[docs][ORC] Update the laziness section of the ORCv2 design doc.

This updates the discussion of lazy reexports, fixes a TBD for a usage example,
and adds a reference to the fully worked lazy reexports example that was added
in e9e26c01cd.
This commit is contained in:
Lang Hames 2020-01-15 11:30:04 -08:00
parent 527281a843
commit d629525597
1 changed files with 42 additions and 11 deletions

View File

@ -296,18 +296,49 @@ TBD: absolute symbols, aliases, off-the-shelf layers.
Laziness
========
Laziness in ORC is provided by a utility called "lazy-reexports". The aim of
this utility is to re-use the synchronization provided by the symbol lookup
mechanism to make it safe to lazily compile functions, even if calls to the
stub occur simultaneously on multiple threads of JIT'd code. It does this by
reducing lazy compilation to symbol lookup: The lazy stub performs a lookup of
its underlying definition on first call, updating the function body pointer
once the definition is available. If additional calls arrive on other threads
while compilation is ongoing they will be safely blocked by the normal lookup
synchronization guarantee (no result until the result is safe) and can also
proceed as soon as compilation completes.
Laziness in ORC is provided by a utility called "lazy reexports". A lazy
reexport is similar to a regular reexport or alias: It provides a new name for
an existing symbol. Unlike regular reexports however, lookups of lazy reexports
do not trigger immediate materialization of the reexported symbol. Instead, they
only trigger materialization of a function stub. This function stub is
initialized to point at a *lazy call-through*, which provides reentry into the
JIT. If the stub is called at runtime then the lazy call-through will look up
the reexported symbol (triggering materialization for it if necessary), update
the stub (to call directly to the reexported symbol on subsequent calls), and
then return via the reexported symbol. By re-using the existing symbol lookup
mechanism, lazy reexports inherit the same concurrency guarantees: calls to lazy
reexports can be made from multiple threads concurrently, and the reexported
symbol can be any state of compilation (uncompiled, already in the process of
being compiled, or already compiled) and the call will succeed. This allows
laziness to be safely mixed with features like remote compilation, concurrent
compilation, concurrent JIT'd code, and speculative compilation.
TBD: Usage example.
There is one other key difference between regular reexports and lazy reexports
that some clients must be aware of: The address of a lazy reexport will be
*different* from the address of the reexported symbol (whereas a regular
reexport is guaranteed to have the same address as the reexported symbol).
Clients who care about pointer equality will generally want to use the address
of the reexport as the canonical address of the reexported symbol. This will
allow the address to be taken without forcing materialization of the reexport.
Usage example:
If JITDylib ``JD`` contains definitions for symbols ``foo_body`` and
``bar_body``, we can create lazy entry points ``Foo`` and ``Bar`` in JITDylib
``JD2`` by calling:
.. code-block:: c++
auto ReexportFlags = JITSymbolFlags::Exported | JITSymbolFlags::Callable;
JD2.define(
lazyReexports(CallThroughMgr, StubsMgr, JD,
SymbolAliasMap({
{ Mangle("foo"), { Mangle("foo_body"), ReexportedFlags } },
{ Mangle("bar"), { Mangle("bar_body"), ReexportedFlags } }
}));
A full example of how to use lazyReexports with the LLJIT class can be found at
``llvm_project/llvm/examples/LLJITExamples/LLJITWithLazyReexports``.
Supporting Custom Compilers
===========================