Complete AffineExprFlattener based simplification for floordiv/ceildiv.

- handle floordiv/ceildiv in AffineExprFlattener; update the simplification to
  work even if mod/floordiv/ceildiv expressions appearing in the tree can't be eliminated.
- refactor the flattening / analysis to move it out of lib/Transforms/
- fix MutableAffineMap::isMultipleOf
- add AffineBinaryOpExpr:getAdd/getMul/... utility methods

PiperOrigin-RevId: 211540536
This commit is contained in:
Uday Bondhugula 2018-09-04 15:55:38 -07:00 committed by jpienaar
parent b7fc834856
commit d5416f299e
5 changed files with 339 additions and 186 deletions

View File

@ -38,6 +38,12 @@ class MLIRContext;
class MLValue;
class HyperRectangularSet;
/// Simplify an affine expression through flattening and some amount of
/// simple analysis. This has complexity linear in the number of nodes in
/// 'expr'. Return nullptr, if the expression can't be simplified.
AffineExpr *simplifyAffineExpr(AffineExpr *expr, unsigned numDims,
unsigned numSymbols, MLIRContext *context);
/// A mutable affine map. Its affine expressions are however unique.
struct MutableAffineMap {
public:

View File

@ -103,6 +103,26 @@ class AffineBinaryOpExpr : public AffineExpr {
public:
static AffineExpr *get(Kind kind, AffineExpr *lhs, AffineExpr *rhs,
MLIRContext *context);
static AffineExpr *getAdd(AffineExpr *lhs, AffineExpr *rhs,
MLIRContext *context) {
return get(AffineExpr::Kind::Add, lhs, rhs, context);
}
static AffineExpr *getMul(AffineExpr *lhs, AffineExpr *rhs,
MLIRContext *context) {
return get(AffineExpr::Kind::Mul, lhs, rhs, context);
}
static AffineExpr *getFloorDiv(AffineExpr *lhs, AffineExpr *rhs,
MLIRContext *context) {
return get(AffineExpr::Kind::FloorDiv, lhs, rhs, context);
}
static AffineExpr *getCeilDiv(AffineExpr *lhs, AffineExpr *rhs,
MLIRContext *context) {
return get(AffineExpr::Kind::CeilDiv, lhs, rhs, context);
}
static AffineExpr *getMod(AffineExpr *lhs, AffineExpr *rhs,
MLIRContext *context) {
return get(AffineExpr::Kind::Mod, lhs, rhs, context);
}
AffineExpr *getLHS() const { return lhs; }
AffineExpr *getRHS() const { return rhs; }

View File

@ -21,16 +21,290 @@
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/StandardOps.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/Support/raw_ostream.h"
namespace mlir {
using namespace mlir;
/// Constructs an affine expression from a flat ArrayRef. If there are local
/// identifiers (neither dimensional nor symbolic) that appear in the sum of
/// products expression, 'localExprs' is expected to have the AffineExpr for it,
/// and is substituted into. The ArrayRef 'eq' is expected to be in the format
/// [dims, symbols, locals, constant term].
static AffineExpr *toAffineExpr(ArrayRef<int64_t> eq, unsigned numDims,
unsigned numSymbols,
ArrayRef<AffineExpr *> localExprs,
MLIRContext *context) {
unsigned numLocals = eq.size() - numDims - numSymbols - 1;
assert(numLocals == localExprs.size() &&
"unexpected number of local expressions");
AffineExpr *expr = AffineConstantExpr::get(0, context);
// Dimensions and symbols.
for (unsigned j = 0; j < numDims + numSymbols; j++) {
if (eq[j] != 0) {
AffineExpr *id =
j < numDims
? static_cast<AffineExpr *>(AffineDimExpr::get(j, context))
: AffineSymbolExpr::get(j - numDims, context);
auto *term = AffineBinaryOpExpr::getMul(
AffineConstantExpr::get(eq[j], context), id, context);
expr = AffineBinaryOpExpr::getAdd(expr, term, context);
}
}
// Local identifiers.
for (unsigned j = numDims + numSymbols; j < eq.size() - 1; j++) {
if (eq[j] != 0) {
auto *term = AffineBinaryOpExpr::getMul(
AffineConstantExpr::get(eq[j], context),
localExprs[j - numDims - numSymbols], context);
expr = AffineBinaryOpExpr::getAdd(expr, term, context);
}
}
// Constant term.
unsigned constTerm = eq[eq.size() - 1];
if (constTerm != 0)
expr = AffineBinaryOpExpr::getAdd(
expr, AffineConstantExpr::get(constTerm, context), context);
return expr;
}
namespace {
// This class is used to flatten a pure affine expression (AffineExpr *, which
// is in a tree form) into a sum of products (w.r.t constants) when possible,
// and in that process simplifying the expression. The simplification performed
// includes the accumulation of contributions for each dimensional and symbolic
// identifier together, the simplification of floordiv/ceildiv/mod exprssions
// and other simplifications that in turn happen as a result. A simplification
// that this flattening naturally performs is of simplifying the numerator and
// denominator of floordiv/ceildiv, and folding a modulo expression to a zero,
// if possible. Three examples are below:
//
// (d0 + 3 * d1) + d0) - 2 * d1) - d0 simplified to d0 + d1
// (d0 - d0 mod 4 + 4) mod 4 simplified to 0.
// (3*d0 + 2*d1 + d0) floordiv 2 + d1 simplified to 2*d0 + 2*d1
//
// For a modulo, floordiv, or a ceildiv expression, an additional identifier
// (called a local identifier) is introduced to rewrite it as a sum of products
// (w.r.t constants). For example, for the second example above, d0 % 4 is
// replaced by d0 - 4*q with q being introduced: the expression then simplifies
// to: (d0 - (d0 - 4q) + 4) = 4q + 4, modulo of which w.r.t 4 simplifies to
// zero. Note that an affine expression may not always be expressible in a sum
// of products form due to the presence of modulo/floordiv/ceildiv expressions
// that may not be eliminated after simplification; in such cases, the final
// expression can be reconstructed by replacing the local identifier with its
// explicit form stored in localExprs (note that the explicit form itself would
// have been simplified and not necessarily the original form).
//
// This is a linear time post order walk for an affine expression that attempts
// the above simplifications through visit methods, with partial results being
// stored in 'operandExprStack'. When a parent expr is visited, the flattened
// expressions corresponding to its two operands would already be on the stack -
// the parent expr looks at the two flattened expressions and combines the two.
// It pops off the operand expressions and pushes the combined result (although
// this is done in-place on its LHS operand expr. When the walk is completed,
// the flattened form of the top-level expression would be left on the stack.
//
class AffineExprFlattener : public AffineExprVisitor<AffineExprFlattener> {
public:
// Flattend expression layout: [dims, symbols, locals, constant]
// Stack that holds the LHS and RHS operands while visiting a binary op expr.
// In future, consider adding a prepass to determine how big the SmallVector's
// will be, and linearize this to std::vector<int64_t> to prevent
// SmallVector moves on re-allocation.
std::vector<SmallVector<int64_t, 32>> operandExprStack;
inline unsigned getNumCols() const {
return numDims + numSymbols + numLocals + 1;
}
unsigned numDims;
unsigned numSymbols;
// Number of newly introduced identifiers to flatten mod/floordiv/ceildiv
// expressions that could not be simplified.
unsigned numLocals;
// AffineExpr's corresponding to the floordiv/ceildiv/mod expressions for
// which new identifiers were introduced; if the latter do not get canceled
// out, these expressions are needed to reconstruct the AffineExpr * / tree
// form. Note that these expressions themselves would have been simplified
// (recursively) by this pass. Eg. d0 + (d0 + 2*d1 + d0) ceildiv 4 will be
// simplified to d0 + q, where q = (d0 + d1) ceildiv 2. (d0 + d1) ceildiv 2
// would be the local expression stored for q.
SmallVector<AffineExpr *, 4> localExprs;
MLIRContext *context;
AffineExprFlattener(unsigned numDims, unsigned numSymbols,
MLIRContext *context)
: numDims(numDims), numSymbols(numSymbols), numLocals(0),
context(context) {
operandExprStack.reserve(8);
}
void visitMulExpr(AffineBinaryOpExpr *expr) {
assert(operandExprStack.size() >= 2);
// This is a pure affine expr; the RHS will be a constant.
assert(isa<AffineConstantExpr>(expr->getRHS()));
// Get the RHS constant.
auto rhsConst = operandExprStack.back()[getConstantIndex()];
operandExprStack.pop_back();
// Update the LHS in place instead of pop and push.
auto &lhs = operandExprStack.back();
for (unsigned i = 0, e = lhs.size(); i < e; i++) {
lhs[i] *= rhsConst;
}
}
void visitAddExpr(AffineBinaryOpExpr *expr) {
assert(operandExprStack.size() >= 2);
const auto &rhs = operandExprStack.back();
auto &lhs = operandExprStack[operandExprStack.size() - 2];
assert(lhs.size() == rhs.size());
// Update the LHS in place.
for (unsigned i = 0; i < rhs.size(); i++) {
lhs[i] += rhs[i];
}
// Pop off the RHS.
operandExprStack.pop_back();
}
void visitModExpr(AffineBinaryOpExpr *expr) {
assert(operandExprStack.size() >= 2);
// This is a pure affine expr; the RHS will be a constant.
assert(isa<AffineConstantExpr>(expr->getRHS()));
auto rhsConst = operandExprStack.back()[getConstantIndex()];
operandExprStack.pop_back();
auto &lhs = operandExprStack.back();
// TODO(bondhugula): handle modulo by zero case when this issue is fixed
// at the other places in the IR.
assert(rhsConst != 0 && "RHS constant can't be zero");
// Check if the LHS expression is a multiple of modulo factor.
unsigned i;
for (i = 0; i < lhs.size(); i++)
if (lhs[i] % rhsConst != 0)
break;
// If yes, modulo expression here simplifies to zero.
if (i == lhs.size()) {
lhs.assign(lhs.size(), 0);
return;
}
// Add an existential quantifier. expr1 % expr2 is replaced by (expr1 -
// q * expr2) where q is the existential quantifier introduced.
addLocalId(AffineBinaryOpExpr::get(
AffineExpr::Kind::FloorDiv,
toAffineExpr(lhs, numDims, numSymbols, localExprs, context),
AffineConstantExpr::get(rhsConst, context), context));
lhs[getLocalVarStartIndex() + numLocals - 1] = -rhsConst;
}
void visitCeilDivExpr(AffineBinaryOpExpr *expr) {
visitDivExpr(expr, /*isCeil=*/true);
}
void visitFloorDivExpr(AffineBinaryOpExpr *expr) {
visitDivExpr(expr, /*isCeil=*/false);
}
void visitDimExpr(AffineDimExpr *expr) {
operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0));
auto &eq = operandExprStack.back();
eq[getDimStartIndex() + expr->getPosition()] = 1;
}
void visitSymbolExpr(AffineSymbolExpr *expr) {
operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0));
auto &eq = operandExprStack.back();
eq[getSymbolStartIndex() + expr->getPosition()] = 1;
}
void visitConstantExpr(AffineConstantExpr *expr) {
operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0));
auto &eq = operandExprStack.back();
eq[getConstantIndex()] = expr->getValue();
}
private:
void visitDivExpr(AffineBinaryOpExpr *expr, bool isCeil) {
assert(operandExprStack.size() >= 2);
assert(isa<AffineConstantExpr>(expr->getRHS()));
// This is a pure affine expr; the RHS is a positive constant.
auto rhsConst = operandExprStack.back()[getConstantIndex()];
// TODO(bondhugula): handle division by zero at the same time the issue is
// fixed at other places.
assert(rhsConst != 0 && "RHS constant can't be zero");
operandExprStack.pop_back();
auto &lhs = operandExprStack.back();
// Simplify the floordiv, ceildiv if possible by canceling out the greatest
// common divisors of the numerator and denominator.
uint64_t gcd = std::abs(rhsConst);
for (unsigned i = 0; i < lhs.size(); i++)
gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(lhs[i]));
// Simplify the numerator and the denominator.
if (gcd != 1) {
for (unsigned i = 0; i < lhs.size(); i++)
lhs[i] = lhs[i] / gcd;
}
int64_t denominator = rhsConst / gcd;
// If the denominator becomes 1, the updated LHS is the result. (The
// denominator can't be negative since rhsConst is positive).
if (denominator == 1)
return;
// If the denominator cannot be simplified to one, we will have to retain
// the ceil/floor expr (simplified up until here). Add an existential
// quantifier to express its result, i.e., expr1 div expr2 is replaced
// by a new identifier, q.
auto divKind =
isCeil ? AffineExpr::Kind::CeilDiv : AffineExpr::Kind::FloorDiv;
addLocalId(AffineBinaryOpExpr::get(
divKind, toAffineExpr(lhs, numDims, numSymbols, localExprs, context),
AffineConstantExpr::get(denominator, context), context));
lhs.assign(lhs.size(), 0);
lhs[getLocalVarStartIndex() + numLocals - 1] = 1;
}
// Add an existential quantifier (used to flatten a mod, floordiv, ceildiv
// expr). localExpr is the simplified tree expression (AffineExpr *)
// corresponding to the quantifier.
void addLocalId(AffineExpr *localExpr) {
for (auto &subExpr : operandExprStack) {
subExpr.insert(subExpr.begin() + getLocalVarStartIndex() + numLocals, 0);
}
localExprs.push_back(localExpr);
numLocals++;
}
inline unsigned getConstantIndex() const { return getNumCols() - 1; }
inline unsigned getLocalVarStartIndex() const { return numDims + numSymbols; }
inline unsigned getSymbolStartIndex() const { return numDims; }
inline unsigned getDimStartIndex() const { return 0; }
};
} // end anonymous namespace
AffineExpr *mlir::simplifyAffineExpr(AffineExpr *expr, unsigned numDims,
unsigned numSymbols,
MLIRContext *context) {
// TODO(bondhugula): only pure affine for now. The simplification here can be
// extended to semi-affine maps as well.
if (!expr->isPureAffine())
return nullptr;
AffineExprFlattener flattener(numDims, numSymbols, context);
flattener.walkPostOrder(expr);
ArrayRef<int64_t> flattenedExpr = flattener.operandExprStack.back();
auto *simplifiedExpr = toAffineExpr(flattenedExpr, numDims, numSymbols,
flattener.localExprs, context);
flattener.operandExprStack.pop_back();
assert(flattener.operandExprStack.empty());
if (simplifiedExpr == expr)
return nullptr;
return simplifiedExpr;
}
MutableAffineMap::MutableAffineMap(AffineMap *map, MLIRContext *context)
: numDims(map->getNumDims()), numSymbols(map->getNumSymbols()),
@ -45,12 +319,23 @@ bool MutableAffineMap::isMultipleOf(unsigned idx, int64_t factor) const {
if (results[idx]->isMultipleOf(factor))
return true;
// TODO(bondhugula): use FlatAffineConstraints to complete this (for a more
// powerful analysis).
assert(0 && "isMultipleOf implementation incomplete");
// TODO(bondhugula): use simplifyAffineExpr and FlatAffineConstraints to
// complete this (for a more powerful analysis).
return false;
}
// Simplifies the result affine expressions of this map. The expressions have to
// be pure for the simplification implemented.
void MutableAffineMap::simplify() {
// Simplify each of the results if possible.
for (unsigned i = 0, e = getNumResults(); i < e; i++) {
AffineExpr *sExpr =
simplifyAffineExpr(getResult(i), numDims, numSymbols, context);
if (sExpr)
results[i] = sExpr;
}
}
MutableIntegerSet::MutableIntegerSet(IntegerSet *set, MLIRContext *context)
: numDims(set->getNumDims()), numSymbols(set->getNumSymbols()),
context(context) {
@ -81,5 +366,3 @@ void FlatAffineConstraints::addEquality(ArrayRef<int64_t> eq) {
equalities[offset + i] = eq[i];
}
}
} // end namespace mlir

View File

@ -20,7 +20,6 @@
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/StmtVisitor.h"
@ -33,8 +32,8 @@ using llvm::report_fatal_error;
namespace {
/// Simplify all affine expressions appearing in the operation statements of the
/// MLFunction.
/// Simplifies all affine expressions appearing in the operation statements of
/// the MLFunction. This is mainly to test the simplifyAffineExpr method.
// TODO(someone): Gradually, extend this to all affine map references found in
// ML functions and CFG functions.
struct SimplifyAffineExpr : public FunctionPass {
@ -46,125 +45,6 @@ struct SimplifyAffineExpr : public FunctionPass {
void runOnCFGFunction(CFGFunction *f) {}
};
// This class is used to flatten a pure affine expression into a sum of products
// (w.r.t constants) when possible, and in that process accumulating
// contributions for each dimensional and symbolic identifier together. Note
// that an affine expression may not always be expressible that way due to the
// preesnce of modulo, floordiv, and ceildiv expressions. A simplification that
// this flattening naturally performs is to fold a modulo expression to a zero,
// if possible. Two examples are below:
//
// (d0 + 3 * d1) + d0) - 2 * d1) - d0 simplified to d0 + d1
// (d0 - d0 mod 4 + 4) mod 4 simplified to 0.
//
// For modulo and floordiv expressions, an additional variable is introduced to
// rewrite it as a sum of products (w.r.t constants). For example, for the
// second example above, d0 % 4 is replaced by d0 - 4*q with q being introduced:
// the expression simplifies to:
// (d0 - (d0 - 4q) + 4) = 4q + 4, modulo of which w.r.t 4 simplifies to zero.
//
// This is a linear time post order walk for an affine expression that attempts
// the above simplifications through visit methods, with partial results being
// stored in 'operandExprStack'. When a parent expr is visited, the flattened
// expressions corresponding to its two operands would already be on the stack -
// the parent expr looks at the two flattened expressions and combines the two.
// It pops off the operand expressions and pushes the combined result (although
// this is done in-place on its LHS operand expr. When the walk is completed,
// the flattened form of the top-level expression would be left on the stack.
//
class AffineExprFlattener : public AffineExprVisitor<AffineExprFlattener> {
public:
std::vector<SmallVector<int64_t, 32>> operandExprStack;
// The layout of the flattened expressions is dimensions, symbols, locals,
// and constant term.
unsigned getNumCols() const { return numDims + numSymbols + numLocals + 1; }
AffineExprFlattener(unsigned numDims, unsigned numSymbols)
: numDims(numDims), numSymbols(numSymbols), numLocals(0) {}
void visitMulExpr(AffineBinaryOpExpr *expr) {
assert(expr->isPureAffine());
// Get the RHS constant.
auto rhsConst = operandExprStack.back()[getNumCols() - 1];
operandExprStack.pop_back();
// Update the LHS in place instead of pop and push.
auto &lhs = operandExprStack.back();
for (unsigned i = 0, e = lhs.size(); i < e; i++) {
lhs[i] *= rhsConst;
}
}
void visitAddExpr(AffineBinaryOpExpr *expr) {
const auto &rhs = operandExprStack.back();
auto &lhs = operandExprStack[operandExprStack.size() - 2];
assert(lhs.size() == rhs.size());
// Update the LHS in place.
for (unsigned i = 0; i < rhs.size(); i++) {
lhs[i] += rhs[i];
}
// Pop off the RHS.
operandExprStack.pop_back();
}
void visitModExpr(AffineBinaryOpExpr *expr) {
assert(expr->isPureAffine());
// This is a pure affine expr; the RHS is a constant.
auto rhsConst = operandExprStack.back()[getNumCols() - 1];
operandExprStack.pop_back();
auto &lhs = operandExprStack.back();
assert(rhsConst != 0 && "RHS constant can't be zero");
unsigned i;
for (i = 0; i < lhs.size(); i++)
if (lhs[i] % rhsConst != 0)
break;
if (i == lhs.size()) {
// The modulo expression here simplifies to zero.
lhs.assign(lhs.size(), 0);
return;
}
// Add an existential quantifier. expr1 % expr2 is replaced by (expr1 -
// q * expr2) where q is the existential quantifier introduced.
addExistentialQuantifier();
lhs = operandExprStack.back();
lhs[numDims + numSymbols + numLocals - 1] = -rhsConst;
}
void visitConstantExpr(AffineConstantExpr *expr) {
operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0));
auto &eq = operandExprStack.back();
eq[getNumCols() - 1] = expr->getValue();
}
void visitDimExpr(AffineDimExpr *expr) {
SmallVector<int64_t, 32> eq(getNumCols(), 0);
eq[expr->getPosition()] = 1;
operandExprStack.push_back(eq);
}
void visitSymbolExpr(AffineSymbolExpr *expr) {
SmallVector<int64_t, 32> eq(getNumCols(), 0);
eq[numDims + expr->getPosition()] = 1;
operandExprStack.push_back(eq);
}
void visitCeilDivExpr(AffineBinaryOpExpr *expr) {
// TODO(bondhugula): handle ceildiv as well; won't simplify further through
// this analysis but will be handled (rest of the expr will simplify).
report_fatal_error("ceildiv expr simplification not supported here");
}
void visitFloorDivExpr(AffineBinaryOpExpr *expr) {
// TODO(bondhugula): handle ceildiv as well; won't simplify further through
// this analysis but will be handled (rest of the expr will simplify).
report_fatal_error("floordiv expr simplification unimplemented");
}
// Add an existential quantifier (used to flatten a mod or a floordiv expr).
void addExistentialQuantifier() {
for (auto &subExpr : operandExprStack) {
subExpr.insert(subExpr.begin() + numDims + numSymbols + numLocals, 0);
}
numLocals++;
}
unsigned numDims;
unsigned numSymbols;
unsigned numLocals;
};
} // end anonymous namespace
FunctionPass *mlir::createSimplifyAffineExprPass() {
@ -195,58 +75,3 @@ void SimplifyAffineExpr::runOnMLFunction(MLFunction *f) {
MapSimplifier v(f->getContext());
v.walkPostOrder(f);
}
/// Get an affine expression from a flat ArrayRef. If there are local variables
/// (existential quantifiers introduced during the flattening) that appear in
/// the sum of products expression, we can't readily express it as an affine
/// expression of dimension and symbol id's; return nullptr in such cases.
static AffineExpr *toAffineExpr(ArrayRef<int64_t> eq, unsigned numDims,
unsigned numSymbols, MLIRContext *context) {
// Check if any local variable has a non-zero coefficient.
for (unsigned j = numDims + numSymbols; j < eq.size() - 1; j++) {
if (eq[j] != 0)
return nullptr;
}
AffineExpr *expr = AffineConstantExpr::get(0, context);
for (unsigned j = 0; j < numDims + numSymbols; j++) {
if (eq[j] != 0) {
AffineExpr *id =
j < numDims
? static_cast<AffineExpr *>(AffineDimExpr::get(j, context))
: AffineSymbolExpr::get(j - numDims, context);
expr = AffineBinaryOpExpr::get(
AffineExpr::Kind::Add, expr,
AffineBinaryOpExpr::get(AffineExpr::Kind::Mul,
AffineConstantExpr::get(eq[j], context), id,
context),
context);
}
}
unsigned constTerm = eq[eq.size() - 1];
if (constTerm != 0)
expr = AffineBinaryOpExpr::get(AffineExpr::Kind::Add, expr,
AffineConstantExpr::get(constTerm, context),
context);
return expr;
}
// Simplify the result affine expressions of this map. The expressions have to
// be pure for the simplification implemented.
void MutableAffineMap::simplify() {
// Simplify each of the results if possible.
for (unsigned i = 0, e = getNumResults(); i < e; i++) {
AffineExpr *result = getResult(i);
if (!result->isPureAffine())
continue;
AffineExprFlattener flattener(numDims, numSymbols);
flattener.walkPostOrder(result);
const auto &flattenedExpr = flattener.operandExprStack.back();
auto *expr = toAffineExpr(flattenedExpr, numDims, numSymbols, context);
if (expr)
results[i] = expr;
flattener.operandExprStack.pop_back();
assert(flattener.operandExprStack.empty());
}
}

View File

@ -6,6 +6,21 @@
#map1 = (d0, d1) -> (d1 - d0 + (d0 - d1 + 1) * 2 + d1 - 1, 1 + 2*d1 + d1 + d1 + d1 + 2)
// CHECK: #map{{[0-9]+}} = (d0, d1) -> (0, 0, 0)
#map2 = (d0, d1) -> (((d0 - d0 mod 2) * 2) mod 4, (5*d1 + 8 - (5*d1 + 4) mod 4) mod 4, 0)
// CHECK: #map{{[0-9]+}} = (d0, d1) -> (d0 ceildiv 2, d0 + 1, (d1 * 3 + 1) ceildiv 2)
#map3 = (d0, d1) -> (d0 ceildiv 2, (2*d0 + 4 + 2*d0) ceildiv 4, (8*d1 + 3 + d1) ceildiv 6)
// CHECK: #map{{[0-9]+}} = (d0, d1) -> (d0 floordiv 2, d0 * 2 + d1, (d1 + 2) floordiv 2)
#map4 = (d0, d1) -> (d0 floordiv 2, (3*d0 + 2*d1 + d0) floordiv 2, (50*d1 + 100) floordiv 100)
// CHECK: #map{{[0-9]+}} = (d0, d1) -> (0, d0 * 5 + 3)
#map5 = (d0, d1) -> ((4*d0 + 8*d1) ceildiv 2 mod 2, (2 + d0 + (8*d0 + 2) floordiv 2))
// The flattening based simplification is currently regressive on modulo
// expression simplification in the simple case (d0 mod 8 would be turn into d0
// - 8 * (d0 floordiv 8); however, in other cases like d1 - d1 mod 8, it
// would be simplified to an arithmetically simpler and more intuitive 8 * (d1
// floordiv 8). In general, we have a choice of using either mod or floordiv
// to express the same expression in mathematically equivalent ways, and making that
// choice to minimize the number of terms or to simplify arithmetic is a TODO.
// CHECK: #map{{[0-9]+}} = (d0, d1) -> (d0 - (d0 floordiv 8) * 8, (d1 floordiv 8) * 8)
#map6 = (d0, d1) -> (d0 mod 8, d1 - d1 mod 8)
mlfunc @test() {
for %n0 = 0 to 127 {
@ -13,6 +28,10 @@ mlfunc @test() {
%x = affine_apply #map0(%n0, %n1)
%y = affine_apply #map1(%n0, %n1)
%z = affine_apply #map2(%n0, %n1)
%w = affine_apply #map3(%n0, %n1)
%u = affine_apply #map4(%n0, %n1)
%v = affine_apply #map5(%n0, %n1)
%t = affine_apply #map6(%n0, %n1)
}
}
return