Recommit this, looks like it wasn't the cause.

llvm-svn: 95165
This commit is contained in:
Eric Christopher 2010-02-03 00:21:58 +00:00
parent 08d614d92e
commit d86233c118
4 changed files with 141 additions and 69 deletions

View File

@ -102,7 +102,7 @@ unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
if (PrefAlign > Align)
Align = EnforceKnownAlignment(V, Align, PrefAlign);
// We don't need to make any adjustment.
return Align;
}
@ -114,30 +114,30 @@ Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
unsigned CopyAlign = MI->getAlignment();
if (CopyAlign < MinAlign) {
MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
MinAlign, false));
return MI;
}
// If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
// load/store.
ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
if (MemOpLength == 0) return 0;
// Source and destination pointer types are always "i8*" for intrinsic. See
// if the size is something we can handle with a single primitive load/store.
// A single load+store correctly handles overlapping memory in the memmove
// case.
unsigned Size = MemOpLength->getZExtValue();
if (Size == 0) return MI; // Delete this mem transfer.
if (Size > 8 || (Size&(Size-1)))
return 0; // If not 1/2/4/8 bytes, exit.
// Use an integer load+store unless we can find something better.
Type *NewPtrTy =
PointerType::getUnqual(IntegerType::get(MI->getContext(), Size<<3));
// Memcpy forces the use of i8* for the source and destination. That means
// that if you're using memcpy to move one double around, you'll get a cast
// from double* to i8*. We'd much rather use a double load+store rather than
@ -165,18 +165,18 @@ Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
} else
break;
}
if (SrcETy->isSingleValueType())
NewPtrTy = PointerType::getUnqual(SrcETy);
}
}
// If the memcpy/memmove provides better alignment info than we can
// infer, use it.
SrcAlign = std::max(SrcAlign, CopyAlign);
DstAlign = std::max(DstAlign, CopyAlign);
Value *Src = Builder->CreateBitCast(MI->getOperand(2), NewPtrTy);
Value *Dest = Builder->CreateBitCast(MI->getOperand(1), NewPtrTy);
Instruction *L = new LoadInst(Src, "tmp", false, SrcAlign);
@ -195,7 +195,7 @@ Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
Alignment, false));
return MI;
}
// Extract the length and alignment and fill if they are constant.
ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
@ -203,25 +203,25 @@ Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
return 0;
uint64_t Len = LenC->getZExtValue();
Alignment = MI->getAlignment();
// If the length is zero, this is a no-op
if (Len == 0) return MI; // memset(d,c,0,a) -> noop
// memset(s,c,n) -> store s, c (for n=1,2,4,8)
if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
const Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
Value *Dest = MI->getDest();
Dest = Builder->CreateBitCast(Dest, PointerType::getUnqual(ITy));
// Alignment 0 is identity for alignment 1 for memset, but not store.
if (Alignment == 0) Alignment = 1;
// Extract the fill value and store.
uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill),
Dest, false, Alignment), *MI);
// Set the size of the copy to 0, it will be deleted on the next iteration.
MI->setLength(Constant::getNullValue(LenC->getType()));
return MI;
@ -231,7 +231,7 @@ Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
}
/// visitCallInst - CallInst simplification. This mostly only handles folding
/// visitCallInst - CallInst simplification. This mostly only handles folding
/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
/// the heavy lifting.
///
@ -246,10 +246,10 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
CI.setDoesNotThrow();
return &CI;
}
IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
if (!II) return visitCallSite(&CI);
// Intrinsics cannot occur in an invoke, so handle them here instead of in
// visitCallSite.
if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
@ -277,7 +277,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
Intrinsic::ID MemCpyID = Intrinsic::memcpy;
const Type *Tys[1];
Tys[0] = CI.getOperand(3)->getType();
CI.setOperand(0,
CI.setOperand(0,
Intrinsic::getDeclaration(M, MemCpyID, Tys, 1));
Changed = true;
}
@ -298,10 +298,10 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
if (Instruction *I = SimplifyMemSet(MSI))
return I;
}
if (Changed) return II;
}
switch (II->getIntrinsicID()) {
default: break;
case Intrinsic::bswap:
@ -309,7 +309,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
if (Operand->getIntrinsicID() == Intrinsic::bswap)
return ReplaceInstUsesWith(CI, Operand->getOperand(1));
// bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
if (TruncInst *TI = dyn_cast<TruncInst>(II->getOperand(1))) {
if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
@ -321,7 +321,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
return new TruncInst(V, TI->getType());
}
}
break;
case Intrinsic::powi:
if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getOperand(2))) {
@ -351,7 +351,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
if ((Mask & KnownZero) == Mask)
return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
APInt(BitWidth, TrailingZeros)));
}
break;
case Intrinsic::ctlz: {
@ -368,7 +368,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
if ((Mask & KnownZero) == Mask)
return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
APInt(BitWidth, LeadingZeros)));
}
break;
case Intrinsic::uadd_with_overflow: {
@ -399,7 +399,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
return InsertValueInst::Create(Struct, Add, 0);
}
if (LHSKnownPositive && RHSKnownPositive) {
// The sign bit is clear in both cases: this CANNOT overflow.
// Create a simple add instruction, and insert it into the struct.
@ -428,7 +428,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
// X + undef -> undef
if (isa<UndefValue>(II->getOperand(2)))
return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
// X + 0 -> {X, false}
if (RHS->isZero()) {
@ -448,7 +448,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
if (isa<UndefValue>(II->getOperand(1)) ||
isa<UndefValue>(II->getOperand(2)))
return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
// X - 0 -> {X, false}
if (RHS->isZero()) {
@ -475,12 +475,12 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
// X * undef -> undef
if (isa<UndefValue>(II->getOperand(2)))
return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getOperand(2))) {
// X*0 -> {0, false}
if (RHSI->isZero())
return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
// X * 1 -> {X, false}
if (RHSI->equalsInt(1)) {
Constant *V[] = {
@ -509,7 +509,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
case Intrinsic::ppc_altivec_stvxl:
// Turn stvx -> store if the pointer is known aligned.
if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
const Type *OpPtrTy =
const Type *OpPtrTy =
PointerType::getUnqual(II->getOperand(1)->getType());
Value *Ptr = Builder->CreateBitCast(II->getOperand(2), OpPtrTy);
return new StoreInst(II->getOperand(1), Ptr);
@ -520,13 +520,13 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
case Intrinsic::x86_sse2_storeu_dq:
// Turn X86 storeu -> store if the pointer is known aligned.
if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
const Type *OpPtrTy =
const Type *OpPtrTy =
PointerType::getUnqual(II->getOperand(2)->getType());
Value *Ptr = Builder->CreateBitCast(II->getOperand(1), OpPtrTy);
return new StoreInst(II->getOperand(2), Ptr);
}
break;
case Intrinsic::x86_sse_cvttss2si: {
// These intrinsics only demands the 0th element of its input vector. If
// we can simplify the input based on that, do so now.
@ -541,45 +541,45 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
}
break;
}
case Intrinsic::ppc_altivec_vperm:
// Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
// Check that all of the elements are integer constants or undefs.
bool AllEltsOk = true;
for (unsigned i = 0; i != 16; ++i) {
if (!isa<ConstantInt>(Mask->getOperand(i)) &&
if (!isa<ConstantInt>(Mask->getOperand(i)) &&
!isa<UndefValue>(Mask->getOperand(i))) {
AllEltsOk = false;
break;
}
}
if (AllEltsOk) {
// Cast the input vectors to byte vectors.
Value *Op0 = Builder->CreateBitCast(II->getOperand(1), Mask->getType());
Value *Op1 = Builder->CreateBitCast(II->getOperand(2), Mask->getType());
Value *Result = UndefValue::get(Op0->getType());
// Only extract each element once.
Value *ExtractedElts[32];
memset(ExtractedElts, 0, sizeof(ExtractedElts));
for (unsigned i = 0; i != 16; ++i) {
if (isa<UndefValue>(Mask->getOperand(i)))
continue;
unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
Idx &= 31; // Match the hardware behavior.
if (ExtractedElts[Idx] == 0) {
ExtractedElts[Idx] =
Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
ExtractedElts[Idx] =
Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1,
ConstantInt::get(Type::getInt32Ty(II->getContext()),
Idx&15, false), "tmp");
}
// Insert this value into the result vector.
Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
ConstantInt::get(Type::getInt32Ty(II->getContext()),
@ -600,7 +600,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
return EraseInstFromFunction(CI);
}
}
// Scan down this block to see if there is another stack restore in the
// same block without an intervening call/alloca.
BasicBlock::iterator BI = II;
@ -625,7 +625,7 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
}
}
}
// If the stack restore is in a return/unwind block and if there are no
// allocas or calls between the restore and the return, nuke the restore.
if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
@ -633,16 +633,40 @@ Instruction *InstCombiner::visitCallInst(CallInst &CI) {
break;
}
case Intrinsic::objectsize: {
ConstantInt *Const = cast<ConstantInt>(II->getOperand(2));
const Type *Ty = CI.getType();
const Type *ReturnTy = CI.getType();
Value *Op1 = II->getOperand(1);
// 0 is maximum number of bytes left, 1 is minimum number of bytes left.
// TODO: actually add these values, the current return values are "don't
// know".
if (Const->getZExtValue() == 0)
return ReplaceInstUsesWith(CI, Constant::getAllOnesValue(Ty));
else
return ReplaceInstUsesWith(CI, ConstantInt::get(Ty, 0));
// If we're a constant expr then we just return the number of bytes
// left in whatever we're indexing. Since it's constant there's no
// need for maximum or minimum bytes.
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op1)) {
// If this isn't a GEP give up.
if (CE->getOpcode() != Instruction::GetElementPtr) return 0;
const PointerType *ObjTy =
reinterpret_cast<const PointerType*>(CE->getOperand(0)->getType());
if (const ArrayType *AT = dyn_cast<ArrayType>(ObjTy->getElementType())) {
// Deal with multi-dimensional arrays
const ArrayType *SAT = AT;
while ((AT = dyn_cast<ArrayType>(AT->getElementType())))
SAT = AT;
size_t numElems = SAT->getNumElements();
// We return the remaining bytes, so grab the size of an element
// in bytes.
size_t sizeofElem = SAT->getElementType()->getPrimitiveSizeInBits() / 8;
ConstantInt *Const =
cast<ConstantInt>(CE->getOperand(CE->getNumOperands() - 1));
size_t indx = Const->getZExtValue();
return ReplaceInstUsesWith(CI,
ConstantInt::get(ReturnTy,
((numElems - indx) * sizeofElem)));
}
}
// TODO: Add more types here.
}
}
@ -655,7 +679,7 @@ Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
return visitCallSite(&II);
}
/// isSafeToEliminateVarargsCast - If this cast does not affect the value
/// isSafeToEliminateVarargsCast - If this cast does not affect the value
/// passed through the varargs area, we can eliminate the use of the cast.
static bool isSafeToEliminateVarargsCast(const CallSite CS,
const CastInst * const CI,
@ -670,7 +694,7 @@ static bool isSafeToEliminateVarargsCast(const CallSite CS,
if (!CS.paramHasAttr(ix, Attribute::ByVal))
return true;
const Type* SrcTy =
const Type* SrcTy =
cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
if (!SrcTy->isSized() || !DstTy->isSized())
@ -701,7 +725,7 @@ Instruction *InstCombiner::visitCallSite(CallSite CS) {
!CalleeF->isDeclaration()) {
Instruction *OldCall = CS.getInstruction();
new StoreInst(ConstantInt::getTrue(Callee->getContext()),
UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
OldCall);
// If OldCall dues not return void then replaceAllUsesWith undef.
// This allows ValueHandlers and custom metadata to adjust itself.
@ -709,7 +733,7 @@ Instruction *InstCombiner::visitCallSite(CallSite CS) {
OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
if (isa<CallInst>(OldCall))
return EraseInstFromFunction(*OldCall);
// We cannot remove an invoke, because it would change the CFG, just
// change the callee to a null pointer.
cast<InvokeInst>(OldCall)->setOperand(0,
@ -775,7 +799,7 @@ Instruction *InstCombiner::visitCallSite(CallSite CS) {
bool InstCombiner::transformConstExprCastCall(CallSite CS) {
if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
if (CE->getOpcode() != Instruction::BitCast ||
if (CE->getOpcode() != Instruction::BitCast ||
!isa<Function>(CE->getOperand(0)))
return false;
Function *Callee = cast<Function>(CE->getOperand(0));
@ -840,7 +864,7 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
if (!CastInst::isCastable(ActTy, ParamTy))
return false; // Cannot transform this parameter value.
if (CallerPAL.getParamAttributes(i + 1)
if (CallerPAL.getParamAttributes(i + 1)
& Attribute::typeIncompatible(ParamTy))
return false; // Attribute not compatible with transformed value.
@ -965,7 +989,7 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
Value *NV = NC;
if (OldRetTy != NV->getType() && !Caller->use_empty()) {
if (!NV->getType()->isVoidTy()) {
Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
OldRetTy, false);
NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
@ -987,7 +1011,7 @@ bool InstCombiner::transformConstExprCastCall(CallSite CS) {
if (!Caller->use_empty())
Caller->replaceAllUsesWith(NV);
EraseInstFromFunction(*Caller);
return true;
}
@ -1105,11 +1129,11 @@ Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
// Replace the trampoline call with a direct call. Let the generic
// code sort out any function type mismatches.
FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
FTy->isVarArg());
Constant *NewCallee =
NestF->getType() == PointerType::getUnqual(NewFTy) ?
NestF : ConstantExpr::getBitCast(NestF,
NestF : ConstantExpr::getBitCast(NestF,
PointerType::getUnqual(NewFTy));
const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
NewAttrs.end());
@ -1143,8 +1167,9 @@ Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
// parameter, there is no need to adjust the argument list. Let the generic
// code sort out any function type mismatches.
Constant *NewCallee =
NestF->getType() == PTy ? NestF :
NestF->getType() == PTy ? NestF :
ConstantExpr::getBitCast(NestF, PTy);
CS.setCalledFunction(NewCallee);
return CS.getInstruction();
}

View File

@ -1213,8 +1213,13 @@ struct StrCpyChkOpt : public LibCallOptimization {
if (!SizeCI)
return 0;
// We don't have any length information, just lower to a plain strcpy.
if (SizeCI->isAllOnesValue())
// If a) we don't have any length information, or b) we know this will
// fit then just lower to a plain strcpy. Otherwise we'll keep our
// strcpy_chk call which may fail at runtime if the size is too long.
// TODO: It might be nice to get a maximum length out of the possible
// string lengths for varying.
if (SizeCI->isAllOnesValue() ||
SizeCI->getZExtValue() >= GetStringLength(CI->getOperand(2)))
return EmitStrCpy(CI->getOperand(1), CI->getOperand(2), B);
return 0;

View File

@ -0,0 +1,30 @@
; RUN: opt < %s -instcombine -S | FileCheck %s
@a = common global [60 x i8] zeroinitializer, align 1 ; <[60 x i8]*>
@.str = private constant [8 x i8] c"abcdefg\00" ; <[8 x i8]*>
define i32 @foo() nounwind {
; CHECK: @foo
; CHECK-NEXT: ret i32 60
%1 = call i32 @llvm.objectsize.i32(i8* getelementptr inbounds ([60 x i8]* @a, i32 0, i32 0), i1 false)
ret i32 %1
}
define i8* @bar() nounwind {
; CHECK: @bar
entry:
%retval = alloca i8*
%0 = call i32 @llvm.objectsize.i32(i8* getelementptr inbounds ([60 x i8]* @a, i32 0, i32 0), i1 false)
%cmp = icmp ne i32 %0, -1
; CHECK: br i1 true
br i1 %cmp, label %cond.true, label %cond.false
cond.true:
%1 = load i8** %retval;
ret i8* %1;
cond.false:
%2 = load i8** %retval;
ret i8* %2;
}
declare i32 @llvm.objectsize.i32(i8*, i1) nounwind readonly

View File

@ -0,0 +1,12 @@
; RUN: opt < %s -simplify-libcalls -S | FileCheck %s
@a = common global [60 x i8] zeroinitializer, align 1 ; <[60 x i8]*> [#uses=1]
@.str = private constant [8 x i8] c"abcdefg\00" ; <[8 x i8]*> [#uses=1]
define i8* @foo() nounwind {
; CHECK: @foo
; CHECK-NEXT: call i8* @strcpy
%call = call i8* @__strcpy_chk(i8* getelementptr inbounds ([60 x i8]* @a, i32 0, i32 0), i8* getelementptr inbounds ([8 x i8]* @.str, i32 0, i32 0), i32 60) ; <i8*> [#uses=1]
ret i8* %call
}
declare i8* @__strcpy_chk(i8*, i8*, i32) nounwind