Basic parsing and semantic analysis for out-of-line definitions of the

member functions of class templates, e.g.,

  template<typename T> 
  struct X {
    void f(T);
  };

  template<typename T> X<T>::f(T) { /* ... */ }

llvm-svn: 76692
This commit is contained in:
Douglas Gregor 2009-07-21 23:53:31 +00:00
parent 93a7ed1fc7
commit d8d297c0ac
8 changed files with 248 additions and 26 deletions

View File

@ -796,8 +796,12 @@ def err_template_arg_extra_parens : Error<
// C++ class template specialization
def err_template_spec_needs_header : Error<
"template specialization requires 'template<>'">;
def err_template_spec_needs_template_parameters : Error<
"template specialization or definition requires a template parameter list"
"corresponding to the nested type %0">;
def err_template_spec_extra_headers : Error<
"template specialization must have a single 'template<>' header">;
"extraneous template parameter list in template specialization or "
"out-of-line template definition">;
def err_template_spec_decl_out_of_scope_global : Error<
"class template %select{|partial }0specialization of %1 must occur in the "
"global scope">;

View File

@ -1775,7 +1775,8 @@ public:
bool RequireCompleteDeclContext(const CXXScopeSpec &SS);
DeclContext *computeDeclContext(const CXXScopeSpec &SS);
DeclContext *computeDeclContext(const CXXScopeSpec &SS,
bool EnteringContext = false);
bool isDependentScopeSpecifier(const CXXScopeSpec &SS);
CXXRecordDecl *getCurrentInstantiationOf(NestedNameSpecifier *NNS);
bool isUnknownSpecialization(const CXXScopeSpec &SS);
@ -2064,7 +2065,12 @@ public:
SourceLocation RAngleLoc);
bool CheckTemplateParameterList(TemplateParameterList *NewParams,
TemplateParameterList *OldParams);
TemplateParameterList *
MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
const CXXScopeSpec &SS,
TemplateParameterList **ParamLists,
unsigned NumParamLists);
virtual DeclResult
ActOnClassTemplate(Scope *S, unsigned TagSpec, TagKind TK,
SourceLocation KWLoc, const CXXScopeSpec &SS,

View File

@ -21,7 +21,19 @@ using namespace clang;
/// \brief Compute the DeclContext that is associated with the given
/// scope specifier.
DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS) {
///
/// \param SS the C++ scope specifier as it appears in the source
///
/// \param EnteringContext when true, we will be entering the context of
/// this scope specifier, so we can retrieve the declaration context of a
/// class template or class template partial specialization even if it is
/// not the current instantiation.
///
/// \returns the declaration context represented by the scope specifier @p SS,
/// or NULL if the declaration context cannot be computed (e.g., because it is
/// dependent and not the current instantiation).
DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
bool EnteringContext) {
if (!SS.isSet() || SS.isInvalid())
return 0;
@ -32,8 +44,29 @@ DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS) {
// instantiation, return its DeclContext.
if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
return Record;
else
return 0;
if (EnteringContext) {
// We are entering the context of the nested name specifier, so try to
// match the nested name specifier to either a primary class template
// or a class template partial specialization
if (const TemplateSpecializationType *SpecType
= dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) {
if (ClassTemplateDecl *ClassTemplate
= dyn_cast_or_null<ClassTemplateDecl>(
SpecType->getTemplateName().getAsTemplateDecl())) {
// If the type of the nested name specifier is the same as the
// injected class name of the named class template, we're entering
// into that class template definition.
QualType Injected = ClassTemplate->getInjectedClassNameType(Context);
if (Context.hasSameType(Injected, QualType(SpecType, 0)))
return ClassTemplate->getTemplatedDecl();
// FIXME: Class template partial specializations
}
}
}
return 0;
}
switch (NNS->getKind()) {
@ -89,7 +122,10 @@ CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
assert(getLangOptions().CPlusPlus && "Only callable in C++");
assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
QualType T = QualType(NNS->getAsType(), 0);
if (!NNS->getAsType())
return 0;
QualType T = Context.getCanonicalType(QualType(NNS->getAsType(), 0));
// If the nested name specifier does not refer to a type, then it
// does not refer to the current instantiation.
if (T.isNull())
@ -138,7 +174,7 @@ CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
// nested-name-specifier type that is equivalent to the
// injected-class-name of one of the types that is currently in
// our context.
if (Context.getTypeDeclType(Record) == T)
if (Context.getCanonicalType(Context.getTypeDeclType(Record)) == T)
return Record;
if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate()) {
@ -286,7 +322,7 @@ Sema::CXXScopeTy *Sema::ActOnCXXNestedNameSpecifier(Scope *S,
/// The 'SS' should be a non-empty valid CXXScopeSpec.
void Sema::ActOnCXXEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
if (DeclContext *DC = computeDeclContext(SS))
if (DeclContext *DC = computeDeclContext(SS, true))
EnterDeclaratorContext(S, DC);
else
const_cast<CXXScopeSpec&>(SS).setScopeRep(0);
@ -299,7 +335,7 @@ void Sema::ActOnCXXEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
/// defining scope.
void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
assert((SS.isInvalid() || S->getEntity() == computeDeclContext(SS)) &&
assert((SS.isInvalid() || S->getEntity() == computeDeclContext(SS, true)) &&
"Context imbalance!");
if (!SS.isInvalid())
ExitDeclaratorContext(S);

View File

@ -707,8 +707,7 @@ bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
if (OldMethod && NewMethod &&
OldMethod->getLexicalDeclContext() ==
NewMethod->getLexicalDeclContext()) {
NewMethod->getLexicalDeclContext()->isRecord()) {
// -- Member function declarations with the same name and the
// same parameter types cannot be overloaded if any of them
// is a static member function declaration.
@ -1445,7 +1444,7 @@ Sema::HandleDeclarator(Scope *S, Declarator &D,
NameKind == LookupRedeclarationWithLinkage,
D.getIdentifierLoc());
} else { // Something like "int foo::x;"
DC = computeDeclContext(D.getCXXScopeSpec());
DC = computeDeclContext(D.getCXXScopeSpec(), true);
// FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
@ -2191,14 +2190,15 @@ Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
// from the semantic context.
NewFD->setLexicalDeclContext(CurContext);
// If there is a template parameter list, then we are dealing with a
// template declaration or specialization.
// Match up the template parameter lists with the scope specifier, then
// determine whether we have a template or a template specialization.
FunctionTemplateDecl *FunctionTemplate = 0;
if (TemplateParamLists.size()) {
// FIXME: member templates!
TemplateParameterList *TemplateParams
= static_cast<TemplateParameterList *>(*TemplateParamLists.release());
if (TemplateParameterList *TemplateParams
= MatchTemplateParametersToScopeSpecifier(
D.getDeclSpec().getSourceRange().getBegin(),
D.getCXXScopeSpec(),
(TemplateParameterList**)TemplateParamLists.release(),
TemplateParamLists.size())) {
if (TemplateParams->size() > 0) {
// This is a function template
FunctionTemplate = FunctionTemplateDecl::Create(Context, CurContext,
@ -2210,6 +2210,7 @@ Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
// FIXME: Handle function template specializations
}
}
// C++ [dcl.fct.spec]p5:
// The virtual specifier shall only be used in declarations of
@ -3517,7 +3518,7 @@ Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
if (RequireCompleteDeclContext(SS))
return DeclPtrTy::make((Decl *)0);
DC = computeDeclContext(SS);
DC = computeDeclContext(SS, true);
SearchDC = DC;
// Look-up name inside 'foo::'.
PrevDecl

View File

@ -739,6 +739,123 @@ bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
return Invalid;
}
/// \brief Match the given template parameter lists to the given scope
/// specifier, returning the template parameter list that applies to the
/// name.
///
/// \param DeclStartLoc the start of the declaration that has a scope
/// specifier or a template parameter list.
///
/// \param SS the scope specifier that will be matched to the given template
/// parameter lists. This scope specifier precedes a qualified name that is
/// being declared.
///
/// \param ParamLists the template parameter lists, from the outermost to the
/// innermost template parameter lists.
///
/// \param NumParamLists the number of template parameter lists in ParamLists.
///
/// \returns the template parameter list, if any, that corresponds to the
/// name that is preceded by the scope specifier @p SS. This template
/// parameter list may be have template parameters (if we're declaring a
/// template) or may have no template parameters (if we're declaring a
/// template specialization), or may be NULL (if we were's declaring isn't
/// itself a template).
TemplateParameterList *
Sema::MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,
const CXXScopeSpec &SS,
TemplateParameterList **ParamLists,
unsigned NumParamLists) {
// FIXME: This routine will need a lot more testing once we have support for
// member templates.
// Find the template-ids that occur within the nested-name-specifier. These
// template-ids will match up with the template parameter lists.
llvm::SmallVector<const TemplateSpecializationType *, 4>
TemplateIdsInSpecifier;
for (NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
NNS; NNS = NNS->getPrefix()) {
if (const TemplateSpecializationType *SpecType
= dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) {
TemplateDecl *Template = SpecType->getTemplateName().getAsTemplateDecl();
if (!Template)
continue; // FIXME: should this be an error? probably...
if (const RecordType *Record = SpecType->getAsRecordType()) {
ClassTemplateSpecializationDecl *SpecDecl
= cast<ClassTemplateSpecializationDecl>(Record->getDecl());
// If the nested name specifier refers to an explicit specialization,
// we don't need a template<> header.
if (SpecDecl->getSpecializationKind() == TSK_ExplicitSpecialization)
continue;
}
TemplateIdsInSpecifier.push_back(SpecType);
}
}
// Reverse the list of template-ids in the scope specifier, so that we can
// more easily match up the template-ids and the template parameter lists.
std::reverse(TemplateIdsInSpecifier.begin(), TemplateIdsInSpecifier.end());
SourceLocation FirstTemplateLoc = DeclStartLoc;
if (NumParamLists)
FirstTemplateLoc = ParamLists[0]->getTemplateLoc();
// Match the template-ids found in the specifier to the template parameter
// lists.
unsigned Idx = 0;
for (unsigned NumTemplateIds = TemplateIdsInSpecifier.size();
Idx != NumTemplateIds; ++Idx) {
bool DependentTemplateId = TemplateIdsInSpecifier[Idx]->isDependentType();
if (Idx >= NumParamLists) {
// We have a template-id without a corresponding template parameter
// list.
if (DependentTemplateId) {
// FIXME: the location information here isn't great.
Diag(SS.getRange().getBegin(),
diag::err_template_spec_needs_template_parameters)
<< QualType(TemplateIdsInSpecifier[Idx], 0)
<< SS.getRange();
} else {
Diag(SS.getRange().getBegin(), diag::err_template_spec_needs_header)
<< SS.getRange()
<< CodeModificationHint::CreateInsertion(FirstTemplateLoc,
"template<> ");
}
return 0;
}
// Check the template parameter list against its corresponding template-id.
TemplateDecl *Template
= TemplateIdsInSpecifier[Idx]->getTemplateName().getAsTemplateDecl();
TemplateParameterListsAreEqual(ParamLists[Idx],
Template->getTemplateParameters(),
true);
}
// If there were at least as many template-ids as there were template
// parameter lists, then there are no template parameter lists remaining for
// the declaration itself.
if (Idx >= NumParamLists)
return 0;
// If there were too many template parameter lists, complain about that now.
if (Idx != NumParamLists - 1) {
while (Idx < NumParamLists - 1) {
Diag(ParamLists[Idx]->getTemplateLoc(),
diag::err_template_spec_extra_headers)
<< SourceRange(ParamLists[Idx]->getTemplateLoc(),
ParamLists[Idx]->getRAngleLoc());
++Idx;
}
}
// Return the last template parameter list, which corresponds to the
// entity being declared.
return ParamLists[NumParamLists - 1];
}
/// \brief Translates template arguments as provided by the parser
/// into template arguments used by semantic analysis.
static void
@ -2572,12 +2689,12 @@ Sema::ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
DeclPtrTy DP = HandleDeclarator(ParentScope, D,
move(TemplateParameterLists),
/*IsFunctionDefinition=*/true);
FunctionTemplateDecl *FunctionTemplate
= cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>());
if (FunctionTemplate)
if (FunctionTemplateDecl *FunctionTemplate
= dyn_cast_or_null<FunctionTemplateDecl>(DP.getAs<Decl>()))
return ActOnStartOfFunctionDef(FnBodyScope,
DeclPtrTy::make(FunctionTemplate->getTemplatedDecl()));
if (FunctionDecl *Function = dyn_cast_or_null<FunctionDecl>(DP.getAs<Decl>()))
return ActOnStartOfFunctionDef(FnBodyScope, DeclPtrTy::make(Function));
return DeclPtrTy();
}

View File

@ -1151,7 +1151,8 @@ QualType Sema::GetTypeForDeclarator(Declarator &D, Scope *S, unsigned Skip,
D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
((D.getContext() != Declarator::MemberContext &&
(!D.getCXXScopeSpec().isSet() ||
!computeDeclContext(D.getCXXScopeSpec())->isRecord())) ||
!computeDeclContext(D.getCXXScopeSpec(), /*FIXME:*/true)
->isRecord())) ||
D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
if (D.isFunctionDeclarator())
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type);

View File

@ -0,0 +1,12 @@
// RUN: clang-cc -fsyntax-only -verify %s
// XFAIL
template<typename T>
struct X0 {
typedef int size_type;
size_type f0() const;
};
template<typename T>
typename X0<T>::size_type X0<T>::f0() const { }

View File

@ -0,0 +1,45 @@
// RUN: clang-cc -fsyntax-only -verify %s
template<typename T, typename U> // expected-note{{previous template}}
class X0 {
public:
typedef int size_type;
void f0(const T&, const U&);
T& operator[](int i) const;
void f1(size_type) const;
void f2(size_type) const;
void f3(size_type) const;
T value;
};
template<typename T, typename U>
void X0<T, U>::f0(const T&, const U&) { // expected-note{{previous definition}}
}
template<class X, class Y>
X& X0<X, Y>::operator[](int i) const {
(void)i;
return value;
}
template<class X, class Y>
void X0<X, Y>::f1(int) const { }
template<class X, class Y>
void X0<X, Y>::f2(size_type) const { }
template<class X, class Y, class Z> // expected-error{{too many template parameters}}
void X0<X, Y>::f3(size_type) const {
}
// FIXME: error message should probably say, "redefinition of 'X0<T, U>::f0'"
// rather than just "redefinition of 'f0'"
template<typename T, typename U>
void X0<T, U>::f0(const T&, const U&) { // expected-error{{redefinition}}
}
// FIXME: test out-of-line constructors, destructors