[DFSan] Optimize code for writing to shadow. Move SetShadow to namespace.

Writing zeros to shadow (including checking for existing zero) is now ~2x
faster on one example.

Reviewed By: morehouse

Differential Revision: https://reviews.llvm.org/D110733
This commit is contained in:
Andrew Browne 2021-09-29 10:07:17 -07:00
parent 0337e228c1
commit d81723c99b
1 changed files with 38 additions and 54 deletions

View File

@ -369,37 +369,6 @@ static void SetOrigin(const void *dst, uptr size, u32 origin) {
*(u32 *)(end - kOriginAlign) = origin; *(u32 *)(end - kOriginAlign) = origin;
} }
static void WriteShadowInRange(dfsan_label label, uptr beg_shadow_addr,
uptr end_shadow_addr) {
// TODO: After changing dfsan_label to 8bit, use internal_memset when label
// is not 0.
dfsan_label *labelp = (dfsan_label *)beg_shadow_addr;
if (label) {
for (; (uptr)labelp < end_shadow_addr; ++labelp) *labelp = label;
return;
}
for (; (uptr)labelp < end_shadow_addr; ++labelp) {
// Don't write the label if it is already the value we need it to be.
// In a program where most addresses are not labeled, it is common that
// a page of shadow memory is entirely zeroed. The Linux copy-on-write
// implementation will share all of the zeroed pages, making a copy of a
// page when any value is written. The un-sharing will happen even if
// the value written does not change the value in memory. Avoiding the
// write when both |label| and |*labelp| are zero dramatically reduces
// the amount of real memory used by large programs.
if (!*labelp)
continue;
*labelp = 0;
}
}
static void WriteShadowWithSize(dfsan_label label, uptr shadow_addr,
uptr size) {
WriteShadowInRange(label, shadow_addr, shadow_addr + size * sizeof(label));
}
#define RET_CHAIN_ORIGIN(id) \ #define RET_CHAIN_ORIGIN(id) \
GET_CALLER_PC_BP_SP; \ GET_CALLER_PC_BP_SP; \
(void)sp; \ (void)sp; \
@ -451,21 +420,6 @@ void dfsan_copy_memory(void *dst, const void *src, uptr size) {
dfsan_mem_origin_transfer(dst, src, size); dfsan_mem_origin_transfer(dst, src, size);
} }
} // namespace __dfsan
// If the label s is tainted, set the size bytes from the address p to be a new
// origin chain with the previous ID o and the current stack trace. This is
// used by instrumentation to reduce code size when too much code is inserted.
extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __dfsan_maybe_store_origin(
dfsan_label s, void *p, uptr size, dfsan_origin o) {
if (UNLIKELY(s)) {
GET_CALLER_PC_BP_SP;
(void)sp;
GET_STORE_STACK_TRACE_PC_BP(pc, bp);
SetOrigin(p, size, ChainOrigin(o, &stack));
}
}
// Releases the pages within the origin address range. // Releases the pages within the origin address range.
static void ReleaseOrigins(void *addr, uptr size) { static void ReleaseOrigins(void *addr, uptr size) {
const uptr beg_origin_addr = (uptr)__dfsan::origin_for(addr); const uptr beg_origin_addr = (uptr)__dfsan::origin_for(addr);
@ -484,6 +438,19 @@ static void ReleaseOrigins(void *addr, uptr size) {
Die(); Die();
} }
static void WriteZeroShadowInRange(uptr beg, uptr end) {
// Don't write the label if it is already the value we need it to be.
// In a program where most addresses are not labeled, it is common that
// a page of shadow memory is entirely zeroed. The Linux copy-on-write
// implementation will share all of the zeroed pages, making a copy of a
// page when any value is written. The un-sharing will happen even if
// the value written does not change the value in memory. Avoiding the
// write when both |label| and |*labelp| are zero dramatically reduces
// the amount of real memory used by large programs.
if (!mem_is_zero((const char *)beg, end - beg))
internal_memset((void *)beg, 0, end - beg);
}
// Releases the pages within the shadow address range, and sets // Releases the pages within the shadow address range, and sets
// the shadow addresses not on the pages to be 0. // the shadow addresses not on the pages to be 0.
static void ReleaseOrClearShadows(void *addr, uptr size) { static void ReleaseOrClearShadows(void *addr, uptr size) {
@ -492,20 +459,22 @@ static void ReleaseOrClearShadows(void *addr, uptr size) {
const uptr end_shadow_addr = (uptr)__dfsan::shadow_for(end_addr); const uptr end_shadow_addr = (uptr)__dfsan::shadow_for(end_addr);
if (end_shadow_addr - beg_shadow_addr < if (end_shadow_addr - beg_shadow_addr <
common_flags()->clear_shadow_mmap_threshold) common_flags()->clear_shadow_mmap_threshold) {
return WriteShadowWithSize(0, beg_shadow_addr, size); WriteZeroShadowInRange(beg_shadow_addr, end_shadow_addr);
return;
}
const uptr page_size = GetPageSizeCached(); const uptr page_size = GetPageSizeCached();
const uptr beg_aligned = RoundUpTo(beg_shadow_addr, page_size); const uptr beg_aligned = RoundUpTo(beg_shadow_addr, page_size);
const uptr end_aligned = RoundDownTo(end_shadow_addr, page_size); const uptr end_aligned = RoundDownTo(end_shadow_addr, page_size);
if (beg_aligned >= end_aligned) { if (beg_aligned >= end_aligned) {
WriteShadowWithSize(0, beg_shadow_addr, size); WriteZeroShadowInRange(beg_shadow_addr, end_shadow_addr);
} else { } else {
if (beg_aligned != beg_shadow_addr) if (beg_aligned != beg_shadow_addr)
WriteShadowInRange(0, beg_shadow_addr, beg_aligned); WriteZeroShadowInRange(beg_shadow_addr, beg_aligned);
if (end_aligned != end_shadow_addr) if (end_aligned != end_shadow_addr)
WriteShadowInRange(0, end_aligned, end_shadow_addr); WriteZeroShadowInRange(end_aligned, end_shadow_addr);
if (!MmapFixedSuperNoReserve(beg_aligned, end_aligned - beg_aligned)) if (!MmapFixedSuperNoReserve(beg_aligned, end_aligned - beg_aligned))
Die(); Die();
} }
@ -514,7 +483,7 @@ static void ReleaseOrClearShadows(void *addr, uptr size) {
void SetShadow(dfsan_label label, void *addr, uptr size, dfsan_origin origin) { void SetShadow(dfsan_label label, void *addr, uptr size, dfsan_origin origin) {
if (0 != label) { if (0 != label) {
const uptr beg_shadow_addr = (uptr)__dfsan::shadow_for(addr); const uptr beg_shadow_addr = (uptr)__dfsan::shadow_for(addr);
WriteShadowWithSize(label, beg_shadow_addr, size); internal_memset((void *)beg_shadow_addr, label, size);
if (dfsan_get_track_origins()) if (dfsan_get_track_origins())
SetOrigin(addr, size, origin); SetOrigin(addr, size, origin);
return; return;
@ -526,9 +495,24 @@ void SetShadow(dfsan_label label, void *addr, uptr size, dfsan_origin origin) {
ReleaseOrClearShadows(addr, size); ReleaseOrClearShadows(addr, size);
} }
} // namespace __dfsan
// If the label s is tainted, set the size bytes from the address p to be a new
// origin chain with the previous ID o and the current stack trace. This is
// used by instrumentation to reduce code size when too much code is inserted.
extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __dfsan_maybe_store_origin(
dfsan_label s, void *p, uptr size, dfsan_origin o) {
if (UNLIKELY(s)) {
GET_CALLER_PC_BP_SP;
(void)sp;
GET_STORE_STACK_TRACE_PC_BP(pc, bp);
SetOrigin(p, size, ChainOrigin(o, &stack));
}
}
extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __dfsan_set_label( extern "C" SANITIZER_INTERFACE_ATTRIBUTE void __dfsan_set_label(
dfsan_label label, dfsan_origin origin, void *addr, uptr size) { dfsan_label label, dfsan_origin origin, void *addr, uptr size) {
SetShadow(label, addr, size, origin); __dfsan::SetShadow(label, addr, size, origin);
} }
SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
@ -539,7 +523,7 @@ void dfsan_set_label(dfsan_label label, void *addr, uptr size) {
GET_STORE_STACK_TRACE_PC_BP(pc, bp); GET_STORE_STACK_TRACE_PC_BP(pc, bp);
init_origin = ChainOrigin(0, &stack, true); init_origin = ChainOrigin(0, &stack, true);
} }
SetShadow(label, addr, size, init_origin); __dfsan::SetShadow(label, addr, size, init_origin);
} }
SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE