VectorPrintOpConversion(MLIRContext *context,
LLVMTypeConverter &typeConverter)
: LLVMOpLowering(vector::PrintOp::getOperationName(), context,
typeConverter) {}
// Proof-of-concept lowering implementation that relies on a small
// runtime support library, which only needs to provide a few
// printing methods (single value for all data types, opening/closing
// bracket, comma, newline). The lowering fully unrolls a vector
// in terms of these elementary printing operations. The advantage
// of this approach is that the library can remain unaware of all
// low-level implementation details of vectors while still supporting
// output of any shaped and dimensioned vector. Due to full unrolling,
// this approach is less suited for very large vectors though.
//
// TODO(ajcbik): rely solely on libc in future? something else?
//
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override {
auto printOp = cast<vector::PrintOp>(op);
auto adaptor = vector::PrintOpOperandAdaptor(operands);
Type printType = printOp.getPrintType();
if (lowering.convertType(printType) == nullptr)
return matchFailure();
// Make sure element type has runtime support (currently just Float/Double).
VectorType vectorType = printType.dyn_cast<VectorType>();
Type eltType = vectorType ? vectorType.getElementType() : printType;
int64_t rank = vectorType ? vectorType.getRank() : 0;
Operation *printer;
if (eltType.isF32())
printer = getPrintFloat(op);
else if (eltType.isF64())
printer = getPrintDouble(op);
else
return matchFailure();
// Unroll vector into elementary print calls.
emitRanks(rewriter, op, adaptor.source(), vectorType, printer, rank);
emitCall(rewriter, op->getLoc(), getPrintNewline(op));
rewriter.eraseOp(op);
return matchSuccess();
}
private:
void emitRanks(ConversionPatternRewriter &rewriter, Operation *op,
Value *value, VectorType vectorType, Operation *printer,
int64_t rank) const {
Location loc = op->getLoc();
if (rank == 0) {
emitCall(rewriter, loc, printer, value);
return;
}
emitCall(rewriter, loc, getPrintOpen(op));
Operation *printComma = getPrintComma(op);
int64_t dim = vectorType.getDimSize(0);
for (int64_t d = 0; d < dim; ++d) {
auto reducedType =
rank > 1 ? reducedVectorTypeFront(vectorType) : nullptr;
auto llvmType = lowering.convertType(
rank > 1 ? reducedType : vectorType.getElementType());
Value *nestedVal =
extractOne(rewriter, lowering, loc, value, llvmType, rank, d);
emitRanks(rewriter, op, nestedVal, reducedType, printer, rank - 1);
if (d != dim - 1)
emitCall(rewriter, loc, printComma);
}
emitCall(rewriter, loc, getPrintClose(op));
}
// Helper to emit a call.
static void emitCall(ConversionPatternRewriter &rewriter, Location loc,
Operation *ref, ValueRange params = ValueRange()) {
rewriter.create<LLVM::CallOp>(loc, ArrayRef<Type>{},
rewriter.getSymbolRefAttr(ref), params);
}
// Helper for printer method declaration (first hit) and lookup.
static Operation *getPrint(Operation *op, LLVM::LLVMDialect *dialect,
StringRef name, ArrayRef<LLVM::LLVMType> params) {
auto module = op->getParentOfType<ModuleOp>();
auto func = module.lookupSymbol<LLVM::LLVMFuncOp>(name);
if (func)
return func;
OpBuilder moduleBuilder(module.getBodyRegion());
return moduleBuilder.create<LLVM::LLVMFuncOp>(
op->getLoc(), name,
LLVM::LLVMType::getFunctionTy(LLVM::LLVMType::getVoidTy(dialect),
params, /*isVarArg=*/false));
}
// Helpers for method names.
Operation *getPrintFloat(Operation *op) const {
LLVM::LLVMDialect *dialect = lowering.getDialect();
return getPrint(op, dialect, "print_f32",
LLVM::LLVMType::getFloatTy(dialect));
}
Operation *getPrintDouble(Operation *op) const {
LLVM::LLVMDialect *dialect = lowering.getDialect();
return getPrint(op, dialect, "print_f64",
LLVM::LLVMType::getDoubleTy(dialect));
}
Operation *getPrintOpen(Operation *op) const {
return getPrint(op, lowering.getDialect(), "print_open", {});
}
Operation *getPrintClose(Operation *op) const {
return getPrint(op, lowering.getDialect(), "print_close", {});
}
Operation *getPrintComma(Operation *op) const {
return getPrint(op, lowering.getDialect(), "print_comma", {});
}
Operation *getPrintNewline(Operation *op) const {
return getPrint(op, lowering.getDialect(), "print_newline", {});
}
};
/// Populate the given list with patterns that convert from Vector to LLVM.
void mlir::populateVectorToLLVMConversionPatterns(
LLVMTypeConverter &converter, OwningRewritePatternList &patterns) {
patterns.insert<VectorBroadcastOpConversion, VectorShuffleOpConversion,
VectorExtractElementOpConversion, VectorExtractOpConversion,
VectorInsertElementOpConversion, VectorInsertOpConversion,
VectorOuterProductOpConversion, VectorTypeCastOpConversion>(
converter.getDialect()->getContext(), converter);
VectorOuterProductOpConversion, VectorTypeCastOpConversion,
VectorPrintOpConversion>(converter.getDialect()->getContext(),
converter);
}
namespace {

View File

@ -1587,6 +1587,23 @@ static LogicalResult verify(CreateMaskOp op) {
return success();
}
//===----------------------------------------------------------------------===//
// PrintOp
//===----------------------------------------------------------------------===//
ParseResult parsePrintOp(OpAsmParser &parser, OperationState &result) {
OpAsmParser::OperandType source;
Type sourceType;
return failure(parser.parseOperand(source) ||
parser.parseColonType(sourceType) ||
parser.resolveOperand(source, sourceType, result.operands));
}
static void print(OpAsmPrinter &p, PrintOp op) {
p << op.getOperationName() << ' ' << *op.source() << " : "
<< op.getPrintType();
}
namespace {
// Pattern to rewrite a CreateMaskOp with a ConstantMaskOp.

View File

@ -385,3 +385,41 @@ func @vector_type_cast(%arg0: memref<8x8x8xf32>) -> memref<vector<8x8x8xf32>> {
// CHECK: llvm.insertvalue %[[alignedBit]], {{.*}}[1] : !llvm<"{ [8 x [8 x <8 x float>]]*, [8 x [8 x <8 x float>]]*, i64 }">
// CHECK: llvm.mlir.constant(0 : index
// CHECK: llvm.insertvalue {{.*}}[2] : !llvm<"{ [8 x [8 x <8 x float>]]*, [8 x [8 x <8 x float>]]*, i64 }">
func @vector_print_scalar(%arg0: f32) {
vector.print %arg0 : f32
return
}
// CHECK-LABEL: vector_print_scalar(%arg0: !llvm.float)
// CHECK: llvm.call @print_f32(%arg0) : (!llvm.float) -> ()
// CHECK: llvm.call @print_newline() : () -> ()
func @vector_print_vector(%arg0: vector<2x2xf32>) {
vector.print %arg0 : vector<2x2xf32>
return
}
// CHECK-LABEL: vector_print_vector(%arg0: !llvm<"[2 x <2 x float>]">)
// CHECK: llvm.call @print_open() : () -> ()
// CHECK: %[[x0:.*]] = llvm.extractvalue %arg0[0] : !llvm<"[2 x <2 x float>]">
// CHECK: llvm.call @print_open() : () -> ()
// CHECK: %[[x1:.*]] = llvm.mlir.constant(0 : index) : !llvm.i64
// CHECK: %[[x2:.*]] = llvm.extractelement %[[x0]][%[[x1]] : !llvm.i64] : !llvm<"<2 x float>">
// CHECK: llvm.call @print_f32(%[[x2]]) : (!llvm.float) -> ()
// CHECK: llvm.call @print_comma() : () -> ()
// CHECK: %[[x3:.*]] = llvm.mlir.constant(1 : index) : !llvm.i64
// CHECK: %[[x4:.*]] = llvm.extractelement %[[x0]][%[[x3]] : !llvm.i64] : !llvm<"<2 x float>">
// CHECK: llvm.call @print_f32(%[[x4]]) : (!llvm.float) -> ()
// CHECK: llvm.call @print_close() : () -> ()
// CHECK: llvm.call @print_comma() : () -> ()
// CHECK: %[[x5:.*]] = llvm.extractvalue %arg0[1] : !llvm<"[2 x <2 x float>]">
// CHECK: llvm.call @print_open() : () -> ()
// CHECK: %[[x6:.*]] = llvm.mlir.constant(0 : index) : !llvm.i64
// CHECK: %[[x7:.*]] = llvm.extractelement %[[x5]][%[[x6]] : !llvm.i64] : !llvm<"<2 x float>">
// CHECK: llvm.call @print_f32(%[[x7]]) : (!llvm.float) -> ()
// CHECK: llvm.call @print_comma() : () -> ()
// CHECK: %[[x8:.*]] = llvm.mlir.constant(1 : index) : !llvm.i64
// CHECK: %[[x9:.*]] = llvm.extractelement %[[x5]][%[[x8]] : !llvm.i64] : !llvm<"<2 x float>">
// CHECK: llvm.call @print_f32(%[[x9]]) : (!llvm.float) -> ()
// CHECK: llvm.call @print_close() : () -> ()
// CHECK: llvm.call @print_close() : () -> ()
// CHECK: llvm.call @print_newline() : () -> ()

View File

@ -818,3 +818,11 @@ func @insert_slices_invalid_tuple_element_type(%arg0 : tuple<vector<2x2xf32>, ve
: tuple<vector<2x2xf32>, vector<4x2xf32>> into vector<4x2xf32>
return
}
// -----
func @print_no_result(%arg0 : f32) -> i32 {
// expected-error@+1 {{cannot name an operation with no results}}
%0 = vector.print %arg0 : f32
return %0
}

View File

@ -198,3 +198,10 @@ func @insert_slices(%arg0 : tuple<vector<2x2xf32>, vector<2x2xf32>>)
: tuple<vector<2x2xf32>, vector<2x2xf32>> into vector<4x2xf32>
return %0 : vector<4x2xf32>
}
// CHECK-LABEL: @vector_print
func @vector_print(%arg0: vector<8x4xf32>) {
// CHECK: vector.print %{{.*}} : vector<8x4xf32>
vector.print %arg0 : vector<8x4xf32>
return
}

View File

@ -285,4 +285,12 @@ print_memref_4d_f32(StridedMemRefType<float, 4> *M);
extern "C" MLIR_RUNNER_UTILS_EXPORT void
print_memref_vector_4x4xf32(StridedMemRefType<Vector2D<4, 4, float>, 2> *M);
// Small runtime support "lib" for vector.print lowering.
extern "C" MLIR_RUNNER_UTILS_EXPORT void print_f32(float f);
extern "C" MLIR_RUNNER_UTILS_EXPORT void print_f64(double d);
extern "C" MLIR_RUNNER_UTILS_EXPORT void print_open();
extern "C" MLIR_RUNNER_UTILS_EXPORT void print_close();
extern "C" MLIR_RUNNER_UTILS_EXPORT void print_comma();
extern "C" MLIR_RUNNER_UTILS_EXPORT void print_newline();
#endif // MLIR_CPU_RUNNER_MLIRUTILS_H_

View File

@ -63,3 +63,14 @@ extern "C" void print_memref_3d_f32(StridedMemRefType<float, 3> *M) {
extern "C" void print_memref_4d_f32(StridedMemRefType<float, 4> *M) {
impl::printMemRef(*M);
}
// Small runtime support "lib" for vector.print lowering.
// By providing elementary printing methods only, this
// library can remain fully unaware of low-level implementation
// details of our vectors.
extern "C" void print_f32(float f) { std::cout << f; }
extern "C" void print_f64(double d) { std::cout << d; }
extern "C" void print_open() { std::cout << "( "; }
extern "C" void print_close() { std::cout << " )"; }
extern "C" void print_comma() { std::cout << ", "; }
extern "C" void print_newline() { std::cout << "\n"; }