Cleanup in CStringChecker. Now properly bifurcates the state for zero/nonzero sizes.

llvm-svn: 107935
This commit is contained in:
Jordy Rose 2010-07-08 23:57:29 +00:00
parent f469307c77
commit d5d2e50f3e
2 changed files with 183 additions and 143 deletions

View File

@ -21,35 +21,40 @@ using namespace clang;
namespace { namespace {
class CStringChecker : public CheckerVisitor<CStringChecker> { class CStringChecker : public CheckerVisitor<CStringChecker> {
BugType *BT_Bounds; BugType *BT_Null, *BT_Bounds, *BT_Overlap;
BugType *BT_Overlap;
public: public:
CStringChecker() CStringChecker()
: BT_Bounds(0), BT_Overlap(0) {} : BT_Null(0), BT_Bounds(0), BT_Overlap(0) {}
static void *getTag() { static int tag; return &tag; } static void *getTag() { static int tag; return &tag; }
bool EvalCallExpr(CheckerContext &C, const CallExpr *CE); bool EvalCallExpr(CheckerContext &C, const CallExpr *CE);
typedef const GRState *(CStringChecker::*FnCheck)(CheckerContext &, typedef void (CStringChecker::*FnCheck)(CheckerContext &, const CallExpr *);
const CallExpr *);
const GRState *EvalMemcpy(CheckerContext &C, const CallExpr *CE); void EvalMemcpy(CheckerContext &C, const CallExpr *CE);
const GRState *EvalMemmove(CheckerContext &C, const CallExpr *CE); void EvalMemmove(CheckerContext &C, const CallExpr *CE);
const GRState *EvalMemcmp(CheckerContext &C, const CallExpr *CE); void EvalBcopy(CheckerContext &C, const CallExpr *CE);
const GRState *EvalBcopy(CheckerContext &C, const CallExpr *CE); void EvalCopyCommon(CheckerContext &C, const GRState *state,
const Expr *Size, const Expr *Source, const Expr *Dest,
bool Restricted = false);
void EvalMemcmp(CheckerContext &C, const CallExpr *CE);
// Utility methods // Utility methods
std::pair<const GRState*, const GRState*>
AssumeZero(CheckerContext &C, const GRState *state, SVal V, QualType Ty);
const GRState *CheckNonNull(CheckerContext &C, const GRState *state, const GRState *CheckNonNull(CheckerContext &C, const GRState *state,
const Stmt *S, SVal l); const Expr *S, SVal l);
const GRState *CheckLocation(CheckerContext &C, const GRState *state, const GRState *CheckLocation(CheckerContext &C, const GRState *state,
const Stmt *S, SVal l); const Expr *S, SVal l);
const GRState *CheckBufferAccess(CheckerContext &C, const GRState *state, const GRState *CheckBufferAccess(CheckerContext &C, const GRState *state,
const Expr *Size, const Expr *Size,
const Expr *FirstBuf, const Expr *FirstBuf,
const Expr *SecondBuf = NULL); const Expr *SecondBuf = NULL);
const GRState *CheckOverlap(CheckerContext &C, const GRState *state, const GRState *CheckOverlap(CheckerContext &C, const GRState *state,
const Expr *First, const Expr *Second, const Expr *Size, const Expr *First,
const Expr *Size); const Expr *Second);
void EmitOverlapBug(CheckerContext &C, const GRState *state, void EmitOverlapBug(CheckerContext &C, const GRState *state,
const Stmt *First, const Stmt *Second); const Stmt *First, const Stmt *Second);
}; };
@ -59,34 +64,47 @@ void clang::RegisterCStringChecker(GRExprEngine &Eng) {
Eng.registerCheck(new CStringChecker()); Eng.registerCheck(new CStringChecker());
} }
const GRState *CStringChecker::CheckNonNull(CheckerContext &C, //===----------------------------------------------------------------------===//
const GRState *state, // Individual checks and utility methods.
const Stmt *S, SVal l) { //===----------------------------------------------------------------------===//
// FIXME: This method just checks, of course, that the value is non-null.
// It should maybe be refactored and combined with AttrNonNullChecker. std::pair<const GRState*, const GRState*>
if (l.isUnknownOrUndef()) CStringChecker::AssumeZero(CheckerContext &C, const GRState *state, SVal V,
return state; QualType Ty) {
DefinedSVal *Val = dyn_cast<DefinedSVal>(&V);
if (!Val)
return std::pair<const GRState*, const GRState *>(state, state);
ValueManager &ValMgr = C.getValueManager(); ValueManager &ValMgr = C.getValueManager();
SValuator &SV = ValMgr.getSValuator(); SValuator &SV = ValMgr.getSValuator();
Loc Null = ValMgr.makeNull(); DefinedOrUnknownSVal Zero = ValMgr.makeZeroVal(Ty);
DefinedOrUnknownSVal LocIsNull = SV.EvalEQ(state, cast<Loc>(l), Null); DefinedOrUnknownSVal ValIsZero = SV.EvalEQ(state, *Val, Zero);
const GRState *stateIsNull, *stateIsNonNull; return state->Assume(ValIsZero);
llvm::tie(stateIsNull, stateIsNonNull) = state->Assume(LocIsNull); }
if (stateIsNull && !stateIsNonNull) { const GRState *CStringChecker::CheckNonNull(CheckerContext &C,
ExplodedNode *N = C.GenerateSink(stateIsNull); const GRState *state,
const Expr *S, SVal l) {
// If a previous check has failed, propagate the failure.
if (!state)
return NULL;
const GRState *stateNull, *stateNonNull;
llvm::tie(stateNull, stateNonNull) = AssumeZero(C, state, l, S->getType());
if (stateNull && !stateNonNull) {
ExplodedNode *N = C.GenerateSink(stateNull);
if (!N) if (!N)
return NULL; return NULL;
if (!BT_Bounds) if (!BT_Null)
BT_Bounds = new BuiltinBug("API", BT_Null = new BuiltinBug("API",
"Null pointer argument in call to byte string function"); "Null pointer argument in call to byte string function");
// Generate a report for this bug. // Generate a report for this bug.
BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Bounds); BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Null);
EnhancedBugReport *report = new EnhancedBugReport(*BT, EnhancedBugReport *report = new EnhancedBugReport(*BT,
BT->getDescription(), N); BT->getDescription(), N);
@ -97,14 +115,18 @@ const GRState *CStringChecker::CheckNonNull(CheckerContext &C,
} }
// From here on, assume that the value is non-null. // From here on, assume that the value is non-null.
assert(stateIsNonNull); assert(stateNonNull);
return stateIsNonNull; return stateNonNull;
} }
// FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor? // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor?
const GRState *CStringChecker::CheckLocation(CheckerContext &C, const GRState *CStringChecker::CheckLocation(CheckerContext &C,
const GRState *state, const GRState *state,
const Stmt *S, SVal l) { const Expr *S, SVal l) {
// If a previous check has failed, propagate the failure.
if (!state)
return NULL;
// Check for out of bound array element access. // Check for out of bound array element access.
const MemRegion *R = l.getAsRegion(); const MemRegion *R = l.getAsRegion();
if (!R) if (!R)
@ -161,6 +183,10 @@ const GRState *CStringChecker::CheckBufferAccess(CheckerContext &C,
const Expr *Size, const Expr *Size,
const Expr *FirstBuf, const Expr *FirstBuf,
const Expr *SecondBuf) { const Expr *SecondBuf) {
// If a previous check has failed, propagate the failure.
if (!state)
return NULL;
ValueManager &VM = C.getValueManager(); ValueManager &VM = C.getValueManager();
SValuator &SV = VM.getSValuator(); SValuator &SV = VM.getSValuator();
ASTContext &Ctx = C.getASTContext(); ASTContext &Ctx = C.getASTContext();
@ -168,38 +194,18 @@ const GRState *CStringChecker::CheckBufferAccess(CheckerContext &C,
QualType SizeTy = Ctx.getSizeType(); QualType SizeTy = Ctx.getSizeType();
QualType PtrTy = Ctx.getPointerType(Ctx.CharTy); QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
// Get the access length and make sure it is known.
SVal LengthVal = state->getSVal(Size);
NonLoc *Length = dyn_cast<NonLoc>(&LengthVal);
if (!Length)
return state;
// If the length is zero, it doesn't matter what the two buffers are.
DefinedOrUnknownSVal Zero = VM.makeZeroVal(SizeTy);
DefinedOrUnknownSVal LengthIsZero = SV.EvalEQ(state, *Length, Zero);
const GRState *stateZeroLength, *stateNonZeroLength;
llvm::tie(stateZeroLength, stateNonZeroLength) = state->Assume(LengthIsZero);
if (stateZeroLength && !stateNonZeroLength)
return stateZeroLength;
// FIXME: At this point all we know is it's *possible* for the length to be
// nonzero; we don't know it for sure. Unfortunately, that means the next few
// tests are incorrect for the edge cases in which a buffer is null or invalid
// but the size argument was set to zero in some way that we couldn't track.
// What we should really do is bifurcate the state here, but that doesn't
// match the way CheckBufferAccess is being used.
// From here on, we're going to pretend that even if the length is zero, the
// buffer access rules still apply. That means the buffer must be non-NULL,
// and the value at buffer[size-1] must be valid.
// Check that the first buffer is non-null. // Check that the first buffer is non-null.
SVal BufVal = state->getSVal(FirstBuf); SVal BufVal = state->getSVal(FirstBuf);
state = CheckNonNull(C, state, FirstBuf, BufVal); state = CheckNonNull(C, state, FirstBuf, BufVal);
if (!state) if (!state)
return NULL; return NULL;
// Get the access length and make sure it is known.
SVal LengthVal = state->getSVal(Size);
NonLoc *Length = dyn_cast<NonLoc>(&LengthVal);
if (!Length)
return state;
// Compute the offset of the last element to be accessed: size-1. // Compute the offset of the last element to be accessed: size-1.
NonLoc One = cast<NonLoc>(VM.makeIntVal(1, SizeTy)); NonLoc One = cast<NonLoc>(VM.makeIntVal(1, SizeTy));
NonLoc LastOffset = cast<NonLoc>(SV.EvalBinOpNN(state, BinaryOperator::Sub, NonLoc LastOffset = cast<NonLoc>(SV.EvalBinOpNN(state, BinaryOperator::Sub,
@ -234,13 +240,17 @@ const GRState *CStringChecker::CheckBufferAccess(CheckerContext &C,
const GRState *CStringChecker::CheckOverlap(CheckerContext &C, const GRState *CStringChecker::CheckOverlap(CheckerContext &C,
const GRState *state, const GRState *state,
const Expr *Size,
const Expr *First, const Expr *First,
const Expr *Second, const Expr *Second) {
const Expr *Size) {
// Do a simple check for overlap: if the two arguments are from the same // Do a simple check for overlap: if the two arguments are from the same
// buffer, see if the end of the first is greater than the start of the second // buffer, see if the end of the first is greater than the start of the second
// or vice versa. // or vice versa.
// If a previous check has failed, propagate the failure.
if (!state)
return NULL;
ValueManager &VM = state->getStateManager().getValueManager(); ValueManager &VM = state->getStateManager().getValueManager();
SValuator &SV = VM.getSValuator(); SValuator &SV = VM.getSValuator();
ASTContext &Ctx = VM.getContext(); ASTContext &Ctx = VM.getContext();
@ -359,37 +369,60 @@ void CStringChecker::EmitOverlapBug(CheckerContext &C, const GRState *state,
C.EmitReport(report); C.EmitReport(report);
} }
const GRState * //===----------------------------------------------------------------------===//
CStringChecker::EvalMemcpy(CheckerContext &C, const CallExpr *CE) { // Evaluation of individual function calls.
//===----------------------------------------------------------------------===//
void CStringChecker::EvalCopyCommon(CheckerContext &C, const GRState *state,
const Expr *Size, const Expr *Dest,
const Expr *Source, bool Restricted) {
// See if the size argument is zero.
SVal SizeVal = state->getSVal(Size);
QualType SizeTy = Size->getType();
const GRState *StZeroSize, *StNonZeroSize;
llvm::tie(StZeroSize, StNonZeroSize) = AssumeZero(C, state, SizeVal, SizeTy);
// If the size is zero, there won't be any actual memory access.
if (StZeroSize)
C.addTransition(StZeroSize);
// If the size can be nonzero, we have to check the other arguments.
if (StNonZeroSize) {
state = StNonZeroSize;
state = CheckBufferAccess(C, state, Size, Dest, Source);
if (Restricted)
state = CheckOverlap(C, state, Size, Dest, Source);
if (state)
C.addTransition(state);
}
}
void CStringChecker::EvalMemcpy(CheckerContext &C, const CallExpr *CE) {
// void *memcpy(void *restrict dst, const void *restrict src, size_t n); // void *memcpy(void *restrict dst, const void *restrict src, size_t n);
// memcpy() is like memmove(), but with the extra requirement that the buffers
// not overlap.
const GRState *state = EvalMemmove(C, CE);
if (!state)
return NULL;
return CheckOverlap(C, state, CE->getArg(0), CE->getArg(1), CE->getArg(2));
}
const GRState *
CStringChecker::EvalMemmove(CheckerContext &C, const CallExpr *CE) {
// void *memmove(void *dst, const void *src, size_t n);
const Expr *Dest = CE->getArg(0);
const Expr *Source = CE->getArg(1);
const Expr *Size = CE->getArg(2);
// Check that the accesses will stay in bounds.
const GRState *state = C.getState();
state = CheckBufferAccess(C, state, Size, Dest, Source);
if (!state)
return NULL;
// The return value is the address of the destination buffer. // The return value is the address of the destination buffer.
return state->BindExpr(CE, state->getSVal(Dest)); const Expr *Dest = CE->getArg(0);
const GRState *state = C.getState();
state = state->BindExpr(CE, state->getSVal(Dest));
EvalCopyCommon(C, state, CE->getArg(2), Dest, CE->getArg(1), true);
} }
const GRState * void CStringChecker::EvalMemmove(CheckerContext &C, const CallExpr *CE) {
CStringChecker::EvalMemcmp(CheckerContext &C, const CallExpr *CE) { // void *memmove(void *dst, const void *src, size_t n);
// The return value is the address of the destination buffer.
const Expr *Dest = CE->getArg(0);
const GRState *state = C.getState();
state = state->BindExpr(CE, state->getSVal(Dest));
EvalCopyCommon(C, state, CE->getArg(2), Dest, CE->getArg(1));
}
void CStringChecker::EvalBcopy(CheckerContext &C, const CallExpr *CE) {
// void bcopy(const void *src, void *dst, size_t n);
EvalCopyCommon(C, C.getState(), CE->getArg(2), CE->getArg(1), CE->getArg(0));
}
void CStringChecker::EvalMemcmp(CheckerContext &C, const CallExpr *CE) {
// int memcmp(const void *s1, const void *s2, size_t n); // int memcmp(const void *s1, const void *s2, size_t n);
const Expr *Left = CE->getArg(0); const Expr *Left = CE->getArg(0);
const Expr *Right = CE->getArg(1); const Expr *Right = CE->getArg(1);
@ -398,66 +431,67 @@ CStringChecker::EvalMemcmp(CheckerContext &C, const CallExpr *CE) {
const GRState *state = C.getState(); const GRState *state = C.getState();
ValueManager &ValMgr = C.getValueManager(); ValueManager &ValMgr = C.getValueManager();
SValuator &SV = ValMgr.getSValuator(); SValuator &SV = ValMgr.getSValuator();
const GRState *stateTrue, *stateFalse;
// If we know the size argument is 0, we know the result is 0, and we don't // See if the size argument is zero.
// have to check either of the buffers. (Another checker will have already SVal SizeVal = state->getSVal(Size);
// made sure the size isn't undefined, so we can cast it safely.) QualType SizeTy = Size->getType();
DefinedOrUnknownSVal SizeV = cast<DefinedOrUnknownSVal>(state->getSVal(Size));
DefinedOrUnknownSVal Zero = ValMgr.makeZeroVal(Size->getType());
DefinedOrUnknownSVal SizeIsZero = SV.EvalEQ(state, SizeV, Zero); const GRState *StZeroSize, *StNonZeroSize;
llvm::tie(stateTrue, stateFalse) = state->Assume(SizeIsZero); llvm::tie(StZeroSize, StNonZeroSize) = AssumeZero(C, state, SizeVal, SizeTy);
// FIXME: This should really cause a bifurcation of the state, but that would // If the size can be zero, the result will be 0 in that case, and we don't
// require changing the contract to allow the various Eval* methods to add // have to check either of the buffers.
// transitions themselves. Currently that isn't the case because some of these if (StZeroSize) {
// functions are "basically" like another function, but with one or two state = StZeroSize;
// additional restrictions (like memcpy and memmove). state = state->BindExpr(CE, ValMgr.makeZeroVal(CE->getType()));
C.addTransition(state);
if (stateTrue && !stateFalse)
return stateTrue->BindExpr(CE, ValMgr.makeZeroVal(CE->getType()));
// At this point, we still don't know that the size is nonzero, only that it
// might be.
// If we know the two buffers are the same, we know the result is 0.
// First, get the two buffers' addresses. Another checker will have already
// made sure they're not undefined.
DefinedOrUnknownSVal LBuf = cast<DefinedOrUnknownSVal>(state->getSVal(Left));
DefinedOrUnknownSVal RBuf = cast<DefinedOrUnknownSVal>(state->getSVal(Right));
// See if they are the same.
DefinedOrUnknownSVal SameBuf = SV.EvalEQ(state, LBuf, RBuf);
llvm::tie(stateTrue, stateFalse) = state->Assume(SameBuf);
// FIXME: This should also bifurcate the state (as above).
// If the two arguments are known to be the same buffer, we know the result is
// zero, and we only need to check one size.
if (stateTrue && !stateFalse) {
state = CheckBufferAccess(C, stateTrue, Size, Left);
return state->BindExpr(CE, ValMgr.makeZeroVal(CE->getType()));
} }
// At this point, we don't know if the arguments are the same or not -- we // If the size can be nonzero, we have to check the other arguments.
// only know that they *might* be different. We can't make any assumptions. if (StNonZeroSize) {
state = StNonZeroSize;
// The return value is the comparison result, which we don't know. // If we know the two buffers are the same, we know the result is 0.
unsigned Count = C.getNodeBuilder().getCurrentBlockCount(); // First, get the two buffers' addresses. Another checker will have already
SVal RetVal = ValMgr.getConjuredSymbolVal(NULL, CE, CE->getType(), Count); // made sure they're not undefined.
state = state->BindExpr(CE, RetVal); DefinedOrUnknownSVal LV = cast<DefinedOrUnknownSVal>(state->getSVal(Left));
DefinedOrUnknownSVal RV = cast<DefinedOrUnknownSVal>(state->getSVal(Right));
// Check that the accesses will stay in bounds. // See if they are the same.
return CheckBufferAccess(C, state, Size, Left, Right); DefinedOrUnknownSVal SameBuf = SV.EvalEQ(state, LV, RV);
const GRState *StSameBuf, *StNotSameBuf;
llvm::tie(StSameBuf, StNotSameBuf) = state->Assume(SameBuf);
// If the two arguments might be the same buffer, we know the result is zero,
// and we only need to check one size.
if (StSameBuf) {
state = StSameBuf;
state = CheckBufferAccess(C, state, Size, Left);
if (state) {
state = StSameBuf->BindExpr(CE, ValMgr.makeZeroVal(CE->getType()));
C.addTransition(state);
}
}
// If the two arguments might be different buffers, we have to check the
// size of both of them.
if (StNotSameBuf) {
state = StNotSameBuf;
state = CheckBufferAccess(C, state, Size, Left, Right);
if (state) {
// The return value is the comparison result, which we don't know.
unsigned Count = C.getNodeBuilder().getCurrentBlockCount();
SVal CmpV = ValMgr.getConjuredSymbolVal(NULL, CE, CE->getType(), Count);
state = state->BindExpr(CE, CmpV);
C.addTransition(state);
}
}
}
} }
const GRState * //===----------------------------------------------------------------------===//
CStringChecker::EvalBcopy(CheckerContext &C, const CallExpr *CE) { // The driver method.
// void bcopy(const void *src, void *dst, size_t n); //===----------------------------------------------------------------------===//
return CheckBufferAccess(C, C.getState(),
CE->getArg(2), CE->getArg(0), CE->getArg(1));
}
bool CStringChecker::EvalCallExpr(CheckerContext &C, const CallExpr *CE) { bool CStringChecker::EvalCallExpr(CheckerContext &C, const CallExpr *CE) {
// Get the callee. All the functions we care about are C functions // Get the callee. All the functions we care about are C functions
@ -481,13 +515,11 @@ bool CStringChecker::EvalCallExpr(CheckerContext &C, const CallExpr *CE) {
.Case("bcopy", &CStringChecker::EvalBcopy) .Case("bcopy", &CStringChecker::EvalBcopy)
.Default(NULL); .Default(NULL);
// If the callee isn't a string function, let another checker handle it.
if (!EvalFunction) if (!EvalFunction)
// The callee isn't a string function. Let another checker handle it.
return false; return false;
const GRState *NewState = (this->*EvalFunction)(C, CE); // Check and evaluate the call.
(this->*EvalFunction)(C, CE);
if (NewState)
C.addTransition(NewState);
return true; return true;
} }

View File

@ -238,6 +238,14 @@ void memcmp5 (char *input) {
(void)*(char*)0; // no-warning (void)*(char*)0; // no-warning
} }
void memcmp6 (char *a, char *b, size_t n) {
int result = memcmp(a, b, n);
if (result != 0)
return;
if (n == 0)
(void)*(char*)0; // expected-warning{{null}}
}
//===----------------------------------------------------------------------=== //===----------------------------------------------------------------------===
// bcopy() // bcopy()
//===----------------------------------------------------------------------=== //===----------------------------------------------------------------------===