Reapply bottom-up fast-isel, with several fixes for x86-32:

- Check getBytesToPopOnReturn().
 - Eschew ST0 and ST1 for return values.
 - Fix the PIC base register initialization so that it doesn't ever
   fail to end up the top of the entry block.

llvm-svn: 108039
This commit is contained in:
Dan Gohman 2010-07-10 09:00:22 +00:00
parent be8d9b0bb8
commit d7b5ce3312
26 changed files with 775 additions and 391 deletions

View File

@ -188,8 +188,7 @@ public:
/// CheckReturn - Analyze the return values of a function, returning /// CheckReturn - Analyze the return values of a function, returning
/// true if the return can be performed without sret-demotion, and /// true if the return can be performed without sret-demotion, and
/// false otherwise. /// false otherwise.
bool CheckReturn(const SmallVectorImpl<EVT> &OutTys, bool CheckReturn(const SmallVectorImpl<ISD::OutputArg> &ArgsFlags,
const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
CCAssignFn Fn); CCAssignFn Fn);
/// AnalyzeCallOperands - Analyze the outgoing arguments to a call, /// AnalyzeCallOperands - Analyze the outgoing arguments to a call,

View File

@ -19,6 +19,7 @@
#include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallSet.h"
#endif #endif
#include "llvm/CodeGen/ValueTypes.h" #include "llvm/CodeGen/ValueTypes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
namespace llvm { namespace llvm {
@ -44,7 +45,6 @@ class TargetRegisterInfo;
/// lowering, but runs quickly. /// lowering, but runs quickly.
class FastISel { class FastISel {
protected: protected:
MachineBasicBlock *MBB;
DenseMap<const Value *, unsigned> LocalValueMap; DenseMap<const Value *, unsigned> LocalValueMap;
FunctionLoweringInfo &FuncInfo; FunctionLoweringInfo &FuncInfo;
MachineRegisterInfo &MRI; MachineRegisterInfo &MRI;
@ -56,23 +56,21 @@ protected:
const TargetInstrInfo &TII; const TargetInstrInfo &TII;
const TargetLowering &TLI; const TargetLowering &TLI;
const TargetRegisterInfo &TRI; const TargetRegisterInfo &TRI;
bool IsBottomUp; MachineInstr *LastLocalValue;
public: public:
/// getLastLocalValue - Return the position of the last instruction
/// emitted for materializing constants for use in the current block.
MachineInstr *getLastLocalValue() { return LastLocalValue; }
/// setLastLocalValue - Update the position of the last instruction
/// emitted for materializing constants for use in the current block.
void setLastLocalValue(MachineInstr *I) { LastLocalValue = I; }
/// startNewBlock - Set the current block to which generated machine /// startNewBlock - Set the current block to which generated machine
/// instructions will be appended, and clear the local CSE map. /// instructions will be appended, and clear the local CSE map.
/// ///
void startNewBlock(MachineBasicBlock *mbb) { void startNewBlock();
setCurrentBlock(mbb);
LocalValueMap.clear();
}
/// setCurrentBlock - Set the current block to which generated machine
/// instructions will be appended.
///
void setCurrentBlock(MachineBasicBlock *mbb) {
MBB = mbb;
}
/// getCurDebugLoc() - Return current debug location information. /// getCurDebugLoc() - Return current debug location information.
DebugLoc getCurDebugLoc() const { return DL; } DebugLoc getCurDebugLoc() const { return DL; }
@ -104,6 +102,17 @@ public:
/// index value. /// index value.
std::pair<unsigned, bool> getRegForGEPIndex(const Value *V); std::pair<unsigned, bool> getRegForGEPIndex(const Value *V);
/// recomputeInsertPt - Reset InsertPt to prepare for insterting instructions
/// into the current block.
void recomputeInsertPt();
/// enterLocalValueArea - Prepare InsertPt to begin inserting instructions
/// into the local value area and return the old insert position.
MachineBasicBlock::iterator enterLocalValueArea();
/// leaveLocalValueArea - Reset InsertPt to the given old insert position
void leaveLocalValueArea(MachineBasicBlock::iterator OldInsertPt);
virtual ~FastISel(); virtual ~FastISel();
protected: protected:

View File

@ -25,6 +25,7 @@
#endif #endif
#include "llvm/CodeGen/ValueTypes.h" #include "llvm/CodeGen/ValueTypes.h"
#include "llvm/CodeGen/ISDOpcodes.h" #include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/Support/CallSite.h" #include "llvm/Support/CallSite.h"
#include <vector> #include <vector>
@ -80,6 +81,15 @@ public:
/// function arguments that are inserted after scheduling is completed. /// function arguments that are inserted after scheduling is completed.
SmallVector<MachineInstr*, 8> ArgDbgValues; SmallVector<MachineInstr*, 8> ArgDbgValues;
/// RegFixups - Registers which need to be replaced after isel is done.
DenseMap<unsigned, unsigned> RegFixups;
/// MBB - The current block.
MachineBasicBlock *MBB;
/// MBB - The current insert position inside the current block.
MachineBasicBlock::iterator InsertPt;
#ifndef NDEBUG #ifndef NDEBUG
SmallSet<const Instruction *, 8> CatchInfoLost; SmallSet<const Instruction *, 8> CatchInfoLost;
SmallSet<const Instruction *, 8> CatchInfoFound; SmallSet<const Instruction *, 8> CatchInfoFound;

View File

@ -280,15 +280,14 @@ private:
SDNode *MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTs, SDNode *MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTs,
const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo); const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo);
void PrepareEHLandingPad(MachineBasicBlock *BB); void PrepareEHLandingPad();
void SelectAllBasicBlocks(const Function &Fn); void SelectAllBasicBlocks(const Function &Fn);
void FinishBasicBlock(MachineBasicBlock *BB); void FinishBasicBlock();
MachineBasicBlock *SelectBasicBlock(MachineBasicBlock *BB, void SelectBasicBlock(BasicBlock::const_iterator Begin,
BasicBlock::const_iterator Begin, BasicBlock::const_iterator End,
BasicBlock::const_iterator End, bool &HadTailCall);
bool &HadTailCall); void CodeGenAndEmitDAG();
MachineBasicBlock *CodeGenAndEmitDAG(MachineBasicBlock *BB);
void LowerArguments(const BasicBlock *BB); void LowerArguments(const BasicBlock *BB);
void ComputeLiveOutVRegInfo(); void ComputeLiveOutVRegInfo();

View File

@ -24,6 +24,7 @@
#include "llvm/CallingConv.h" #include "llvm/CallingConv.h"
#include "llvm/InlineAsm.h" #include "llvm/InlineAsm.h"
#include "llvm/Attributes.h"
#include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/RuntimeLibcalls.h" #include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/ADT/APFloat.h" #include "llvm/ADT/APFloat.h"
@ -1159,8 +1160,7 @@ public:
/// registers. If false is returned, an sret-demotion is performed. /// registers. If false is returned, an sret-demotion is performed.
/// ///
virtual bool CanLowerReturn(CallingConv::ID CallConv, bool isVarArg, virtual bool CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<EVT> &OutTys, const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
LLVMContext &Context) const LLVMContext &Context) const
{ {
// Return true by default to get preexisting behavior. // Return true by default to get preexisting behavior.
@ -1656,6 +1656,15 @@ protected:
/// optimization. /// optimization.
bool benefitFromCodePlacementOpt; bool benefitFromCodePlacementOpt;
}; };
/// GetReturnInfo - Given an LLVM IR type and return type attributes,
/// compute the return value EVTs and flags, and optionally also
/// the offsets, if the return value is being lowered to memory.
void GetReturnInfo(const Type* ReturnType, Attributes attr,
SmallVectorImpl<ISD::OutputArg> &Outs,
const TargetLowering &TLI,
SmallVectorImpl<uint64_t> *Offsets = 0);
} // end llvm namespace } // end llvm namespace
#endif #endif

View File

@ -80,13 +80,12 @@ CCState::AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
/// CheckReturn - Analyze the return values of a function, returning true if /// CheckReturn - Analyze the return values of a function, returning true if
/// the return can be performed without sret-demotion, and false otherwise. /// the return can be performed without sret-demotion, and false otherwise.
bool CCState::CheckReturn(const SmallVectorImpl<EVT> &OutTys, bool CCState::CheckReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
CCAssignFn Fn) { CCAssignFn Fn) {
// Determine which register each value should be copied into. // Determine which register each value should be copied into.
for (unsigned i = 0, e = OutTys.size(); i != e; ++i) { for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
EVT VT = OutTys[i]; EVT VT = Outs[i].VT;
ISD::ArgFlagsTy ArgFlags = ArgsFlags[i]; ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this)) if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this))
return false; return false;
} }

View File

@ -329,19 +329,15 @@ bool LLVMTargetMachine::addCommonCodeGenPasses(PassManagerBase &PM,
if (OptLevel != CodeGenOpt::None) if (OptLevel != CodeGenOpt::None)
PM.add(createOptimizePHIsPass()); PM.add(createOptimizePHIsPass());
// Delete dead machine instructions regardless of optimization level.
//
// At -O0, fast-isel frequently creates dead instructions.
//
// With optimization, dead code should already be eliminated. However
// there is one known exception: lowered code for arguments that are only
// used by tail calls, where the tail calls reuse the incoming stack
// arguments directly (see t11 in test/CodeGen/X86/sibcall.ll).
PM.add(createDeadMachineInstructionElimPass());
printAndVerify(PM, "After codegen DCE pass",
/* allowDoubleDefs= */ true);
if (OptLevel != CodeGenOpt::None) { if (OptLevel != CodeGenOpt::None) {
// With optimization, dead code should already be eliminated. However
// there is one known exception: lowered code for arguments that are only
// used by tail calls, where the tail calls reuse the incoming stack
// arguments directly (see t11 in test/CodeGen/X86/sibcall.ll).
PM.add(createDeadMachineInstructionElimPass());
printAndVerify(PM, "After codegen DCE pass",
/* allowDoubleDefs= */ true);
PM.add(createOptimizeExtsPass()); PM.add(createOptimizeExtsPass());
if (!DisableMachineLICM) if (!DisableMachineLICM)
PM.add(createMachineLICMPass()); PM.add(createMachineLICMPass());

View File

@ -57,6 +57,25 @@
#include "llvm/Support/ErrorHandling.h" #include "llvm/Support/ErrorHandling.h"
using namespace llvm; using namespace llvm;
/// startNewBlock - Set the current block to which generated machine
/// instructions will be appended, and clear the local CSE map.
///
void FastISel::startNewBlock() {
LocalValueMap.clear();
// Start out as null, meaining no local-value instructions have
// been emitted.
LastLocalValue = 0;
// Advance the last local value past any EH_LABEL instructions.
MachineBasicBlock::iterator
I = FuncInfo.MBB->begin(), E = FuncInfo.MBB->end();
while (I != E && I->getOpcode() == TargetOpcode::EH_LABEL) {
LastLocalValue = I;
++I;
}
}
bool FastISel::hasTrivialKill(const Value *V) const { bool FastISel::hasTrivialKill(const Value *V) const {
// Don't consider constants or arguments to have trivial kills. // Don't consider constants or arguments to have trivial kills.
const Instruction *I = dyn_cast<Instruction>(V); const Instruction *I = dyn_cast<Instruction>(V);
@ -101,24 +120,30 @@ unsigned FastISel::getRegForValue(const Value *V) {
// only locally. This is because Instructions already have the SSA // only locally. This is because Instructions already have the SSA
// def-dominates-use requirement enforced. // def-dominates-use requirement enforced.
DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
if (I != FuncInfo.ValueMap.end()) if (I != FuncInfo.ValueMap.end()) {
return I->second; unsigned Reg = I->second;
return Reg;
}
unsigned Reg = LocalValueMap[V]; unsigned Reg = LocalValueMap[V];
if (Reg != 0) if (Reg != 0)
return Reg; return Reg;
// In bottom-up mode, just create the virtual register which will be used // In bottom-up mode, just create the virtual register which will be used
// to hold the value. It will be materialized later. // to hold the value. It will be materialized later.
if (IsBottomUp) { if (isa<Instruction>(V) &&
Reg = createResultReg(TLI.getRegClassFor(VT)); (!isa<AllocaInst>(V) ||
if (isa<Instruction>(V)) !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
FuncInfo.ValueMap[V] = Reg; return FuncInfo.InitializeRegForValue(V);
else
LocalValueMap[V] = Reg;
return Reg;
}
return materializeRegForValue(V, VT); MachineBasicBlock::iterator SaveInsertPt = enterLocalValueArea();
// Materialize the value in a register. Emit any instructions in the
// local value area.
Reg = materializeRegForValue(V, VT);
leaveLocalValueArea(SaveInsertPt);
return Reg;
} }
/// materializeRegForValue - Helper for getRegForVale. This function is /// materializeRegForValue - Helper for getRegForVale. This function is
@ -169,7 +194,8 @@ unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
Reg = lookUpRegForValue(Op); Reg = lookUpRegForValue(Op);
} else if (isa<UndefValue>(V)) { } else if (isa<UndefValue>(V)) {
Reg = createResultReg(TLI.getRegClassFor(VT)); Reg = createResultReg(TLI.getRegClassFor(VT));
BuildMI(MBB, DL, TII.get(TargetOpcode::IMPLICIT_DEF), Reg); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
} }
// If target-independent code couldn't handle the value, give target-specific // If target-independent code couldn't handle the value, give target-specific
@ -179,8 +205,10 @@ unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
// Don't cache constant materializations in the general ValueMap. // Don't cache constant materializations in the general ValueMap.
// To do so would require tracking what uses they dominate. // To do so would require tracking what uses they dominate.
if (Reg != 0) if (Reg != 0) {
LocalValueMap[V] = Reg; LocalValueMap[V] = Reg;
LastLocalValue = MRI.getVRegDef(Reg);
}
return Reg; return Reg;
} }
@ -209,12 +237,15 @@ unsigned FastISel::UpdateValueMap(const Value *I, unsigned Reg) {
unsigned &AssignedReg = FuncInfo.ValueMap[I]; unsigned &AssignedReg = FuncInfo.ValueMap[I];
if (AssignedReg == 0) if (AssignedReg == 0)
// Use the new register.
AssignedReg = Reg; AssignedReg = Reg;
else if (Reg != AssignedReg) { else if (Reg != AssignedReg) {
const TargetRegisterClass *RegClass = MRI.getRegClass(Reg); // Arrange for uses of AssignedReg to be replaced by uses of Reg.
TII.copyRegToReg(*MBB, MBB->end(), AssignedReg, FuncInfo.RegFixups[AssignedReg] = Reg;
Reg, RegClass, RegClass, DL);
AssignedReg = Reg;
} }
return AssignedReg; return AssignedReg;
} }
@ -242,6 +273,33 @@ std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
return std::pair<unsigned, bool>(IdxN, IdxNIsKill); return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
} }
void FastISel::recomputeInsertPt() {
if (getLastLocalValue()) {
FuncInfo.InsertPt = getLastLocalValue();
++FuncInfo.InsertPt;
} else
FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
// Now skip past any EH_LABELs, which must remain at the beginning.
while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
++FuncInfo.InsertPt;
}
MachineBasicBlock::iterator FastISel::enterLocalValueArea() {
MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
recomputeInsertPt();
return OldInsertPt;
}
void FastISel::leaveLocalValueArea(MachineBasicBlock::iterator OldInsertPt) {
if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
LastLocalValue = llvm::prior(FuncInfo.InsertPt);
// Restore the previous insert position.
FuncInfo.InsertPt = OldInsertPt;
}
/// SelectBinaryOp - Select and emit code for a binary operator instruction, /// SelectBinaryOp - Select and emit code for a binary operator instruction,
/// which has an opcode which directly corresponds to the given ISD opcode. /// which has an opcode which directly corresponds to the given ISD opcode.
/// ///
@ -434,23 +492,28 @@ bool FastISel::SelectCall(const User *I) {
if (!V) { if (!V) {
// Currently the optimizer can produce this; insert an undef to // Currently the optimizer can produce this; insert an undef to
// help debugging. Probably the optimizer should not do this. // help debugging. Probably the optimizer should not do this.
BuildMI(MBB, DL, II).addReg(0U).addImm(DI->getOffset()). BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
addMetadata(DI->getVariable()); .addReg(0U).addImm(DI->getOffset())
.addMetadata(DI->getVariable());
} else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
BuildMI(MBB, DL, II).addImm(CI->getZExtValue()).addImm(DI->getOffset()). BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
addMetadata(DI->getVariable()); .addImm(CI->getZExtValue()).addImm(DI->getOffset())
.addMetadata(DI->getVariable());
} else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
BuildMI(MBB, DL, II).addFPImm(CF).addImm(DI->getOffset()). BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
addMetadata(DI->getVariable()); .addFPImm(CF).addImm(DI->getOffset())
.addMetadata(DI->getVariable());
} else if (unsigned Reg = lookUpRegForValue(V)) { } else if (unsigned Reg = lookUpRegForValue(V)) {
BuildMI(MBB, DL, II).addReg(Reg, RegState::Debug).addImm(DI->getOffset()). BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
addMetadata(DI->getVariable()); .addReg(Reg, RegState::Debug).addImm(DI->getOffset())
.addMetadata(DI->getVariable());
} else { } else {
// We can't yet handle anything else here because it would require // We can't yet handle anything else here because it would require
// generating code, thus altering codegen because of debug info. // generating code, thus altering codegen because of debug info.
// Insert an undef so we can see what we dropped. // Insert an undef so we can see what we dropped.
BuildMI(MBB, DL, II).addReg(0U).addImm(DI->getOffset()). BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
addMetadata(DI->getVariable()); .addReg(0U).addImm(DI->getOffset())
.addMetadata(DI->getVariable());
} }
return true; return true;
} }
@ -459,12 +522,13 @@ bool FastISel::SelectCall(const User *I) {
switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) { switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
default: break; default: break;
case TargetLowering::Expand: { case TargetLowering::Expand: {
assert(MBB->isLandingPad() && "Call to eh.exception not in landing pad!"); assert(FuncInfo.MBB->isLandingPad() &&
"Call to eh.exception not in landing pad!");
unsigned Reg = TLI.getExceptionAddressRegister(); unsigned Reg = TLI.getExceptionAddressRegister();
const TargetRegisterClass *RC = TLI.getRegClassFor(VT); const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
unsigned ResultReg = createResultReg(RC); unsigned ResultReg = createResultReg(RC);
bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, bool InsertedCopy = TII.copyRegToReg(*FuncInfo.MBB, FuncInfo.InsertPt,
Reg, RC, RC, DL); ResultReg, Reg, RC, RC, DL);
assert(InsertedCopy && "Can't copy address registers!"); assert(InsertedCopy && "Can't copy address registers!");
InsertedCopy = InsertedCopy; InsertedCopy = InsertedCopy;
UpdateValueMap(I, ResultReg); UpdateValueMap(I, ResultReg);
@ -478,23 +542,23 @@ bool FastISel::SelectCall(const User *I) {
switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) { switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
default: break; default: break;
case TargetLowering::Expand: { case TargetLowering::Expand: {
if (MBB->isLandingPad()) if (FuncInfo.MBB->isLandingPad())
AddCatchInfo(*cast<CallInst>(I), &FuncInfo.MF->getMMI(), MBB); AddCatchInfo(*cast<CallInst>(I), &FuncInfo.MF->getMMI(), FuncInfo.MBB);
else { else {
#ifndef NDEBUG #ifndef NDEBUG
FuncInfo.CatchInfoLost.insert(cast<CallInst>(I)); FuncInfo.CatchInfoLost.insert(cast<CallInst>(I));
#endif #endif
// FIXME: Mark exception selector register as live in. Hack for PR1508. // FIXME: Mark exception selector register as live in. Hack for PR1508.
unsigned Reg = TLI.getExceptionSelectorRegister(); unsigned Reg = TLI.getExceptionSelectorRegister();
if (Reg) MBB->addLiveIn(Reg); if (Reg) FuncInfo.MBB->addLiveIn(Reg);
} }
unsigned Reg = TLI.getExceptionSelectorRegister(); unsigned Reg = TLI.getExceptionSelectorRegister();
EVT SrcVT = TLI.getPointerTy(); EVT SrcVT = TLI.getPointerTy();
const TargetRegisterClass *RC = TLI.getRegClassFor(SrcVT); const TargetRegisterClass *RC = TLI.getRegClassFor(SrcVT);
unsigned ResultReg = createResultReg(RC); unsigned ResultReg = createResultReg(RC);
bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, Reg, bool InsertedCopy = TII.copyRegToReg(*FuncInfo.MBB, FuncInfo.InsertPt,
RC, RC, DL); ResultReg, Reg, RC, RC, DL);
assert(InsertedCopy && "Can't copy address registers!"); assert(InsertedCopy && "Can't copy address registers!");
InsertedCopy = InsertedCopy; InsertedCopy = InsertedCopy;
@ -613,8 +677,9 @@ bool FastISel::SelectBitCast(const User *I) {
TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT); TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
ResultReg = createResultReg(DstClass); ResultReg = createResultReg(DstClass);
bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, bool InsertedCopy = TII.copyRegToReg(*FuncInfo.MBB, FuncInfo.InsertPt,
Op0, DstClass, SrcClass, DL); ResultReg, Op0,
DstClass, SrcClass, DL);
if (!InsertedCopy) if (!InsertedCopy)
ResultReg = 0; ResultReg = 0;
} }
@ -662,13 +727,14 @@ FastISel::SelectInstruction(const Instruction *I) {
/// the CFG. /// the CFG.
void void
FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) { FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) {
if (MBB->isLayoutSuccessor(MSucc)) { if (FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
// The unconditional fall-through case, which needs no instructions. // The unconditional fall-through case, which needs no instructions.
} else { } else {
// The unconditional branch case. // The unconditional branch case.
TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>(), DL); TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL,
SmallVector<MachineOperand, 0>(), DL);
} }
MBB->addSuccessor(MSucc); FuncInfo.MBB->addSuccessor(MSucc);
} }
/// SelectFNeg - Emit an FNeg operation. /// SelectFNeg - Emit an FNeg operation.
@ -727,11 +793,19 @@ FastISel::SelectLoad(const User *I) {
BasicBlock::iterator ScanFrom = LI; BasicBlock::iterator ScanFrom = LI;
if (const Value *V = FindAvailableLoadedValue(LI->getPointerOperand(), if (const Value *V = FindAvailableLoadedValue(LI->getPointerOperand(),
LI->getParent(), ScanFrom)) { LI->getParent(), ScanFrom)) {
if (!V->use_empty() &&
(!isa<Instruction>(V) ||
cast<Instruction>(V)->getParent() == LI->getParent() ||
(isa<AllocaInst>(V) &&
FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) &&
(!isa<Argument>(V) ||
LI->getParent() == &LI->getParent()->getParent()->getEntryBlock())) {
unsigned ResultReg = getRegForValue(V); unsigned ResultReg = getRegForValue(V);
if (ResultReg != 0) { if (ResultReg != 0) {
UpdateValueMap(I, ResultReg); UpdateValueMap(I, ResultReg);
return true; return true;
} }
}
} }
} }
@ -854,8 +928,7 @@ FastISel::SelectOperator(const User *I, unsigned Opcode) {
} }
FastISel::FastISel(FunctionLoweringInfo &funcInfo) FastISel::FastISel(FunctionLoweringInfo &funcInfo)
: MBB(0), : FuncInfo(funcInfo),
FuncInfo(funcInfo),
MRI(FuncInfo.MF->getRegInfo()), MRI(FuncInfo.MF->getRegInfo()),
MFI(*FuncInfo.MF->getFrameInfo()), MFI(*FuncInfo.MF->getFrameInfo()),
MCP(*FuncInfo.MF->getConstantPool()), MCP(*FuncInfo.MF->getConstantPool()),
@ -863,8 +936,7 @@ FastISel::FastISel(FunctionLoweringInfo &funcInfo)
TD(*TM.getTargetData()), TD(*TM.getTargetData()),
TII(*TM.getInstrInfo()), TII(*TM.getInstrInfo()),
TLI(*TM.getTargetLowering()), TLI(*TM.getTargetLowering()),
TRI(*TM.getRegisterInfo()), TRI(*TM.getRegisterInfo()) {
IsBottomUp(false) {
} }
FastISel::~FastISel() {} FastISel::~FastISel() {}
@ -993,7 +1065,7 @@ unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
unsigned ResultReg = createResultReg(RC); unsigned ResultReg = createResultReg(RC);
const TargetInstrDesc &II = TII.get(MachineInstOpcode); const TargetInstrDesc &II = TII.get(MachineInstOpcode);
BuildMI(MBB, DL, II, ResultReg); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg);
return ResultReg; return ResultReg;
} }
@ -1004,11 +1076,14 @@ unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
const TargetInstrDesc &II = TII.get(MachineInstOpcode); const TargetInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1) if (II.getNumDefs() >= 1)
BuildMI(MBB, DL, II, ResultReg).addReg(Op0, Op0IsKill * RegState::Kill); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
.addReg(Op0, Op0IsKill * RegState::Kill);
else { else {
BuildMI(MBB, DL, II).addReg(Op0, Op0IsKill * RegState::Kill); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, .addReg(Op0, Op0IsKill * RegState::Kill);
II.ImplicitDefs[0], RC, RC, DL); bool InsertedCopy = TII.copyRegToReg(*FuncInfo.MBB, FuncInfo.InsertPt,
ResultReg, II.ImplicitDefs[0],
RC, RC, DL);
if (!InsertedCopy) if (!InsertedCopy)
ResultReg = 0; ResultReg = 0;
} }
@ -1024,15 +1099,16 @@ unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
const TargetInstrDesc &II = TII.get(MachineInstOpcode); const TargetInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1) if (II.getNumDefs() >= 1)
BuildMI(MBB, DL, II, ResultReg) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
.addReg(Op0, Op0IsKill * RegState::Kill) .addReg(Op0, Op0IsKill * RegState::Kill)
.addReg(Op1, Op1IsKill * RegState::Kill); .addReg(Op1, Op1IsKill * RegState::Kill);
else { else {
BuildMI(MBB, DL, II) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
.addReg(Op0, Op0IsKill * RegState::Kill) .addReg(Op0, Op0IsKill * RegState::Kill)
.addReg(Op1, Op1IsKill * RegState::Kill); .addReg(Op1, Op1IsKill * RegState::Kill);
bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, bool InsertedCopy = TII.copyRegToReg(*FuncInfo.MBB, FuncInfo.InsertPt,
II.ImplicitDefs[0], RC, RC, DL); ResultReg, II.ImplicitDefs[0],
RC, RC, DL);
if (!InsertedCopy) if (!InsertedCopy)
ResultReg = 0; ResultReg = 0;
} }
@ -1047,15 +1123,16 @@ unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
const TargetInstrDesc &II = TII.get(MachineInstOpcode); const TargetInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1) if (II.getNumDefs() >= 1)
BuildMI(MBB, DL, II, ResultReg) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
.addReg(Op0, Op0IsKill * RegState::Kill) .addReg(Op0, Op0IsKill * RegState::Kill)
.addImm(Imm); .addImm(Imm);
else { else {
BuildMI(MBB, DL, II) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
.addReg(Op0, Op0IsKill * RegState::Kill) .addReg(Op0, Op0IsKill * RegState::Kill)
.addImm(Imm); .addImm(Imm);
bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, bool InsertedCopy = TII.copyRegToReg(*FuncInfo.MBB, FuncInfo.InsertPt,
II.ImplicitDefs[0], RC, RC, DL); ResultReg, II.ImplicitDefs[0],
RC, RC, DL);
if (!InsertedCopy) if (!InsertedCopy)
ResultReg = 0; ResultReg = 0;
} }
@ -1070,15 +1147,16 @@ unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
const TargetInstrDesc &II = TII.get(MachineInstOpcode); const TargetInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1) if (II.getNumDefs() >= 1)
BuildMI(MBB, DL, II, ResultReg) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
.addReg(Op0, Op0IsKill * RegState::Kill) .addReg(Op0, Op0IsKill * RegState::Kill)
.addFPImm(FPImm); .addFPImm(FPImm);
else { else {
BuildMI(MBB, DL, II) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
.addReg(Op0, Op0IsKill * RegState::Kill) .addReg(Op0, Op0IsKill * RegState::Kill)
.addFPImm(FPImm); .addFPImm(FPImm);
bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, bool InsertedCopy = TII.copyRegToReg(*FuncInfo.MBB, FuncInfo.InsertPt,
II.ImplicitDefs[0], RC, RC, DL); ResultReg, II.ImplicitDefs[0],
RC, RC, DL);
if (!InsertedCopy) if (!InsertedCopy)
ResultReg = 0; ResultReg = 0;
} }
@ -1094,17 +1172,18 @@ unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
const TargetInstrDesc &II = TII.get(MachineInstOpcode); const TargetInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1) if (II.getNumDefs() >= 1)
BuildMI(MBB, DL, II, ResultReg) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
.addReg(Op0, Op0IsKill * RegState::Kill) .addReg(Op0, Op0IsKill * RegState::Kill)
.addReg(Op1, Op1IsKill * RegState::Kill) .addReg(Op1, Op1IsKill * RegState::Kill)
.addImm(Imm); .addImm(Imm);
else { else {
BuildMI(MBB, DL, II) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
.addReg(Op0, Op0IsKill * RegState::Kill) .addReg(Op0, Op0IsKill * RegState::Kill)
.addReg(Op1, Op1IsKill * RegState::Kill) .addReg(Op1, Op1IsKill * RegState::Kill)
.addImm(Imm); .addImm(Imm);
bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, bool InsertedCopy = TII.copyRegToReg(*FuncInfo.MBB, FuncInfo.InsertPt,
II.ImplicitDefs[0], RC, RC, DL); ResultReg, II.ImplicitDefs[0],
RC, RC, DL);
if (!InsertedCopy) if (!InsertedCopy)
ResultReg = 0; ResultReg = 0;
} }
@ -1118,11 +1197,12 @@ unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
const TargetInstrDesc &II = TII.get(MachineInstOpcode); const TargetInstrDesc &II = TII.get(MachineInstOpcode);
if (II.getNumDefs() >= 1) if (II.getNumDefs() >= 1)
BuildMI(MBB, DL, II, ResultReg).addImm(Imm); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm);
else { else {
BuildMI(MBB, DL, II).addImm(Imm); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm);
bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, bool InsertedCopy = TII.copyRegToReg(*FuncInfo.MBB, FuncInfo.InsertPt,
II.ImplicitDefs[0], RC, RC, DL); ResultReg, II.ImplicitDefs[0],
RC, RC, DL);
if (!InsertedCopy) if (!InsertedCopy)
ResultReg = 0; ResultReg = 0;
} }
@ -1135,7 +1215,8 @@ unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
assert(TargetRegisterInfo::isVirtualRegister(Op0) && assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
"Cannot yet extract from physregs"); "Cannot yet extract from physregs");
BuildMI(MBB, DL, TII.get(TargetOpcode::COPY), ResultReg) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
DL, TII.get(TargetOpcode::COPY), ResultReg)
.addReg(Op0, getKillRegState(Op0IsKill), Idx); .addReg(Op0, getKillRegState(Op0IsKill), Idx);
return ResultReg; return ResultReg;
} }

View File

@ -82,6 +82,13 @@ void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf) {
MF = &mf; MF = &mf;
RegInfo = &MF->getRegInfo(); RegInfo = &MF->getRegInfo();
// Check whether the function can return without sret-demotion.
SmallVector<ISD::OutputArg, 4> Outs;
GetReturnInfo(Fn->getReturnType(),
Fn->getAttributes().getRetAttributes(), Outs, TLI);
CanLowerReturn = TLI.CanLowerReturn(Fn->getCallingConv(), Fn->isVarArg(),
Outs, Fn->getContext());
// Create a vreg for each argument register that is not dead and is used // Create a vreg for each argument register that is not dead and is used
// outside of the entry block for the function. // outside of the entry block for the function.
for (Function::const_arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end(); for (Function::const_arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end();
@ -174,6 +181,7 @@ void FunctionLoweringInfo::clear() {
#endif #endif
LiveOutRegInfo.clear(); LiveOutRegInfo.clear();
ArgDbgValues.clear(); ArgDbgValues.clear();
RegFixups.clear();
} }
/// CreateReg - Allocate a single virtual register for the given type. /// CreateReg - Allocate a single virtual register for the given type.

View File

@ -734,8 +734,13 @@ EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
if (II.usesCustomInsertionHook()) { if (II.usesCustomInsertionHook()) {
// Insert this instruction into the basic block using a target // Insert this instruction into the basic block using a target
// specific inserter which may returns a new basic block. // specific inserter which may returns a new basic block.
MBB = TLI->EmitInstrWithCustomInserter(MI, MBB); bool AtEnd = InsertPos == MBB->end();
InsertPos = MBB->end(); MachineBasicBlock *NewMBB = TLI->EmitInstrWithCustomInserter(MI, MBB);
if (NewMBB != MBB) {
if (AtEnd)
InsertPos = NewMBB->end();
MBB = NewMBB;
}
return; return;
} }

View File

@ -519,13 +519,13 @@ static void ProcessSourceNode(SDNode *N, SelectionDAG *DAG,
return; return;
MachineBasicBlock *BB = Emitter.getBlock(); MachineBasicBlock *BB = Emitter.getBlock();
if (BB->empty() || BB->back().isPHI()) { if (Emitter.getInsertPos() == BB->begin() || BB->back().isPHI()) {
// Did not insert any instruction. // Did not insert any instruction.
Orders.push_back(std::make_pair(Order, (MachineInstr*)0)); Orders.push_back(std::make_pair(Order, (MachineInstr*)0));
return; return;
} }
Orders.push_back(std::make_pair(Order, &BB->back())); Orders.push_back(std::make_pair(Order, prior(Emitter.getInsertPos())));
if (!N->getHasDebugValue()) if (!N->getHasDebugValue())
return; return;
// Opportunistically insert immediate dbg_value uses, i.e. those with source // Opportunistically insert immediate dbg_value uses, i.e. those with source
@ -564,7 +564,7 @@ MachineBasicBlock *ScheduleDAGSDNodes::EmitSchedule() {
for (; PDI != PDE; ++PDI) { for (; PDI != PDE; ++PDI) {
MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap); MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap);
if (DbgMI) if (DbgMI)
BB->push_back(DbgMI); BB->insert(InsertPos, DbgMI);
} }
} }
@ -608,9 +608,7 @@ MachineBasicBlock *ScheduleDAGSDNodes::EmitSchedule() {
// Insert all the dbg_values which have not already been inserted in source // Insert all the dbg_values which have not already been inserted in source
// order sequence. // order sequence.
if (HasDbg) { if (HasDbg) {
MachineBasicBlock::iterator BBBegin = BB->empty() ? BB->end() : BB->begin(); MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI();
while (BBBegin != BB->end() && BBBegin->isPHI())
++BBBegin;
// Sort the source order instructions and use the order to insert debug // Sort the source order instructions and use the order to insert debug
// values. // values.
@ -626,7 +624,6 @@ MachineBasicBlock *ScheduleDAGSDNodes::EmitSchedule() {
// Insert all SDDbgValue's whose order(s) are before "Order". // Insert all SDDbgValue's whose order(s) are before "Order".
if (!MI) if (!MI)
continue; continue;
MachineBasicBlock *MIBB = MI->getParent();
#ifndef NDEBUG #ifndef NDEBUG
unsigned LastDIOrder = 0; unsigned LastDIOrder = 0;
#endif #endif
@ -646,7 +643,7 @@ MachineBasicBlock *ScheduleDAGSDNodes::EmitSchedule() {
BB->insert(BBBegin, DbgMI); BB->insert(BBBegin, DbgMI);
else { else {
MachineBasicBlock::iterator Pos = MI; MachineBasicBlock::iterator Pos = MI;
MIBB->insert(llvm::next(Pos), DbgMI); BB->insert(llvm::next(Pos), DbgMI);
} }
} }
} }

View File

@ -951,79 +951,16 @@ SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
// If this is an instruction which fast-isel has deferred, select it now. // If this is an instruction which fast-isel has deferred, select it now.
if (const Instruction *Inst = dyn_cast<Instruction>(V)) { if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
assert(Inst->isSafeToSpeculativelyExecute() && unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
"Instruction with side effects deferred!"); RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
visit(*Inst); SDValue Chain = DAG.getEntryNode();
DenseMap<const Value *, SDValue>::iterator NIt = NodeMap.find(Inst); return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
if (NIt != NodeMap.end() && NIt->second.getNode())
return NIt->second;
} }
llvm_unreachable("Can't get register for value!"); llvm_unreachable("Can't get register for value!");
return SDValue(); return SDValue();
} }
/// Get the EVTs and ArgFlags collections that represent the legalized return
/// type of the given function. This does not require a DAG or a return value,
/// and is suitable for use before any DAGs for the function are constructed.
static void getReturnInfo(const Type* ReturnType,
Attributes attr, SmallVectorImpl<EVT> &OutVTs,
SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags,
const TargetLowering &TLI,
SmallVectorImpl<uint64_t> *Offsets = 0) {
SmallVector<EVT, 4> ValueVTs;
ComputeValueVTs(TLI, ReturnType, ValueVTs);
unsigned NumValues = ValueVTs.size();
if (NumValues == 0) return;
unsigned Offset = 0;
for (unsigned j = 0, f = NumValues; j != f; ++j) {
EVT VT = ValueVTs[j];
ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
if (attr & Attribute::SExt)
ExtendKind = ISD::SIGN_EXTEND;
else if (attr & Attribute::ZExt)
ExtendKind = ISD::ZERO_EXTEND;
// FIXME: C calling convention requires the return type to be promoted to
// at least 32-bit. But this is not necessary for non-C calling
// conventions. The frontend should mark functions whose return values
// require promoting with signext or zeroext attributes.
if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
if (VT.bitsLT(MinVT))
VT = MinVT;
}
unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
PartVT.getTypeForEVT(ReturnType->getContext()));
// 'inreg' on function refers to return value
ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
if (attr & Attribute::InReg)
Flags.setInReg();
// Propagate extension type if any
if (attr & Attribute::SExt)
Flags.setSExt();
else if (attr & Attribute::ZExt)
Flags.setZExt();
for (unsigned i = 0; i < NumParts; ++i) {
OutVTs.push_back(PartVT);
OutFlags.push_back(Flags);
if (Offsets)
{
Offsets->push_back(Offset);
Offset += PartSize;
}
}
}
}
void SelectionDAGBuilder::visitRet(const ReturnInst &I) { void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
SDValue Chain = getControlRoot(); SDValue Chain = getControlRoot();
SmallVector<ISD::OutputArg, 8> Outs; SmallVector<ISD::OutputArg, 8> Outs;
@ -1320,7 +1257,7 @@ SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
} }
void SelectionDAGBuilder::visitBr(const BranchInst &I) { void SelectionDAGBuilder::visitBr(const BranchInst &I) {
MachineBasicBlock *BrMBB = FuncInfo.MBBMap[I.getParent()]; MachineBasicBlock *BrMBB = FuncInfo.MBB;
// Update machine-CFG edges. // Update machine-CFG edges.
MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
@ -1646,7 +1583,7 @@ void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
} }
void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
MachineBasicBlock *InvokeMBB = FuncInfo.MBBMap[I.getParent()]; MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
// Retrieve successors. // Retrieve successors.
MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
@ -2174,7 +2111,7 @@ size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
} }
void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
MachineBasicBlock *SwitchMBB = FuncInfo.MBBMap[SI.getParent()]; MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
// Figure out which block is immediately after the current one. // Figure out which block is immediately after the current one.
MachineBasicBlock *NextBlock = 0; MachineBasicBlock *NextBlock = 0;
@ -2240,7 +2177,7 @@ void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
} }
void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
MachineBasicBlock *IndirectBrMBB = FuncInfo.MBBMap[I.getParent()]; MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
// Update machine-CFG edges with unique successors. // Update machine-CFG edges with unique successors.
SmallVector<BasicBlock*, 32> succs; SmallVector<BasicBlock*, 32> succs;
@ -3900,7 +3837,7 @@ SelectionDAGBuilder::EmitFuncArgumentDbgValue(const DbgValueInst &DI,
if (DV.isInlinedFnArgument(MF.getFunction())) if (DV.isInlinedFnArgument(MF.getFunction()))
return false; return false;
MachineBasicBlock *MBB = FuncInfo.MBBMap[DI.getParent()]; MachineBasicBlock *MBB = FuncInfo.MBB;
if (MBB != &MF.front()) if (MBB != &MF.front())
return false; return false;
@ -4163,7 +4100,7 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
} }
case Intrinsic::eh_exception: { case Intrinsic::eh_exception: {
// Insert the EXCEPTIONADDR instruction. // Insert the EXCEPTIONADDR instruction.
assert(FuncInfo.MBBMap[I.getParent()]->isLandingPad() && assert(FuncInfo.MBB->isLandingPad() &&
"Call to eh.exception not in landing pad!"); "Call to eh.exception not in landing pad!");
SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
SDValue Ops[1]; SDValue Ops[1];
@ -4175,7 +4112,7 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
} }
case Intrinsic::eh_selector: { case Intrinsic::eh_selector: {
MachineBasicBlock *CallMBB = FuncInfo.MBBMap[I.getParent()]; MachineBasicBlock *CallMBB = FuncInfo.MBB;
MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
if (CallMBB->isLandingPad()) if (CallMBB->isLandingPad())
AddCatchInfo(I, &MMI, CallMBB); AddCatchInfo(I, &MMI, CallMBB);
@ -4185,7 +4122,7 @@ SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
#endif #endif
// FIXME: Mark exception selector register as live in. Hack for PR1508. // FIXME: Mark exception selector register as live in. Hack for PR1508.
unsigned Reg = TLI.getExceptionSelectorRegister(); unsigned Reg = TLI.getExceptionSelectorRegister();
if (Reg) FuncInfo.MBBMap[I.getParent()]->addLiveIn(Reg); if (Reg) FuncInfo.MBB->addLiveIn(Reg);
} }
// Insert the EHSELECTION instruction. // Insert the EHSELECTION instruction.
@ -4559,14 +4496,13 @@ void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
Args.reserve(CS.arg_size()); Args.reserve(CS.arg_size());
// Check whether the function can return without sret-demotion. // Check whether the function can return without sret-demotion.
SmallVector<EVT, 4> OutVTs; SmallVector<ISD::OutputArg, 4> Outs;
SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
SmallVector<uint64_t, 4> Offsets; SmallVector<uint64_t, 4> Offsets;
getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
OutVTs, OutsFlags, TLI, &Offsets); Outs, TLI, &Offsets);
bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
FTy->isVarArg(), OutVTs, OutsFlags, FTy->getContext()); FTy->isVarArg(), Outs, FTy->getContext());
SDValue DemoteStackSlot; SDValue DemoteStackSlot;
@ -4659,7 +4595,7 @@ void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
ComputeValueVTs(TLI, PtrRetTy, PVTs); ComputeValueVTs(TLI, PtrRetTy, PVTs);
assert(PVTs.size() == 1 && "Pointers should fit in one register"); assert(PVTs.size() == 1 && "Pointers should fit in one register");
EVT PtrVT = PVTs[0]; EVT PtrVT = PVTs[0];
unsigned NumValues = OutVTs.size(); unsigned NumValues = Outs.size();
SmallVector<SDValue, 4> Values(NumValues); SmallVector<SDValue, 4> Values(NumValues);
SmallVector<SDValue, 4> Chains(NumValues); SmallVector<SDValue, 4> Chains(NumValues);
@ -4667,7 +4603,7 @@ void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
DemoteStackSlot, DemoteStackSlot,
DAG.getConstant(Offsets[i], PtrVT)); DAG.getConstant(Offsets[i], PtrVT));
SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second, SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second,
Add, NULL, Offsets[i], false, false, 1); Add, NULL, Offsets[i], false, false, 1);
Values[i] = L; Values[i] = L;
Chains[i] = L.getValue(1); Chains[i] = L.getValue(1);
@ -5959,15 +5895,10 @@ void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
SmallVector<ISD::InputArg, 16> Ins; SmallVector<ISD::InputArg, 16> Ins;
// Check whether the function can return without sret-demotion. // Check whether the function can return without sret-demotion.
SmallVector<EVT, 4> OutVTs; SmallVector<ISD::OutputArg, 4> Outs;
SmallVector<ISD::ArgFlagsTy, 4> OutsFlags; GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), Outs, TLI);
OutVTs, OutsFlags, TLI);
FuncInfo->CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(),
F.isVarArg(),
OutVTs, OutsFlags,
F.getContext());
if (!FuncInfo->CanLowerReturn) { if (!FuncInfo->CanLowerReturn) {
// Put in an sret pointer parameter before all the other parameters. // Put in an sret pointer parameter before all the other parameters.
SmallVector<EVT, 1> ValueVTs; SmallVector<EVT, 1> ValueVTs;

View File

@ -316,6 +316,26 @@ bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
// Determine if there is a call to setjmp in the machine function. // Determine if there is a call to setjmp in the machine function.
MF->setCallsSetJmp(FunctionCallsSetJmp(&Fn)); MF->setCallsSetJmp(FunctionCallsSetJmp(&Fn));
// Replace forward-declared registers with the registers containing
// the desired value.
MachineRegisterInfo &MRI = MF->getRegInfo();
for (DenseMap<unsigned, unsigned>::iterator
I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
I != E; ++I) {
unsigned From = I->first;
unsigned To = I->second;
// If To is also scheduled to be replaced, find what its ultimate
// replacement is.
for (;;) {
DenseMap<unsigned, unsigned>::iterator J =
FuncInfo->RegFixups.find(To);
if (J == E) break;
To = J->second;
}
// Replace it.
MRI.replaceRegWith(From, To);
}
// Release function-specific state. SDB and CurDAG are already cleared // Release function-specific state. SDB and CurDAG are already cleared
// at this point. // at this point.
FuncInfo->clear(); FuncInfo->clear();
@ -323,9 +343,8 @@ bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
return true; return true;
} }
MachineBasicBlock * void
SelectionDAGISel::SelectBasicBlock(MachineBasicBlock *BB, SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
BasicBlock::const_iterator Begin,
BasicBlock::const_iterator End, BasicBlock::const_iterator End,
bool &HadTailCall) { bool &HadTailCall) {
// Lower all of the non-terminator instructions. If a call is emitted // Lower all of the non-terminator instructions. If a call is emitted
@ -340,7 +359,7 @@ SelectionDAGISel::SelectBasicBlock(MachineBasicBlock *BB,
SDB->clear(); SDB->clear();
// Final step, emit the lowered DAG as machine code. // Final step, emit the lowered DAG as machine code.
return CodeGenAndEmitDAG(BB); CodeGenAndEmitDAG();
} }
namespace { namespace {
@ -429,7 +448,7 @@ void SelectionDAGISel::ComputeLiveOutVRegInfo() {
} while (!Worklist.empty()); } while (!Worklist.empty());
} }
MachineBasicBlock *SelectionDAGISel::CodeGenAndEmitDAG(MachineBasicBlock *BB) { void SelectionDAGISel::CodeGenAndEmitDAG() {
std::string GroupName; std::string GroupName;
if (TimePassesIsEnabled) if (TimePassesIsEnabled)
GroupName = "Instruction Selection and Scheduling"; GroupName = "Instruction Selection and Scheduling";
@ -438,7 +457,7 @@ MachineBasicBlock *SelectionDAGISel::CodeGenAndEmitDAG(MachineBasicBlock *BB) {
ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs || ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
ViewSUnitDAGs) ViewSUnitDAGs)
BlockName = MF->getFunction()->getNameStr() + ":" + BlockName = MF->getFunction()->getNameStr() + ":" +
BB->getBasicBlock()->getNameStr(); FuncInfo->MBB->getBasicBlock()->getNameStr();
DEBUG(dbgs() << "Initial selection DAG:\n"; CurDAG->dump()); DEBUG(dbgs() << "Initial selection DAG:\n"; CurDAG->dump());
@ -545,7 +564,7 @@ MachineBasicBlock *SelectionDAGISel::CodeGenAndEmitDAG(MachineBasicBlock *BB) {
{ {
NamedRegionTimer T("Instruction Scheduling", GroupName, NamedRegionTimer T("Instruction Scheduling", GroupName,
TimePassesIsEnabled); TimePassesIsEnabled);
Scheduler->Run(CurDAG, BB, BB->end()); Scheduler->Run(CurDAG, FuncInfo->MBB, FuncInfo->InsertPt);
} }
if (ViewSUnitDAGs) Scheduler->viewGraph(); if (ViewSUnitDAGs) Scheduler->viewGraph();
@ -554,7 +573,9 @@ MachineBasicBlock *SelectionDAGISel::CodeGenAndEmitDAG(MachineBasicBlock *BB) {
// inserted into. // inserted into.
{ {
NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled); NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
BB = Scheduler->EmitSchedule();
FuncInfo->MBB = Scheduler->EmitSchedule();
FuncInfo->InsertPt = Scheduler->InsertPos;
} }
// Free the scheduler state. // Free the scheduler state.
@ -566,8 +587,6 @@ MachineBasicBlock *SelectionDAGISel::CodeGenAndEmitDAG(MachineBasicBlock *BB) {
// Free the SelectionDAG state, now that we're finished with it. // Free the SelectionDAG state, now that we're finished with it.
CurDAG->clear(); CurDAG->clear();
return BB;
} }
void SelectionDAGISel::DoInstructionSelection() { void SelectionDAGISel::DoInstructionSelection() {
@ -629,21 +648,22 @@ void SelectionDAGISel::DoInstructionSelection() {
/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
/// do other setup for EH landing-pad blocks. /// do other setup for EH landing-pad blocks.
void SelectionDAGISel::PrepareEHLandingPad(MachineBasicBlock *BB) { void SelectionDAGISel::PrepareEHLandingPad() {
// Add a label to mark the beginning of the landing pad. Deletion of the // Add a label to mark the beginning of the landing pad. Deletion of the
// landing pad can thus be detected via the MachineModuleInfo. // landing pad can thus be detected via the MachineModuleInfo.
MCSymbol *Label = MF->getMMI().addLandingPad(BB); MCSymbol *Label = MF->getMMI().addLandingPad(FuncInfo->MBB);
const TargetInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL); const TargetInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
BuildMI(BB, SDB->getCurDebugLoc(), II).addSym(Label); BuildMI(*FuncInfo->MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
.addSym(Label);
// Mark exception register as live in. // Mark exception register as live in.
unsigned Reg = TLI.getExceptionAddressRegister(); unsigned Reg = TLI.getExceptionAddressRegister();
if (Reg) BB->addLiveIn(Reg); if (Reg) FuncInfo->MBB->addLiveIn(Reg);
// Mark exception selector register as live in. // Mark exception selector register as live in.
Reg = TLI.getExceptionSelectorRegister(); Reg = TLI.getExceptionSelectorRegister();
if (Reg) BB->addLiveIn(Reg); if (Reg) FuncInfo->MBB->addLiveIn(Reg);
// FIXME: Hack around an exception handling flaw (PR1508): the personality // FIXME: Hack around an exception handling flaw (PR1508): the personality
// function and list of typeids logically belong to the invoke (or, if you // function and list of typeids logically belong to the invoke (or, if you
@ -656,7 +676,7 @@ void SelectionDAGISel::PrepareEHLandingPad(MachineBasicBlock *BB) {
// in exceptions not being caught because no typeids are associated with // in exceptions not being caught because no typeids are associated with
// the invoke. This may not be the only way things can go wrong, but it // the invoke. This may not be the only way things can go wrong, but it
// is the only way we try to work around for the moment. // is the only way we try to work around for the moment.
const BasicBlock *LLVMBB = BB->getBasicBlock(); const BasicBlock *LLVMBB = FuncInfo->MBB->getBasicBlock();
const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator()); const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
if (Br && Br->isUnconditional()) { // Critical edge? if (Br && Br->isUnconditional()) { // Critical edge?
@ -680,80 +700,95 @@ void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
// Iterate over all basic blocks in the function. // Iterate over all basic blocks in the function.
for (Function::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) { for (Function::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
const BasicBlock *LLVMBB = &*I; const BasicBlock *LLVMBB = &*I;
MachineBasicBlock *BB = FuncInfo->MBBMap[LLVMBB]; FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI(); BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
BasicBlock::const_iterator const End = LLVMBB->end(); BasicBlock::const_iterator const End = LLVMBB->end();
BasicBlock::const_iterator BI = Begin; BasicBlock::const_iterator BI = End;
FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
// Setup an EH landing-pad block.
if (FuncInfo->MBB->isLandingPad())
PrepareEHLandingPad();
// Lower any arguments needed in this block if this is the entry block. // Lower any arguments needed in this block if this is the entry block.
if (LLVMBB == &Fn.getEntryBlock()) if (LLVMBB == &Fn.getEntryBlock())
LowerArguments(LLVMBB); LowerArguments(LLVMBB);
// Setup an EH landing-pad block.
if (BB->isLandingPad())
PrepareEHLandingPad(BB);
// Before doing SelectionDAG ISel, see if FastISel has been requested. // Before doing SelectionDAG ISel, see if FastISel has been requested.
if (FastIS) { if (FastIS) {
FastIS->startNewBlock();
// Emit code for any incoming arguments. This must happen before // Emit code for any incoming arguments. This must happen before
// beginning FastISel on the entry block. // beginning FastISel on the entry block.
if (LLVMBB == &Fn.getEntryBlock()) { if (LLVMBB == &Fn.getEntryBlock()) {
CurDAG->setRoot(SDB->getControlRoot()); CurDAG->setRoot(SDB->getControlRoot());
SDB->clear(); SDB->clear();
BB = CodeGenAndEmitDAG(BB); CodeGenAndEmitDAG();
// If we inserted any instructions at the beginning, make a note of
// where they are, so we can be sure to emit subsequent instructions
// after them.
if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
else
FastIS->setLastLocalValue(0);
} }
FastIS->startNewBlock(BB);
// Do FastISel on as many instructions as possible. // Do FastISel on as many instructions as possible.
for (; BI != End; ++BI) { for (; BI != Begin; --BI) {
#if 0 const Instruction *Inst = llvm::prior(BI);
// Defer instructions with no side effects; they'll be emitted
// on-demand later. // If we no longer require this instruction, skip it.
if (BI->isSafeToSpeculativelyExecute() && if (!Inst->mayWriteToMemory() &&
!FuncInfo->isExportedInst(BI)) !isa<TerminatorInst>(Inst) &&
!isa<DbgInfoIntrinsic>(Inst) &&
!FuncInfo->isExportedInst(Inst))
continue; continue;
#endif
// Bottom-up: reset the insert pos at the top, after any local-value
// instructions.
FastIS->recomputeInsertPt();
// Try to select the instruction with FastISel. // Try to select the instruction with FastISel.
if (FastIS->SelectInstruction(BI)) if (FastIS->SelectInstruction(Inst))
continue; continue;
// Then handle certain instructions as single-LLVM-Instruction blocks. // Then handle certain instructions as single-LLVM-Instruction blocks.
if (isa<CallInst>(BI)) { if (isa<CallInst>(Inst)) {
++NumFastIselFailures; ++NumFastIselFailures;
if (EnableFastISelVerbose || EnableFastISelAbort) { if (EnableFastISelVerbose || EnableFastISelAbort) {
dbgs() << "FastISel missed call: "; dbgs() << "FastISel missed call: ";
BI->dump(); Inst->dump();
} }
if (!BI->getType()->isVoidTy() && !BI->use_empty()) { if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
unsigned &R = FuncInfo->ValueMap[BI]; unsigned &R = FuncInfo->ValueMap[Inst];
if (!R) if (!R)
R = FuncInfo->CreateRegs(BI->getType()); R = FuncInfo->CreateRegs(Inst->getType());
} }
bool HadTailCall = false; bool HadTailCall = false;
BB = SelectBasicBlock(BB, BI, llvm::next(BI), HadTailCall); SelectBasicBlock(Inst, BI, HadTailCall);
// If the call was emitted as a tail call, we're done with the block. // If the call was emitted as a tail call, we're done with the block.
if (HadTailCall) { if (HadTailCall) {
BI = End; --BI;
break; break;
} }
// If the instruction was codegen'd with multiple blocks,
// inform the FastISel object where to resume inserting.
FastIS->setCurrentBlock(BB);
continue; continue;
} }
// Otherwise, give up on FastISel for the rest of the block. // Otherwise, give up on FastISel for the rest of the block.
// For now, be a little lenient about non-branch terminators. // For now, be a little lenient about non-branch terminators.
if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) { if (!isa<TerminatorInst>(Inst) || isa<BranchInst>(Inst)) {
++NumFastIselFailures; ++NumFastIselFailures;
if (EnableFastISelVerbose || EnableFastISelAbort) { if (EnableFastISelVerbose || EnableFastISelAbort) {
dbgs() << "FastISel miss: "; dbgs() << "FastISel miss: ";
BI->dump(); Inst->dump();
} }
if (EnableFastISelAbort) if (EnableFastISelAbort)
// The "fast" selector couldn't handle something and bailed. // The "fast" selector couldn't handle something and bailed.
@ -762,17 +797,17 @@ void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
} }
break; break;
} }
FastIS->recomputeInsertPt();
} }
// Run SelectionDAG instruction selection on the remainder of the block // Run SelectionDAG instruction selection on the remainder of the block
// not handled by FastISel. If FastISel is not run, this is the entire // not handled by FastISel. If FastISel is not run, this is the entire
// block. // block.
if (BI != End) { bool HadTailCall;
bool HadTailCall; SelectBasicBlock(Begin, BI, HadTailCall);
BB = SelectBasicBlock(BB, BI, End, HadTailCall);
}
FinishBasicBlock(BB); FinishBasicBlock();
FuncInfo->PHINodesToUpdate.clear(); FuncInfo->PHINodesToUpdate.clear();
} }
@ -780,7 +815,7 @@ void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
} }
void void
SelectionDAGISel::FinishBasicBlock(MachineBasicBlock *BB) { SelectionDAGISel::FinishBasicBlock() {
DEBUG(dbgs() << "Total amount of phi nodes to update: " DEBUG(dbgs() << "Total amount of phi nodes to update: "
<< FuncInfo->PHINodesToUpdate.size() << "\n"; << FuncInfo->PHINodesToUpdate.size() << "\n";
@ -798,11 +833,11 @@ SelectionDAGISel::FinishBasicBlock(MachineBasicBlock *BB) {
MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first; MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
assert(PHI->isPHI() && assert(PHI->isPHI() &&
"This is not a machine PHI node that we are updating!"); "This is not a machine PHI node that we are updating!");
if (!BB->isSuccessor(PHI->getParent())) if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
continue; continue;
PHI->addOperand( PHI->addOperand(
MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false)); MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
PHI->addOperand(MachineOperand::CreateMBB(BB)); PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
} }
return; return;
} }
@ -811,33 +846,35 @@ SelectionDAGISel::FinishBasicBlock(MachineBasicBlock *BB) {
// Lower header first, if it wasn't already lowered // Lower header first, if it wasn't already lowered
if (!SDB->BitTestCases[i].Emitted) { if (!SDB->BitTestCases[i].Emitted) {
// Set the current basic block to the mbb we wish to insert the code into // Set the current basic block to the mbb we wish to insert the code into
BB = SDB->BitTestCases[i].Parent; FuncInfo->MBB = SDB->BitTestCases[i].Parent;
FuncInfo->InsertPt = FuncInfo->MBB->end();
// Emit the code // Emit the code
SDB->visitBitTestHeader(SDB->BitTestCases[i], BB); SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
CurDAG->setRoot(SDB->getRoot()); CurDAG->setRoot(SDB->getRoot());
SDB->clear(); SDB->clear();
BB = CodeGenAndEmitDAG(BB); CodeGenAndEmitDAG();
} }
for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) { for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
// Set the current basic block to the mbb we wish to insert the code into // Set the current basic block to the mbb we wish to insert the code into
BB = SDB->BitTestCases[i].Cases[j].ThisBB; FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
FuncInfo->InsertPt = FuncInfo->MBB->end();
// Emit the code // Emit the code
if (j+1 != ej) if (j+1 != ej)
SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB, SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
SDB->BitTestCases[i].Reg, SDB->BitTestCases[i].Reg,
SDB->BitTestCases[i].Cases[j], SDB->BitTestCases[i].Cases[j],
BB); FuncInfo->MBB);
else else
SDB->visitBitTestCase(SDB->BitTestCases[i].Default, SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
SDB->BitTestCases[i].Reg, SDB->BitTestCases[i].Reg,
SDB->BitTestCases[i].Cases[j], SDB->BitTestCases[i].Cases[j],
BB); FuncInfo->MBB);
CurDAG->setRoot(SDB->getRoot()); CurDAG->setRoot(SDB->getRoot());
SDB->clear(); SDB->clear();
BB = CodeGenAndEmitDAG(BB); CodeGenAndEmitDAG();
} }
// Update PHI Nodes // Update PHI Nodes
@ -882,22 +919,24 @@ SelectionDAGISel::FinishBasicBlock(MachineBasicBlock *BB) {
// Lower header first, if it wasn't already lowered // Lower header first, if it wasn't already lowered
if (!SDB->JTCases[i].first.Emitted) { if (!SDB->JTCases[i].first.Emitted) {
// Set the current basic block to the mbb we wish to insert the code into // Set the current basic block to the mbb we wish to insert the code into
BB = SDB->JTCases[i].first.HeaderBB; FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
FuncInfo->InsertPt = FuncInfo->MBB->end();
// Emit the code // Emit the code
SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first, SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
BB); FuncInfo->MBB);
CurDAG->setRoot(SDB->getRoot()); CurDAG->setRoot(SDB->getRoot());
SDB->clear(); SDB->clear();
BB = CodeGenAndEmitDAG(BB); CodeGenAndEmitDAG();
} }
// Set the current basic block to the mbb we wish to insert the code into // Set the current basic block to the mbb we wish to insert the code into
BB = SDB->JTCases[i].second.MBB; FuncInfo->MBB = SDB->JTCases[i].second.MBB;
FuncInfo->InsertPt = FuncInfo->MBB->end();
// Emit the code // Emit the code
SDB->visitJumpTable(SDB->JTCases[i].second); SDB->visitJumpTable(SDB->JTCases[i].second);
CurDAG->setRoot(SDB->getRoot()); CurDAG->setRoot(SDB->getRoot());
SDB->clear(); SDB->clear();
BB = CodeGenAndEmitDAG(BB); CodeGenAndEmitDAG();
// Update PHI Nodes // Update PHI Nodes
for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
@ -915,11 +954,11 @@ SelectionDAGISel::FinishBasicBlock(MachineBasicBlock *BB) {
(MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB)); (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
} }
// JT BB. Just iterate over successors here // JT BB. Just iterate over successors here
if (BB->isSuccessor(PHIBB)) { if (FuncInfo->MBB->isSuccessor(PHIBB)) {
PHI->addOperand PHI->addOperand
(MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second, (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
false)); false));
PHI->addOperand(MachineOperand::CreateMBB(BB)); PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
} }
} }
} }
@ -931,10 +970,10 @@ SelectionDAGISel::FinishBasicBlock(MachineBasicBlock *BB) {
MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first; MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
assert(PHI->isPHI() && assert(PHI->isPHI() &&
"This is not a machine PHI node that we are updating!"); "This is not a machine PHI node that we are updating!");
if (BB->isSuccessor(PHI->getParent())) { if (FuncInfo->MBB->isSuccessor(PHI->getParent())) {
PHI->addOperand( PHI->addOperand(
MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false)); MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
PHI->addOperand(MachineOperand::CreateMBB(BB)); PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
} }
} }
@ -942,7 +981,8 @@ SelectionDAGISel::FinishBasicBlock(MachineBasicBlock *BB) {
// additional DAGs necessary. // additional DAGs necessary.
for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) { for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
// Set the current basic block to the mbb we wish to insert the code into // Set the current basic block to the mbb we wish to insert the code into
MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB; MachineBasicBlock *ThisBB = FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
FuncInfo->InsertPt = FuncInfo->MBB->end();
// Determine the unique successors. // Determine the unique successors.
SmallVector<MachineBasicBlock *, 2> Succs; SmallVector<MachineBasicBlock *, 2> Succs;
@ -952,21 +992,24 @@ SelectionDAGISel::FinishBasicBlock(MachineBasicBlock *BB) {
// Emit the code. Note that this could result in ThisBB being split, so // Emit the code. Note that this could result in ThisBB being split, so
// we need to check for updates. // we need to check for updates.
SDB->visitSwitchCase(SDB->SwitchCases[i], BB); SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
CurDAG->setRoot(SDB->getRoot()); CurDAG->setRoot(SDB->getRoot());
SDB->clear(); SDB->clear();
ThisBB = CodeGenAndEmitDAG(BB); CodeGenAndEmitDAG();
ThisBB = FuncInfo->MBB;
// Handle any PHI nodes in successors of this chunk, as if we were coming // Handle any PHI nodes in successors of this chunk, as if we were coming
// from the original BB before switch expansion. Note that PHI nodes can // from the original BB before switch expansion. Note that PHI nodes can
// occur multiple times in PHINodesToUpdate. We have to be very careful to // occur multiple times in PHINodesToUpdate. We have to be very careful to
// handle them the right number of times. // handle them the right number of times.
for (unsigned i = 0, e = Succs.size(); i != e; ++i) { for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
BB = Succs[i]; FuncInfo->MBB = Succs[i];
// BB may have been removed from the CFG if a branch was constant folded. FuncInfo->InsertPt = FuncInfo->MBB->end();
if (ThisBB->isSuccessor(BB)) { // FuncInfo->MBB may have been removed from the CFG if a branch was
for (MachineBasicBlock::iterator Phi = BB->begin(); // constant folded.
Phi != BB->end() && Phi->isPHI(); if (ThisBB->isSuccessor(FuncInfo->MBB)) {
for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin();
Phi != FuncInfo->MBB->end() && Phi->isPHI();
++Phi) { ++Phi) {
// This value for this PHI node is recorded in PHINodesToUpdate. // This value for this PHI node is recorded in PHINodesToUpdate.
for (unsigned pn = 0; ; ++pn) { for (unsigned pn = 0; ; ++pn) {

View File

@ -20,6 +20,7 @@
#include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/GlobalVariable.h" #include "llvm/GlobalVariable.h"
#include "llvm/DerivedTypes.h" #include "llvm/DerivedTypes.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunction.h"
@ -838,6 +839,65 @@ unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
return 1; return 1;
} }
/// Get the EVTs and ArgFlags collections that represent the legalized return
/// type of the given function. This does not require a DAG or a return value,
/// and is suitable for use before any DAGs for the function are constructed.
/// TODO: Move this out of TargetLowering.cpp.
void llvm::GetReturnInfo(const Type* ReturnType, Attributes attr,
SmallVectorImpl<ISD::OutputArg> &Outs,
const TargetLowering &TLI,
SmallVectorImpl<uint64_t> *Offsets) {
SmallVector<EVT, 4> ValueVTs;
ComputeValueVTs(TLI, ReturnType, ValueVTs);
unsigned NumValues = ValueVTs.size();
if (NumValues == 0) return;
unsigned Offset = 0;
for (unsigned j = 0, f = NumValues; j != f; ++j) {
EVT VT = ValueVTs[j];
ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
if (attr & Attribute::SExt)
ExtendKind = ISD::SIGN_EXTEND;
else if (attr & Attribute::ZExt)
ExtendKind = ISD::ZERO_EXTEND;
// FIXME: C calling convention requires the return type to be promoted to
// at least 32-bit. But this is not necessary for non-C calling
// conventions. The frontend should mark functions whose return values
// require promoting with signext or zeroext attributes.
if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
if (VT.bitsLT(MinVT))
VT = MinVT;
}
unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
PartVT.getTypeForEVT(ReturnType->getContext()));
// 'inreg' on function refers to return value
ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
if (attr & Attribute::InReg)
Flags.setInReg();
// Propagate extension type if any
if (attr & Attribute::SExt)
Flags.setSExt();
else if (attr & Attribute::ZExt)
Flags.setZExt();
for (unsigned i = 0; i < NumParts; ++i) {
Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true));
if (Offsets) {
Offsets->push_back(Offset);
Offset += PartSize;
}
}
}
}
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
/// function arguments in the caller parameter area. This is the actual /// function arguments in the caller parameter area. This is the actual
/// alignment, not its logarithm. /// alignment, not its logarithm.

View File

@ -35,6 +35,10 @@ class formatted_raw_ostream;
FunctionPass *createX86ISelDag(X86TargetMachine &TM, FunctionPass *createX86ISelDag(X86TargetMachine &TM,
CodeGenOpt::Level OptLevel); CodeGenOpt::Level OptLevel);
/// createGlobalBaseRegPass - This pass initializes a global base
/// register for PIC on x86-32.
FunctionPass* createGlobalBaseRegPass();
/// createX86FloatingPointStackifierPass - This function returns a pass which /// createX86FloatingPointStackifierPass - This function returns a pass which
/// converts floating point register references and pseudo instructions into /// converts floating point register references and pseudo instructions into
/// floating point stack references and physical instructions. /// floating point stack references and physical instructions.

View File

@ -23,6 +23,7 @@
#include "llvm/GlobalVariable.h" #include "llvm/GlobalVariable.h"
#include "llvm/Instructions.h" #include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h" #include "llvm/IntrinsicInst.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/FastISel.h" #include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineConstantPool.h"
@ -84,6 +85,8 @@ private:
bool X86SelectStore(const Instruction *I); bool X86SelectStore(const Instruction *I);
bool X86SelectRet(const Instruction *I);
bool X86SelectCmp(const Instruction *I); bool X86SelectCmp(const Instruction *I);
bool X86SelectZExt(const Instruction *I); bool X86SelectZExt(const Instruction *I);
@ -105,6 +108,7 @@ private:
bool X86SelectCall(const Instruction *I); bool X86SelectCall(const Instruction *I);
CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool isTailCall = false); CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool isTailCall = false);
CCAssignFn *CCAssignFnForRet(CallingConv::ID CC, bool isTailCall = false);
const X86InstrInfo *getInstrInfo() const { const X86InstrInfo *getInstrInfo() const {
return getTargetMachine()->getInstrInfo(); return getTargetMachine()->getInstrInfo();
@ -178,6 +182,20 @@ CCAssignFn *X86FastISel::CCAssignFnForCall(CallingConv::ID CC,
return CC_X86_32_C; return CC_X86_32_C;
} }
/// CCAssignFnForRet - Selects the correct CCAssignFn for a given calling
/// convention.
CCAssignFn *X86FastISel::CCAssignFnForRet(CallingConv::ID CC,
bool isTaillCall) {
if (Subtarget->is64Bit()) {
if (Subtarget->isTargetWin64())
return RetCC_X86_Win64_C;
else
return RetCC_X86_64_C;
}
return RetCC_X86_32_C;
}
/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT. /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV. /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
/// Return true and the result register by reference if it is possible. /// Return true and the result register by reference if it is possible.
@ -230,7 +248,8 @@ bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM,
} }
ResultReg = createResultReg(RC); ResultReg = createResultReg(RC);
addFullAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM); addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
DL, TII.get(Opc), ResultReg), AM);
return true; return true;
} }
@ -249,7 +268,7 @@ X86FastISel::X86FastEmitStore(EVT VT, unsigned Val,
case MVT::i1: { case MVT::i1: {
// Mask out all but lowest bit. // Mask out all but lowest bit.
unsigned AndResult = createResultReg(X86::GR8RegisterClass); unsigned AndResult = createResultReg(X86::GR8RegisterClass);
BuildMI(MBB, DL, BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(X86::AND8ri), AndResult).addReg(Val).addImm(1); TII.get(X86::AND8ri), AndResult).addReg(Val).addImm(1);
Val = AndResult; Val = AndResult;
} }
@ -266,7 +285,8 @@ X86FastISel::X86FastEmitStore(EVT VT, unsigned Val,
break; break;
} }
addFullAddress(BuildMI(MBB, DL, TII.get(Opc)), AM).addReg(Val); addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
DL, TII.get(Opc)), AM).addReg(Val);
return true; return true;
} }
@ -294,7 +314,8 @@ bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
} }
if (Opc) { if (Opc) {
addFullAddress(BuildMI(MBB, DL, TII.get(Opc)), AM) addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
DL, TII.get(Opc)), AM)
.addImm(Signed ? (uint64_t) CI->getSExtValue() : .addImm(Signed ? (uint64_t) CI->getSExtValue() :
CI->getZExtValue()); CI->getZExtValue());
return true; return true;
@ -333,7 +354,7 @@ bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
// Don't walk into other basic blocks; it's possible we haven't // Don't walk into other basic blocks; it's possible we haven't
// visited them yet, so the instructions may not yet be assigned // visited them yet, so the instructions may not yet be assigned
// virtual registers. // virtual registers.
if (FuncInfo.MBBMap[I->getParent()] != MBB) if (FuncInfo.MBBMap[I->getParent()] != FuncInfo.MBB)
return false; return false;
Opcode = I->getOpcode(); Opcode = I->getOpcode();
@ -518,6 +539,9 @@ bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
StubAM.GV = GV; StubAM.GV = GV;
StubAM.GVOpFlags = GVFlags; StubAM.GVOpFlags = GVFlags;
// Prepare for inserting code in the local-value area.
MachineBasicBlock::iterator SaveInsertPt = enterLocalValueArea();
if (TLI.getPointerTy() == MVT::i64) { if (TLI.getPointerTy() == MVT::i64) {
Opc = X86::MOV64rm; Opc = X86::MOV64rm;
RC = X86::GR64RegisterClass; RC = X86::GR64RegisterClass;
@ -530,7 +554,12 @@ bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
} }
LoadReg = createResultReg(RC); LoadReg = createResultReg(RC);
addFullAddress(BuildMI(MBB, DL, TII.get(Opc), LoadReg), StubAM); MachineInstrBuilder LoadMI =
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), LoadReg);
addFullAddress(LoadMI, StubAM);
// Ok, back to normal mode.
leaveLocalValueArea(SaveInsertPt);
// Prevent loading GV stub multiple times in same MBB. // Prevent loading GV stub multiple times in same MBB.
LocalValueMap[V] = LoadReg; LocalValueMap[V] = LoadReg;
@ -656,6 +685,95 @@ bool X86FastISel::X86SelectStore(const Instruction *I) {
return X86FastEmitStore(VT, I->getOperand(0), AM); return X86FastEmitStore(VT, I->getOperand(0), AM);
} }
/// X86SelectRet - Select and emit code to implement ret instructions.
bool X86FastISel::X86SelectRet(const Instruction *I) {
const ReturnInst *Ret = cast<ReturnInst>(I);
const Function &F = *I->getParent()->getParent();
if (!FuncInfo.CanLowerReturn)
return false;
CallingConv::ID CC = F.getCallingConv();
if (CC != CallingConv::C &&
CC != CallingConv::Fast &&
CC != CallingConv::X86_FastCall)
return false;
if (Subtarget->isTargetWin64())
return false;
// Don't handle popping bytes on return for now.
if (FuncInfo.MF->getInfo<X86MachineFunctionInfo>()
->getBytesToPopOnReturn() != 0)
return 0;
// fastcc with -tailcallopt is intended to provide a guaranteed
// tail call optimization. Fastisel doesn't know how to do that.
if (CC == CallingConv::Fast && GuaranteedTailCallOpt)
return false;
// Let SDISel handle vararg functions.
if (F.isVarArg())
return false;
if (Ret->getNumOperands() > 0) {
SmallVector<ISD::OutputArg, 4> Outs;
GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
Outs, TLI);
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ValLocs;
CCState CCInfo(CC, F.isVarArg(), TM, ValLocs, I->getContext());
CCInfo.AnalyzeReturn(Outs, CCAssignFnForRet(CC));
const Value *RV = Ret->getOperand(0);
unsigned Reg = getRegForValue(RV);
if (Reg == 0)
return false;
// Only handle a single return value for now.
if (ValLocs.size() != 1)
return false;
CCValAssign &VA = ValLocs[0];
// Don't bother handling odd stuff for now.
if (VA.getLocInfo() != CCValAssign::Full)
return false;
// Only handle register returns for now.
if (!VA.isRegLoc())
return false;
// TODO: For now, don't try to handle cases where getLocInfo()
// says Full but the types don't match.
if (VA.getValVT() != TLI.getValueType(RV->getType()))
return false;
// The calling-convention tables for x87 returns don't tell
// the whole story.
if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
return false;
// Make the copy.
unsigned SrcReg = Reg + VA.getValNo();
unsigned DstReg = VA.getLocReg();
const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
const TargetRegisterClass* DstRC = TRI.getMinimalPhysRegClass(DstReg);
bool Emitted = TII.copyRegToReg(*FuncInfo.MBB, FuncInfo.InsertPt,
DstReg, SrcReg, DstRC, SrcRC, DL);
// If the target couldn't make the copy for some reason, bail.
if (!Emitted)
return false;
// Mark the register as live out of the function.
MRI.addLiveOut(VA.getLocReg());
}
// Now emit the RET.
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::RET));
return true;
}
/// X86SelectLoad - Select and emit code to implement load instructions. /// X86SelectLoad - Select and emit code to implement load instructions.
/// ///
bool X86FastISel::X86SelectLoad(const Instruction *I) { bool X86FastISel::X86SelectLoad(const Instruction *I) {
@ -720,8 +838,9 @@ bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1,
// CMPri, otherwise use CMPrr. // CMPri, otherwise use CMPrr.
if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) { if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
BuildMI(MBB, DL, TII.get(CompareImmOpc)).addReg(Op0Reg) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareImmOpc))
.addImm(Op1C->getSExtValue()); .addReg(Op0Reg)
.addImm(Op1C->getSExtValue());
return true; return true;
} }
} }
@ -731,7 +850,9 @@ bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1,
unsigned Op1Reg = getRegForValue(Op1); unsigned Op1Reg = getRegForValue(Op1);
if (Op1Reg == 0) return false; if (Op1Reg == 0) return false;
BuildMI(MBB, DL, TII.get(CompareOpc)).addReg(Op0Reg).addReg(Op1Reg); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareOpc))
.addReg(Op0Reg)
.addReg(Op1Reg);
return true; return true;
} }
@ -753,9 +874,10 @@ bool X86FastISel::X86SelectCmp(const Instruction *I) {
unsigned EReg = createResultReg(&X86::GR8RegClass); unsigned EReg = createResultReg(&X86::GR8RegClass);
unsigned NPReg = createResultReg(&X86::GR8RegClass); unsigned NPReg = createResultReg(&X86::GR8RegClass);
BuildMI(MBB, DL, TII.get(X86::SETEr), EReg); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETEr), EReg);
BuildMI(MBB, DL, TII.get(X86::SETNPr), NPReg); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
BuildMI(MBB, DL, TII.get(X86::SETNPr), NPReg);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg); TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg);
UpdateValueMap(I, ResultReg); UpdateValueMap(I, ResultReg);
return true; return true;
@ -766,9 +888,13 @@ bool X86FastISel::X86SelectCmp(const Instruction *I) {
unsigned NEReg = createResultReg(&X86::GR8RegClass); unsigned NEReg = createResultReg(&X86::GR8RegClass);
unsigned PReg = createResultReg(&X86::GR8RegClass); unsigned PReg = createResultReg(&X86::GR8RegClass);
BuildMI(MBB, DL, TII.get(X86::SETNEr), NEReg); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
BuildMI(MBB, DL, TII.get(X86::SETPr), PReg); TII.get(X86::SETNEr), NEReg);
BuildMI(MBB, DL, TII.get(X86::OR8rr), ResultReg).addReg(PReg).addReg(NEReg); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(X86::SETPr), PReg);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(X86::OR8rr), ResultReg)
.addReg(PReg).addReg(NEReg);
UpdateValueMap(I, ResultReg); UpdateValueMap(I, ResultReg);
return true; return true;
} }
@ -807,7 +933,7 @@ bool X86FastISel::X86SelectCmp(const Instruction *I) {
if (!X86FastEmitCompare(Op0, Op1, VT)) if (!X86FastEmitCompare(Op0, Op1, VT))
return false; return false;
BuildMI(MBB, DL, TII.get(SetCCOpc), ResultReg); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(SetCCOpc), ResultReg);
UpdateValueMap(I, ResultReg); UpdateValueMap(I, ResultReg);
return true; return true;
} }
@ -843,7 +969,7 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) {
// Try to take advantage of fallthrough opportunities. // Try to take advantage of fallthrough opportunities.
CmpInst::Predicate Predicate = CI->getPredicate(); CmpInst::Predicate Predicate = CI->getPredicate();
if (MBB->isLayoutSuccessor(TrueMBB)) { if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
std::swap(TrueMBB, FalseMBB); std::swap(TrueMBB, FalseMBB);
Predicate = CmpInst::getInversePredicate(Predicate); Predicate = CmpInst::getInversePredicate(Predicate);
} }
@ -892,16 +1018,18 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) {
if (!X86FastEmitCompare(Op0, Op1, VT)) if (!X86FastEmitCompare(Op0, Op1, VT))
return false; return false;
BuildMI(MBB, DL, TII.get(BranchOpc)).addMBB(TrueMBB); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BranchOpc))
.addMBB(TrueMBB);
if (Predicate == CmpInst::FCMP_UNE) { if (Predicate == CmpInst::FCMP_UNE) {
// X86 requires a second branch to handle UNE (and OEQ, // X86 requires a second branch to handle UNE (and OEQ,
// which is mapped to UNE above). // which is mapped to UNE above).
BuildMI(MBB, DL, TII.get(X86::JP_4)).addMBB(TrueMBB); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JP_4))
.addMBB(TrueMBB);
} }
FastEmitBranch(FalseMBB, DL); FastEmitBranch(FalseMBB, DL);
MBB->addSuccessor(TrueMBB); FuncInfo.MBB->addSuccessor(TrueMBB);
return true; return true;
} }
} else if (ExtractValueInst *EI = } else if (ExtractValueInst *EI =
@ -927,7 +1055,8 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) {
unsigned Reg = getRegForValue(EI); unsigned Reg = getRegForValue(EI);
for (MachineBasicBlock::const_reverse_iterator for (MachineBasicBlock::const_reverse_iterator
RI = MBB->rbegin(), RE = MBB->rend(); RI != RE; ++RI) { RI = FuncInfo.MBB->rbegin(), RE = FuncInfo.MBB->rend();
RI != RE; ++RI) {
const MachineInstr &MI = *RI; const MachineInstr &MI = *RI;
if (MI.definesRegister(Reg)) { if (MI.definesRegister(Reg)) {
@ -952,11 +1081,11 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) {
unsigned OpCode = SetMI->getOpcode(); unsigned OpCode = SetMI->getOpcode();
if (OpCode == X86::SETOr || OpCode == X86::SETBr) { if (OpCode == X86::SETOr || OpCode == X86::SETBr) {
BuildMI(MBB, DL, TII.get(OpCode == X86::SETOr ? BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
X86::JO_4 : X86::JB_4)) TII.get(OpCode == X86::SETOr ? X86::JO_4 : X86::JB_4))
.addMBB(TrueMBB); .addMBB(TrueMBB);
FastEmitBranch(FalseMBB, DL); FastEmitBranch(FalseMBB, DL);
MBB->addSuccessor(TrueMBB); FuncInfo.MBB->addSuccessor(TrueMBB);
return true; return true;
} }
} }
@ -968,10 +1097,12 @@ bool X86FastISel::X86SelectBranch(const Instruction *I) {
unsigned OpReg = getRegForValue(BI->getCondition()); unsigned OpReg = getRegForValue(BI->getCondition());
if (OpReg == 0) return false; if (OpReg == 0) return false;
BuildMI(MBB, DL, TII.get(X86::TEST8rr)).addReg(OpReg).addReg(OpReg); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8rr))
BuildMI(MBB, DL, TII.get(X86::JNE_4)).addMBB(TrueMBB); .addReg(OpReg).addReg(OpReg);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JNE_4))
.addMBB(TrueMBB);
FastEmitBranch(FalseMBB, DL); FastEmitBranch(FalseMBB, DL);
MBB->addSuccessor(TrueMBB); FuncInfo.MBB->addSuccessor(TrueMBB);
return true; return true;
} }
@ -1028,7 +1159,7 @@ bool X86FastISel::X86SelectShift(const Instruction *I) {
// Fold immediate in shl(x,3). // Fold immediate in shl(x,3).
if (const ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { if (const ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
unsigned ResultReg = createResultReg(RC); unsigned ResultReg = createResultReg(RC);
BuildMI(MBB, DL, TII.get(OpImm), BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpImm),
ResultReg).addReg(Op0Reg).addImm(CI->getZExtValue() & 0xff); ResultReg).addReg(Op0Reg).addImm(CI->getZExtValue() & 0xff);
UpdateValueMap(I, ResultReg); UpdateValueMap(I, ResultReg);
return true; return true;
@ -1036,16 +1167,19 @@ bool X86FastISel::X86SelectShift(const Instruction *I) {
unsigned Op1Reg = getRegForValue(I->getOperand(1)); unsigned Op1Reg = getRegForValue(I->getOperand(1));
if (Op1Reg == 0) return false; if (Op1Reg == 0) return false;
TII.copyRegToReg(*MBB, MBB->end(), CReg, Op1Reg, RC, RC, DL); TII.copyRegToReg(*FuncInfo.MBB, FuncInfo.InsertPt,
CReg, Op1Reg, RC, RC, DL);
// The shift instruction uses X86::CL. If we defined a super-register // The shift instruction uses X86::CL. If we defined a super-register
// of X86::CL, emit a subreg KILL to precisely describe what we're doing here. // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
if (CReg != X86::CL) if (CReg != X86::CL)
BuildMI(MBB, DL, TII.get(TargetOpcode::KILL), X86::CL) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(TargetOpcode::KILL), X86::CL)
.addReg(CReg, RegState::Kill); .addReg(CReg, RegState::Kill);
unsigned ResultReg = createResultReg(RC); unsigned ResultReg = createResultReg(RC);
BuildMI(MBB, DL, TII.get(OpReg), ResultReg).addReg(Op0Reg); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpReg), ResultReg)
.addReg(Op0Reg);
UpdateValueMap(I, ResultReg); UpdateValueMap(I, ResultReg);
return true; return true;
} }
@ -1077,9 +1211,11 @@ bool X86FastISel::X86SelectSelect(const Instruction *I) {
unsigned Op2Reg = getRegForValue(I->getOperand(2)); unsigned Op2Reg = getRegForValue(I->getOperand(2));
if (Op2Reg == 0) return false; if (Op2Reg == 0) return false;
BuildMI(MBB, DL, TII.get(X86::TEST8rr)).addReg(Op0Reg).addReg(Op0Reg); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8rr))
.addReg(Op0Reg).addReg(Op0Reg);
unsigned ResultReg = createResultReg(RC); unsigned ResultReg = createResultReg(RC);
BuildMI(MBB, DL, TII.get(Opc), ResultReg).addReg(Op1Reg).addReg(Op2Reg); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
.addReg(Op1Reg).addReg(Op2Reg);
UpdateValueMap(I, ResultReg); UpdateValueMap(I, ResultReg);
return true; return true;
} }
@ -1093,7 +1229,9 @@ bool X86FastISel::X86SelectFPExt(const Instruction *I) {
unsigned OpReg = getRegForValue(V); unsigned OpReg = getRegForValue(V);
if (OpReg == 0) return false; if (OpReg == 0) return false;
unsigned ResultReg = createResultReg(X86::FR64RegisterClass); unsigned ResultReg = createResultReg(X86::FR64RegisterClass);
BuildMI(MBB, DL, TII.get(X86::CVTSS2SDrr), ResultReg).addReg(OpReg); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(X86::CVTSS2SDrr), ResultReg)
.addReg(OpReg);
UpdateValueMap(I, ResultReg); UpdateValueMap(I, ResultReg);
return true; return true;
} }
@ -1110,7 +1248,9 @@ bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
unsigned OpReg = getRegForValue(V); unsigned OpReg = getRegForValue(V);
if (OpReg == 0) return false; if (OpReg == 0) return false;
unsigned ResultReg = createResultReg(X86::FR32RegisterClass); unsigned ResultReg = createResultReg(X86::FR32RegisterClass);
BuildMI(MBB, DL, TII.get(X86::CVTSD2SSrr), ResultReg).addReg(OpReg); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(X86::CVTSD2SSrr), ResultReg)
.addReg(OpReg);
UpdateValueMap(I, ResultReg); UpdateValueMap(I, ResultReg);
return true; return true;
} }
@ -1145,7 +1285,8 @@ bool X86FastISel::X86SelectTrunc(const Instruction *I) {
const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16) const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16)
? X86::GR16_ABCDRegisterClass : X86::GR32_ABCDRegisterClass; ? X86::GR16_ABCDRegisterClass : X86::GR32_ABCDRegisterClass;
unsigned CopyReg = createResultReg(CopyRC); unsigned CopyReg = createResultReg(CopyRC);
BuildMI(MBB, DL, TII.get(CopyOpc), CopyReg).addReg(InputReg); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CopyOpc), CopyReg)
.addReg(InputReg);
// Then issue an extract_subreg. // Then issue an extract_subreg.
unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8, unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8,
@ -1166,14 +1307,18 @@ bool X86FastISel::X86SelectExtractValue(const Instruction *I) {
switch (CI->getIntrinsicID()) { switch (CI->getIntrinsicID()) {
default: break; default: break;
case Intrinsic::sadd_with_overflow: case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow: case Intrinsic::uadd_with_overflow: {
// Cheat a little. We know that the registers for "add" and "seto" are // Cheat a little. We know that the registers for "add" and "seto" are
// allocated sequentially. However, we only keep track of the register // allocated sequentially. However, we only keep track of the register
// for "add" in the value map. Use extractvalue's index to get the // for "add" in the value map. Use extractvalue's index to get the
// correct register for "seto". // correct register for "seto".
UpdateValueMap(I, lookUpRegForValue(Agg) + *EI->idx_begin()); unsigned OpReg = getRegForValue(Agg);
if (OpReg == 0)
return false;
UpdateValueMap(I, OpReg + *EI->idx_begin());
return true; return true;
} }
}
} }
return false; return false;
@ -1217,7 +1362,7 @@ bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) {
return false; return false;
unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
BuildMI(MBB, DL, TII.get(OpC), ResultReg). BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpC), ResultReg).
addImm(CI->isZero() ? -1ULL : 0); addImm(CI->isZero() ? -1ULL : 0);
UpdateValueMap(&I, ResultReg); UpdateValueMap(&I, ResultReg);
return true; return true;
@ -1231,12 +1376,12 @@ bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) {
const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
// FIXME may need to add RegState::Debug to any registers produced, // FIXME may need to add RegState::Debug to any registers produced,
// although ESP/EBP should be the only ones at the moment. // although ESP/EBP should be the only ones at the moment.
addFullAddress(BuildMI(MBB, DL, II), AM).addImm(0). addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II), AM).
addMetadata(DI->getVariable()); addImm(0).addMetadata(DI->getVariable());
return true; return true;
} }
case Intrinsic::trap: { case Intrinsic::trap: {
BuildMI(MBB, DL, TII.get(X86::TRAP)); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TRAP));
return true; return true;
} }
case Intrinsic::sadd_with_overflow: case Intrinsic::sadd_with_overflow:
@ -1272,7 +1417,8 @@ bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) {
return false; return false;
unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
BuildMI(MBB, DL, TII.get(OpC), ResultReg).addReg(Reg1).addReg(Reg2); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpC), ResultReg)
.addReg(Reg1).addReg(Reg2);
unsigned DestReg1 = UpdateValueMap(&I, ResultReg); unsigned DestReg1 = UpdateValueMap(&I, ResultReg);
// If the add with overflow is an intra-block value then we just want to // If the add with overflow is an intra-block value then we just want to
@ -1290,7 +1436,7 @@ bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) {
unsigned Opc = X86::SETBr; unsigned Opc = X86::SETBr;
if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow) if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow)
Opc = X86::SETOr; Opc = X86::SETOr;
BuildMI(MBB, DL, TII.get(Opc), ResultReg); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg);
return true; return true;
} }
} }
@ -1417,7 +1563,8 @@ bool X86FastISel::X86SelectCall(const Instruction *I) {
// Issue CALLSEQ_START // Issue CALLSEQ_START
unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode(); unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode();
BuildMI(MBB, DL, TII.get(AdjStackDown)).addImm(NumBytes); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackDown))
.addImm(NumBytes);
// Process argument: walk the register/memloc assignments, inserting // Process argument: walk the register/memloc assignments, inserting
// copies / loads. // copies / loads.
@ -1473,8 +1620,8 @@ bool X86FastISel::X86SelectCall(const Instruction *I) {
if (VA.isRegLoc()) { if (VA.isRegLoc()) {
TargetRegisterClass* RC = TLI.getRegClassFor(ArgVT); TargetRegisterClass* RC = TLI.getRegClassFor(ArgVT);
bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), VA.getLocReg(), bool Emitted = TII.copyRegToReg(*FuncInfo.MBB, FuncInfo.InsertPt,
Arg, RC, RC, DL); VA.getLocReg(), Arg, RC, RC, DL);
assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted; assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
Emitted = true; Emitted = true;
RegArgs.push_back(VA.getLocReg()); RegArgs.push_back(VA.getLocReg());
@ -1500,8 +1647,8 @@ bool X86FastISel::X86SelectCall(const Instruction *I) {
if (Subtarget->isPICStyleGOT()) { if (Subtarget->isPICStyleGOT()) {
TargetRegisterClass *RC = X86::GR32RegisterClass; TargetRegisterClass *RC = X86::GR32RegisterClass;
unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), X86::EBX, Base, RC, RC, bool Emitted = TII.copyRegToReg(*FuncInfo.MBB, FuncInfo.InsertPt,
DL); X86::EBX, Base, RC, RC, DL);
assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted; assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
Emitted = true; Emitted = true;
} }
@ -1511,7 +1658,8 @@ bool X86FastISel::X86SelectCall(const Instruction *I) {
if (CalleeOp) { if (CalleeOp) {
// Register-indirect call. // Register-indirect call.
unsigned CallOpc = Subtarget->is64Bit() ? X86::CALL64r : X86::CALL32r; unsigned CallOpc = Subtarget->is64Bit() ? X86::CALL64r : X86::CALL32r;
MIB = BuildMI(MBB, DL, TII.get(CallOpc)).addReg(CalleeOp); MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
.addReg(CalleeOp);
} else { } else {
// Direct call. // Direct call.
@ -1540,7 +1688,8 @@ bool X86FastISel::X86SelectCall(const Instruction *I) {
} }
MIB = BuildMI(MBB, DL, TII.get(CallOpc)).addGlobalAddress(GV, 0, OpFlags); MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
.addGlobalAddress(GV, 0, OpFlags);
} }
// Add an implicit use GOT pointer in EBX. // Add an implicit use GOT pointer in EBX.
@ -1553,7 +1702,8 @@ bool X86FastISel::X86SelectCall(const Instruction *I) {
// Issue CALLSEQ_END // Issue CALLSEQ_END
unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode(); unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode();
BuildMI(MBB, DL, TII.get(AdjStackUp)).addImm(NumBytes).addImm(0); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackUp))
.addImm(NumBytes).addImm(0);
// Now handle call return value (if any). // Now handle call return value (if any).
SmallVector<unsigned, 4> UsedRegs; SmallVector<unsigned, 4> UsedRegs;
@ -1580,7 +1730,7 @@ bool X86FastISel::X86SelectCall(const Instruction *I) {
} }
unsigned ResultReg = createResultReg(DstRC); unsigned ResultReg = createResultReg(DstRC);
bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, bool Emitted = TII.copyRegToReg(*FuncInfo.MBB, FuncInfo.InsertPt, ResultReg,
RVLocs[0].getLocReg(), DstRC, SrcRC, DL); RVLocs[0].getLocReg(), DstRC, SrcRC, DL);
assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted; assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted;
Emitted = true; Emitted = true;
@ -1594,18 +1744,21 @@ bool X86FastISel::X86SelectCall(const Instruction *I) {
unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64; unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
unsigned MemSize = ResVT.getSizeInBits()/8; unsigned MemSize = ResVT.getSizeInBits()/8;
int FI = MFI.CreateStackObject(MemSize, MemSize, false); int FI = MFI.CreateStackObject(MemSize, MemSize, false);
addFrameReference(BuildMI(MBB, DL, TII.get(Opc)), FI).addReg(ResultReg); addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(Opc)), FI)
.addReg(ResultReg);
DstRC = ResVT == MVT::f32 DstRC = ResVT == MVT::f32
? X86::FR32RegisterClass : X86::FR64RegisterClass; ? X86::FR32RegisterClass : X86::FR64RegisterClass;
Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm; Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
ResultReg = createResultReg(DstRC); ResultReg = createResultReg(DstRC);
addFrameReference(BuildMI(MBB, DL, TII.get(Opc), ResultReg), FI); addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(Opc), ResultReg), FI);
} }
if (AndToI1) { if (AndToI1) {
// Mask out all but lowest bit for some call which produces an i1. // Mask out all but lowest bit for some call which produces an i1.
unsigned AndResult = createResultReg(X86::GR8RegisterClass); unsigned AndResult = createResultReg(X86::GR8RegisterClass);
BuildMI(MBB, DL, BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(X86::AND8ri), AndResult).addReg(ResultReg).addImm(1); TII.get(X86::AND8ri), AndResult).addReg(ResultReg).addImm(1);
ResultReg = AndResult; ResultReg = AndResult;
} }
@ -1628,6 +1781,8 @@ X86FastISel::TargetSelectInstruction(const Instruction *I) {
return X86SelectLoad(I); return X86SelectLoad(I);
case Instruction::Store: case Instruction::Store:
return X86SelectStore(I); return X86SelectStore(I);
case Instruction::Ret:
return X86SelectRet(I);
case Instruction::ICmp: case Instruction::ICmp:
case Instruction::FCmp: case Instruction::FCmp:
return X86SelectCmp(I); return X86SelectCmp(I);
@ -1728,7 +1883,8 @@ unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) {
else else
Opc = X86::LEA64r; Opc = X86::LEA64r;
unsigned ResultReg = createResultReg(RC); unsigned ResultReg = createResultReg(RC);
addFullAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM); addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(Opc), ResultReg), AM);
return ResultReg; return ResultReg;
} }
return 0; return 0;
@ -1758,7 +1914,8 @@ unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) {
// Create the load from the constant pool. // Create the load from the constant pool.
unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align); unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
unsigned ResultReg = createResultReg(RC); unsigned ResultReg = createResultReg(RC);
addConstantPoolReference(BuildMI(MBB, DL, TII.get(Opc), ResultReg), addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(Opc), ResultReg),
MCPOffset, PICBase, OpFlag); MCPOffset, PICBase, OpFlag);
return ResultReg; return ResultReg;
@ -1781,7 +1938,8 @@ unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) {
unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r; unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy()); TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
unsigned ResultReg = createResultReg(RC); unsigned ResultReg = createResultReg(RC);
addFullAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM); addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(Opc), ResultReg), AM);
return ResultReg; return ResultReg;
} }

View File

@ -1218,13 +1218,12 @@ bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
bool bool
X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg, X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<EVT> &OutTys, const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
LLVMContext &Context) const { LLVMContext &Context) const {
SmallVector<CCValAssign, 16> RVLocs; SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, getTargetMachine(), CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
RVLocs, Context); RVLocs, Context);
return CCInfo.CheckReturn(OutTys, ArgsFlags, RetCC_X86); return CCInfo.CheckReturn(Outs, RetCC_X86);
} }
SDValue SDValue

View File

@ -740,8 +740,7 @@ namespace llvm {
virtual bool virtual bool
CanLowerReturn(CallingConv::ID CallConv, bool isVarArg, CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<EVT> &OutTys, const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
LLVMContext &Context) const; LLVMContext &Context) const;
void ReplaceATOMIC_BINARY_64(SDNode *N, SmallVectorImpl<SDValue> &Results, void ReplaceATOMIC_BINARY_64(SDNode *N, SmallVectorImpl<SDValue> &Results,

View File

@ -2642,7 +2642,7 @@ MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
if (TM.getSubtarget<X86Subtarget>().is64Bit()) if (TM.getSubtarget<X86Subtarget>().is64Bit())
PICBase = X86::RIP; PICBase = X86::RIP;
else else
// FIXME: PICBase = TM.getInstrInfo()->getGlobalBaseReg(&MF); // FIXME: PICBase = getGlobalBaseReg(&MF);
// This doesn't work for several reasons. // This doesn't work for several reasons.
// 1. GlobalBaseReg may have been spilled. // 1. GlobalBaseReg may have been spilled.
// 2. It may not be live at MI. // 2. It may not be live at MI.
@ -3717,6 +3717,8 @@ unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
/// the global base register value. Output instructions required to /// the global base register value. Output instructions required to
/// initialize the register in the function entry block, if necessary. /// initialize the register in the function entry block, if necessary.
/// ///
/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
///
unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const { unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
assert(!TM.getSubtarget<X86Subtarget>().is64Bit() && assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
"X86-64 PIC uses RIP relative addressing"); "X86-64 PIC uses RIP relative addressing");
@ -3726,30 +3728,10 @@ unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
if (GlobalBaseReg != 0) if (GlobalBaseReg != 0)
return GlobalBaseReg; return GlobalBaseReg;
// Insert the set of GlobalBaseReg into the first MBB of the function // Create the register. The code to initialize it is inserted
MachineBasicBlock &FirstMBB = MF->front(); // later, by the CGBR pass (below).
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
MachineRegisterInfo &RegInfo = MF->getRegInfo(); MachineRegisterInfo &RegInfo = MF->getRegInfo();
unsigned PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass); GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
const TargetInstrInfo *TII = TM.getInstrInfo();
// Operand of MovePCtoStack is completely ignored by asm printer. It's
// only used in JIT code emission as displacement to pc.
BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
// If we're using vanilla 'GOT' PIC style, we should use relative addressing
// not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
if (TM.getSubtarget<X86Subtarget>().isPICStyleGOT()) {
GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
// Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
.addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
X86II::MO_GOT_ABSOLUTE_ADDRESS);
} else {
GlobalBaseReg = PC;
}
X86FI->setGlobalBaseReg(GlobalBaseReg); X86FI->setGlobalBaseReg(GlobalBaseReg);
return GlobalBaseReg; return GlobalBaseReg;
} }
@ -3806,3 +3788,66 @@ void X86InstrInfo::SetSSEDomain(MachineInstr *MI, unsigned Domain) const {
void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
NopInst.setOpcode(X86::NOOP); NopInst.setOpcode(X86::NOOP);
} }
namespace {
/// CGBR - Create Global Base Reg pass. This initializes the PIC
/// global base register for x86-32.
struct CGBR : public MachineFunctionPass {
static char ID;
CGBR() : MachineFunctionPass(&ID) {}
virtual bool runOnMachineFunction(MachineFunction &MF) {
const X86TargetMachine *TM =
static_cast<const X86TargetMachine *>(&MF.getTarget());
assert(!TM->getSubtarget<X86Subtarget>().is64Bit() &&
"X86-64 PIC uses RIP relative addressing");
// Only emit a global base reg in PIC mode.
if (TM->getRelocationModel() != Reloc::PIC_)
return false;
// Insert the set of GlobalBaseReg into the first MBB of the function
MachineBasicBlock &FirstMBB = MF.front();
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
MachineRegisterInfo &RegInfo = MF.getRegInfo();
const X86InstrInfo *TII = TM->getInstrInfo();
unsigned PC;
if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT())
PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
else
PC = TII->getGlobalBaseReg(&MF);
// Operand of MovePCtoStack is completely ignored by asm printer. It's
// only used in JIT code emission as displacement to pc.
BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
// If we're using vanilla 'GOT' PIC style, we should use relative addressing
// not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) {
unsigned GlobalBaseReg = TII->getGlobalBaseReg(&MF);
// Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
.addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
X86II::MO_GOT_ABSOLUTE_ADDRESS);
}
return true;
}
virtual const char *getPassName() const {
return "X86 PIC Global Base Reg Initialization";
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
}
char CGBR::ID = 0;
FunctionPass*
llvm::createGlobalBaseRegPass() { return new CGBR(); }

View File

@ -173,6 +173,10 @@ bool X86TargetMachine::addInstSelector(PassManagerBase &PM,
// Install an instruction selector. // Install an instruction selector.
PM.add(createX86ISelDag(*this, OptLevel)); PM.add(createX86ISelDag(*this, OptLevel));
// For 32-bit, prepend instructions to set the "global base reg" for PIC.
if (!Subtarget.is64Bit())
PM.add(createGlobalBaseRegPass());
return false; return false;
} }

View File

@ -1135,13 +1135,12 @@ XCoreTargetLowering::LowerCCCArguments(SDValue Chain,
bool XCoreTargetLowering:: bool XCoreTargetLowering::
CanLowerReturn(CallingConv::ID CallConv, bool isVarArg, CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<EVT> &OutTys, const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
LLVMContext &Context) const { LLVMContext &Context) const {
SmallVector<CCValAssign, 16> RVLocs; SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, getTargetMachine(), CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
RVLocs, Context); RVLocs, Context);
return CCInfo.CheckReturn(OutTys, ArgsFlags, RetCC_XCore); return CCInfo.CheckReturn(Outs, RetCC_XCore);
} }
SDValue SDValue

View File

@ -193,8 +193,7 @@ namespace llvm {
virtual bool virtual bool
CanLowerReturn(CallingConv::ID CallConv, bool isVarArg, CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<EVT> &OutTys, const SmallVectorImpl<ISD::OutputArg> &ArgsFlags,
const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
LLVMContext &Context) const; LLVMContext &Context) const;
}; };
} }

View File

@ -5,7 +5,7 @@
; CHECK: foo: ; CHECK: foo:
; CHECK-NEXT: movq %rdi, -8(%rsp) ; CHECK-NEXT: movq %rdi, -8(%rsp)
; CHECK-NEXT: movq %rsi, -16(%rsp) ; CHECK-NEXT: movq %rsi, -16(%rsp)
; CHECK: movsd 128(%rsi,%rdi,8), %xmm0 ; CHECK-NEXT: movsd 128(%rsi,%rdi,8), %xmm0
; CHECK-NEXT: ret ; CHECK-NEXT: ret
define double @foo(i64 %x, double* %p) nounwind { define double @foo(i64 %x, double* %p) nounwind {

View File

@ -0,0 +1,33 @@
; RUN: llc -march=x86 -relocation-model=pic
; This should use flds to set the return value.
; CHECK: test0:
; CHECK: flds
; CHECK: ret
@G = external global float
define float @test0() nounwind {
%t = load float* @G
ret float %t
}
; This should pop 4 bytes on return.
; CHECK: test1:
; CHECK: ret $4
define void @test1({i32, i32, i32, i32}* sret %p) nounwind {
store {i32, i32, i32, i32} zeroinitializer, {i32, i32, i32, i32}* %p
ret void
}
; Properly initialize the pic base.
; CHECK: test2:
; CHECK-NOT: HHH
; CHECK: call{{.*}}L2$pb
; CHECK-NEXT: L2$pb:
; CHECK-NEXT: pop
; CHECK: HHH
; CHECK: ret
@HHH = external global i32
define i32 @test2() nounwind {
%t = load i32* @H
ret i32 %t
}

View File

@ -49,9 +49,10 @@ entry:
ret i32 %tmp2 ret i32 %tmp2
} }
define i1 @ptrtoint_i1(i8* %p) nounwind { define void @ptrtoint_i1(i8* %p, i1* %q) nounwind {
%t = ptrtoint i8* %p to i1 %t = ptrtoint i8* %p to i1
ret i1 %t store i1 %t, i1* %q
ret void
} }
define i8* @inttoptr_i1(i1 %p) nounwind { define i8* @inttoptr_i1(i1 %p) nounwind {
%t = inttoptr i1 %p to i8* %t = inttoptr i1 %p to i8*
@ -86,11 +87,8 @@ define i8 @mul_i8(i8 %a) nounwind {
ret i8 %tmp ret i8 %tmp
} }
define void @store_i1(i1* %p, i1 %t) nounwind { define void @load_store_i1(i1* %p, i1* %q) nounwind {
store i1 %t, i1* %p %t = load i1* %p
store i1 %t, i1* %q
ret void ret void
} }
define i1 @load_i1(i1* %p) nounwind {
%t = load i1* %p
ret i1 %t
}

View File

@ -432,7 +432,7 @@ void FastISelMap::PrintFunctionDefinitions(raw_ostream &OS) {
for (unsigned i = 0; i < Memo.PhysRegs->size(); ++i) { for (unsigned i = 0; i < Memo.PhysRegs->size(); ++i) {
if ((*Memo.PhysRegs)[i] != "") if ((*Memo.PhysRegs)[i] != "")
OS << " TII.copyRegToReg(*MBB, MBB->end(), " OS << " TII.copyRegToReg(*FuncInfo.MBB, FuncInfo.InsertPt, "
<< (*Memo.PhysRegs)[i] << ", Op" << i << ", " << (*Memo.PhysRegs)[i] << ", Op" << i << ", "
<< "TM.getRegisterInfo()->getPhysicalRegisterRegClass(" << "TM.getRegisterInfo()->getPhysicalRegisterRegClass("
<< (*Memo.PhysRegs)[i] << "), " << (*Memo.PhysRegs)[i] << "), "
@ -526,7 +526,7 @@ void FastISelMap::PrintFunctionDefinitions(raw_ostream &OS) {
for (unsigned i = 0; i < Memo.PhysRegs->size(); ++i) { for (unsigned i = 0; i < Memo.PhysRegs->size(); ++i) {
if ((*Memo.PhysRegs)[i] != "") if ((*Memo.PhysRegs)[i] != "")
OS << " TII.copyRegToReg(*MBB, MBB->end(), " OS << " TII.copyRegToReg(*FuncInfo.MBB, FuncInfo.InsertPt, "
<< (*Memo.PhysRegs)[i] << ", Op" << i << ", " << (*Memo.PhysRegs)[i] << ", Op" << i << ", "
<< "TM.getRegisterInfo()->getPhysicalRegisterRegClass(" << "TM.getRegisterInfo()->getPhysicalRegisterRegClass("
<< (*Memo.PhysRegs)[i] << "), " << (*Memo.PhysRegs)[i] << "), "