forked from OSchip/llvm-project
[LoopFlatten] Add a loop-flattening pass
This is a simple pass that flattens nested loops. The intention is to optimise loop nests like this, which together access an array linearly: for (int i = 0; i < N; ++i) for (int j = 0; j < M; ++j) f(A[i*M+j]); into one loop: for (int i = 0; i < (N*M); ++i) f(A[i]); It can also flatten loops where the induction variables are not used in the loop. This can help with codesize and runtime, especially on simple cpus without advanced branch prediction. This is only worth flattening if the induction variables are only used in an expression like i*M+j. If they had any other uses, we would have to insert a div/mod to reconstruct the original values, so this wouldn't be profitable. This partially fixes PR40581 as this pass triggers on one of the two cases. I will follow up on this to learn LoopFlatten a few more (small) tricks. Please note that LoopFlatten is not yet enabled by default. Patch by Oliver Stannard, with minor tweaks from Dave Green and myself. Differential Revision: https://reviews.llvm.org/D42365
This commit is contained in:
parent
7e02bc81c6
commit
d53b4bee0c
|
@ -242,6 +242,7 @@ void initializeLoopIdiomRecognizeLegacyPassPass(PassRegistry&);
|
|||
void initializeLoopInfoWrapperPassPass(PassRegistry&);
|
||||
void initializeLoopInstSimplifyLegacyPassPass(PassRegistry&);
|
||||
void initializeLoopInterchangePass(PassRegistry&);
|
||||
void initializeLoopFlattenLegacyPassPass(PassRegistry&);
|
||||
void initializeLoopLoadEliminationPass(PassRegistry&);
|
||||
void initializeLoopPassPass(PassRegistry&);
|
||||
void initializeLoopPredicationLegacyPassPass(PassRegistry&);
|
||||
|
|
|
@ -127,6 +127,7 @@ namespace {
|
|||
(void) llvm::createLazyValueInfoPass();
|
||||
(void) llvm::createLoopExtractorPass();
|
||||
(void) llvm::createLoopInterchangePass();
|
||||
(void) llvm::createLoopFlattenPass();
|
||||
(void) llvm::createLoopPredicationPass();
|
||||
(void) llvm::createLoopSimplifyPass();
|
||||
(void) llvm::createLoopSimplifyCFGPass();
|
||||
|
|
|
@ -149,6 +149,12 @@ Pass *createLoopPredicationPass();
|
|||
//
|
||||
Pass *createLoopInterchangePass();
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// LoopFlatten - This pass flattens nested loops into a single loop.
|
||||
//
|
||||
Pass *createLoopFlattenPass();
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// LoopStrengthReduce - This pass is strength reduces GEP instructions that use
|
||||
|
|
|
@ -0,0 +1,33 @@
|
|||
//===- LoopFlatten.h - Loop Flatten ---------------- -----------*- C++ -*-===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file provides the interface for the Loop Flatten Pass.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_TRANSFORMS_SCALAR_LOOPFLATTEN_H
|
||||
#define LLVM_TRANSFORMS_SCALAR_LOOPFLATTEN_H
|
||||
|
||||
#include "llvm/Analysis/LoopAnalysisManager.h"
|
||||
#include "llvm/Analysis/LoopInfo.h"
|
||||
#include "llvm/IR/PassManager.h"
|
||||
#include "llvm/Transforms/Scalar/LoopPassManager.h"
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class LoopFlattenPass : public PassInfoMixin<LoopFlattenPass> {
|
||||
public:
|
||||
LoopFlattenPass() = default;
|
||||
|
||||
PreservedAnalyses run(Loop &L, LoopAnalysisManager &AM,
|
||||
LoopStandardAnalysisResults &AR, LPMUpdater &U);
|
||||
};
|
||||
|
||||
} // end namespace llvm
|
||||
|
||||
#endif // LLVM_TRANSFORMS_SCALAR_LOOPFLATTEN_H
|
|
@ -150,6 +150,7 @@
|
|||
#include "llvm/Transforms/Scalar/LoopDataPrefetch.h"
|
||||
#include "llvm/Transforms/Scalar/LoopDeletion.h"
|
||||
#include "llvm/Transforms/Scalar/LoopDistribute.h"
|
||||
#include "llvm/Transforms/Scalar/LoopFlatten.h"
|
||||
#include "llvm/Transforms/Scalar/LoopFuse.h"
|
||||
#include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
|
||||
#include "llvm/Transforms/Scalar/LoopInstSimplify.h"
|
||||
|
@ -250,6 +251,10 @@ static cl::opt<bool> EnableUnrollAndJam(
|
|||
"enable-npm-unroll-and-jam", cl::init(false), cl::Hidden,
|
||||
cl::desc("Enable the Unroll and Jam pass for the new PM (default = off)"));
|
||||
|
||||
static cl::opt<bool> EnableLoopFlatten(
|
||||
"enable-npm-loop-flatten", cl::init(false), cl::Hidden,
|
||||
cl::desc("Enable the Loop flattening pass for the new PM (default = off)"));
|
||||
|
||||
static cl::opt<bool> EnableSyntheticCounts(
|
||||
"enable-npm-synthetic-counts", cl::init(false), cl::Hidden, cl::ZeroOrMore,
|
||||
cl::desc("Run synthetic function entry count generation "
|
||||
|
@ -510,6 +515,8 @@ FunctionPassManager PassBuilder::buildO1FunctionSimplificationPipeline(
|
|||
C(LPM2, Level);
|
||||
|
||||
LPM2.addPass(LoopDeletionPass());
|
||||
if (EnableLoopFlatten)
|
||||
LPM2.addPass(LoopFlattenPass());
|
||||
// Do not enable unrolling in PreLinkThinLTO phase during sample PGO
|
||||
// because it changes IR to makes profile annotation in back compile
|
||||
// inaccurate. The normal unroller doesn't pay attention to forced full unroll
|
||||
|
|
|
@ -359,6 +359,7 @@ LOOP_PASS("loop-rotate", LoopRotatePass())
|
|||
LOOP_PASS("no-op-loop", NoOpLoopPass())
|
||||
LOOP_PASS("print", PrintLoopPass(dbgs()))
|
||||
LOOP_PASS("loop-deletion", LoopDeletionPass())
|
||||
LOOP_PASS("loop-flatten", LoopFlattenPass())
|
||||
LOOP_PASS("loop-simplifycfg", LoopSimplifyCFGPass())
|
||||
LOOP_PASS("loop-reduce", LoopStrengthReducePass())
|
||||
LOOP_PASS("indvars", IndVarSimplifyPass())
|
||||
|
|
|
@ -92,6 +92,10 @@ static cl::opt<bool> EnableUnrollAndJam("enable-unroll-and-jam",
|
|||
cl::init(false), cl::Hidden,
|
||||
cl::desc("Enable Unroll And Jam Pass"));
|
||||
|
||||
static cl::opt<bool> EnableLoopFlatten("enable-loop-flatten", cl::init(false),
|
||||
cl::Hidden,
|
||||
cl::desc("Enable the LoopFlatten Pass"));
|
||||
|
||||
static cl::opt<bool>
|
||||
EnablePrepareForThinLTO("prepare-for-thinlto", cl::init(false), cl::Hidden,
|
||||
cl::desc("Enable preparation for ThinLTO."));
|
||||
|
@ -444,6 +448,10 @@ void PassManagerBuilder::addFunctionSimplificationPasses(
|
|||
|
||||
if (EnableLoopInterchange)
|
||||
MPM.add(createLoopInterchangePass()); // Interchange loops
|
||||
if (EnableLoopFlatten) {
|
||||
MPM.add(createLoopFlattenPass()); // Flatten loops
|
||||
MPM.add(createLoopSimplifyCFGPass());
|
||||
}
|
||||
|
||||
// Unroll small loops
|
||||
MPM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops,
|
||||
|
@ -1035,6 +1043,8 @@ void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) {
|
|||
PM.add(createLoopDeletionPass());
|
||||
if (EnableLoopInterchange)
|
||||
PM.add(createLoopInterchangePass());
|
||||
if (EnableLoopFlatten)
|
||||
PM.add(createLoopFlattenPass());
|
||||
|
||||
// Unroll small loops
|
||||
PM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops,
|
||||
|
|
|
@ -32,6 +32,7 @@ add_llvm_component_library(LLVMScalarOpts
|
|||
LoopIdiomRecognize.cpp
|
||||
LoopInstSimplify.cpp
|
||||
LoopInterchange.cpp
|
||||
LoopFlatten.cpp
|
||||
LoopLoadElimination.cpp
|
||||
LoopPassManager.cpp
|
||||
LoopPredication.cpp
|
||||
|
|
|
@ -0,0 +1,605 @@
|
|||
//===- LoopFlatten.cpp - Loop flattening pass------------------------------===//
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This pass flattens pairs nested loops into a single loop.
|
||||
//
|
||||
// The intention is to optimise loop nests like this, which together access an
|
||||
// array linearly:
|
||||
// for (int i = 0; i < N; ++i)
|
||||
// for (int j = 0; j < M; ++j)
|
||||
// f(A[i*M+j]);
|
||||
// into one loop:
|
||||
// for (int i = 0; i < (N*M); ++i)
|
||||
// f(A[i]);
|
||||
//
|
||||
// It can also flatten loops where the induction variables are not used in the
|
||||
// loop. This is only worth doing if the induction variables are only used in an
|
||||
// expression like i*M+j. If they had any other uses, we would have to insert a
|
||||
// div/mod to reconstruct the original values, so this wouldn't be profitable.
|
||||
//
|
||||
// We also need to prove that N*M will not overflow.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Transforms/Scalar/LoopFlatten.h"
|
||||
#include "llvm/Analysis/AssumptionCache.h"
|
||||
#include "llvm/Analysis/LoopInfo.h"
|
||||
#include "llvm/Analysis/LoopPass.h"
|
||||
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
||||
#include "llvm/Analysis/ScalarEvolution.h"
|
||||
#include "llvm/Analysis/TargetTransformInfo.h"
|
||||
#include "llvm/Analysis/ValueTracking.h"
|
||||
#include "llvm/IR/Dominators.h"
|
||||
#include "llvm/IR/Function.h"
|
||||
#include "llvm/IR/Module.h"
|
||||
#include "llvm/IR/PatternMatch.h"
|
||||
#include "llvm/IR/Verifier.h"
|
||||
#include "llvm/InitializePasses.h"
|
||||
#include "llvm/Pass.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
#include "llvm/Transforms/Scalar.h"
|
||||
#include "llvm/Transforms/Utils/LoopUtils.h"
|
||||
|
||||
#define DEBUG_TYPE "loop-flatten"
|
||||
|
||||
using namespace llvm;
|
||||
using namespace llvm::PatternMatch;
|
||||
|
||||
static cl::opt<unsigned> RepeatedInstructionThreshold(
|
||||
"loop-flatten-cost-threshold", cl::Hidden, cl::init(2),
|
||||
cl::desc("Limit on the cost of instructions that can be repeated due to "
|
||||
"loop flattening"));
|
||||
|
||||
static cl::opt<bool>
|
||||
AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden,
|
||||
cl::init(false),
|
||||
cl::desc("Assume that the product of the two iteration "
|
||||
"limits will never overflow"));
|
||||
|
||||
// Finds the induction variable, increment and limit for a simple loop that we
|
||||
// can flatten.
|
||||
static bool findLoopComponents(
|
||||
Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions,
|
||||
PHINode *&InductionPHI, Value *&Limit, BinaryOperator *&Increment,
|
||||
BranchInst *&BackBranch, ScalarEvolution *SE) {
|
||||
LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n");
|
||||
|
||||
if (!L->isLoopSimplifyForm()) {
|
||||
LLVM_DEBUG(dbgs() << "Loop is not in normal form\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
// There must be exactly one exiting block, and it must be the same at the
|
||||
// latch.
|
||||
BasicBlock *Latch = L->getLoopLatch();
|
||||
if (L->getExitingBlock() != Latch) {
|
||||
LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n");
|
||||
return false;
|
||||
}
|
||||
// Latch block must end in a conditional branch.
|
||||
BackBranch = dyn_cast<BranchInst>(Latch->getTerminator());
|
||||
if (!BackBranch || !BackBranch->isConditional()) {
|
||||
LLVM_DEBUG(dbgs() << "Could not find back-branch\n");
|
||||
return false;
|
||||
}
|
||||
IterationInstructions.insert(BackBranch);
|
||||
LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump());
|
||||
bool ContinueOnTrue = L->contains(BackBranch->getSuccessor(0));
|
||||
|
||||
// Find the induction PHI. If there is no induction PHI, we can't do the
|
||||
// transformation. TODO: could other variables trigger this? Do we have to
|
||||
// search for the best one?
|
||||
InductionPHI = nullptr;
|
||||
for (PHINode &PHI : L->getHeader()->phis()) {
|
||||
InductionDescriptor ID;
|
||||
if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) {
|
||||
InductionPHI = &PHI;
|
||||
LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump());
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!InductionPHI) {
|
||||
LLVM_DEBUG(dbgs() << "Could not find induction PHI\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
auto IsValidPredicate = [&](ICmpInst::Predicate Pred) {
|
||||
if (ContinueOnTrue)
|
||||
return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT;
|
||||
else
|
||||
return Pred == CmpInst::ICMP_EQ;
|
||||
};
|
||||
|
||||
// Find Compare and make sure it is valid
|
||||
ICmpInst *Compare = dyn_cast<ICmpInst>(BackBranch->getCondition());
|
||||
if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) ||
|
||||
Compare->hasNUsesOrMore(2)) {
|
||||
LLVM_DEBUG(dbgs() << "Could not find valid comparison\n");
|
||||
return false;
|
||||
}
|
||||
IterationInstructions.insert(Compare);
|
||||
LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump());
|
||||
|
||||
// Find increment and limit from the compare
|
||||
Increment = nullptr;
|
||||
if (match(Compare->getOperand(0),
|
||||
m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) {
|
||||
Increment = dyn_cast<BinaryOperator>(Compare->getOperand(0));
|
||||
Limit = Compare->getOperand(1);
|
||||
} else if (Compare->getUnsignedPredicate() == CmpInst::ICMP_NE &&
|
||||
match(Compare->getOperand(1),
|
||||
m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) {
|
||||
Increment = dyn_cast<BinaryOperator>(Compare->getOperand(1));
|
||||
Limit = Compare->getOperand(0);
|
||||
}
|
||||
if (!Increment || Increment->hasNUsesOrMore(3)) {
|
||||
LLVM_DEBUG(dbgs() << "Cound not find valid increment\n");
|
||||
return false;
|
||||
}
|
||||
IterationInstructions.insert(Increment);
|
||||
LLVM_DEBUG(dbgs() << "Found increment: "; Increment->dump());
|
||||
LLVM_DEBUG(dbgs() << "Found limit: "; Limit->dump());
|
||||
|
||||
assert(InductionPHI->getNumIncomingValues() == 2);
|
||||
assert(InductionPHI->getIncomingValueForBlock(Latch) == Increment &&
|
||||
"PHI value is not increment inst");
|
||||
|
||||
auto *CI = dyn_cast<ConstantInt>(
|
||||
InductionPHI->getIncomingValueForBlock(L->getLoopPreheader()));
|
||||
if (!CI || !CI->isZero()) {
|
||||
LLVM_DEBUG(dbgs() << "PHI value is not zero: "; CI->dump());
|
||||
return false;
|
||||
}
|
||||
|
||||
LLVM_DEBUG(dbgs() << "Successfully found all loop components\n");
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool checkPHIs(Loop *OuterLoop, Loop *InnerLoop,
|
||||
SmallPtrSetImpl<PHINode *> &InnerPHIsToTransform,
|
||||
PHINode *InnerInductionPHI, PHINode *OuterInductionPHI,
|
||||
TargetTransformInfo *TTI) {
|
||||
// All PHIs in the inner and outer headers must either be:
|
||||
// - The induction PHI, which we are going to rewrite as one induction in
|
||||
// the new loop. This is already checked by findLoopComponents.
|
||||
// - An outer header PHI with all incoming values from outside the loop.
|
||||
// LoopSimplify guarantees we have a pre-header, so we don't need to
|
||||
// worry about that here.
|
||||
// - Pairs of PHIs in the inner and outer headers, which implement a
|
||||
// loop-carried dependency that will still be valid in the new loop. To
|
||||
// be valid, this variable must be modified only in the inner loop.
|
||||
|
||||
// The set of PHI nodes in the outer loop header that we know will still be
|
||||
// valid after the transformation. These will not need to be modified (with
|
||||
// the exception of the induction variable), but we do need to check that
|
||||
// there are no unsafe PHI nodes.
|
||||
SmallPtrSet<PHINode *, 4> SafeOuterPHIs;
|
||||
SafeOuterPHIs.insert(OuterInductionPHI);
|
||||
|
||||
// Check that all PHI nodes in the inner loop header match one of the valid
|
||||
// patterns.
|
||||
for (PHINode &InnerPHI : InnerLoop->getHeader()->phis()) {
|
||||
// The induction PHIs break these rules, and that's OK because we treat
|
||||
// them specially when doing the transformation.
|
||||
if (&InnerPHI == InnerInductionPHI)
|
||||
continue;
|
||||
|
||||
// Each inner loop PHI node must have two incoming values/blocks - one
|
||||
// from the pre-header, and one from the latch.
|
||||
assert(InnerPHI.getNumIncomingValues() == 2);
|
||||
Value *PreHeaderValue =
|
||||
InnerPHI.getIncomingValueForBlock(InnerLoop->getLoopPreheader());
|
||||
Value *LatchValue =
|
||||
InnerPHI.getIncomingValueForBlock(InnerLoop->getLoopLatch());
|
||||
|
||||
// The incoming value from the outer loop must be the PHI node in the
|
||||
// outer loop header, with no modifications made in the top of the outer
|
||||
// loop.
|
||||
PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue);
|
||||
if (!OuterPHI || OuterPHI->getParent() != OuterLoop->getHeader()) {
|
||||
LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
// The other incoming value must come from the inner loop, without any
|
||||
// modifications in the tail end of the outer loop. We are in LCSSA form,
|
||||
// so this will actually be a PHI in the inner loop's exit block, which
|
||||
// only uses values from inside the inner loop.
|
||||
PHINode *LCSSAPHI = dyn_cast<PHINode>(
|
||||
OuterPHI->getIncomingValueForBlock(OuterLoop->getLoopLatch()));
|
||||
if (!LCSSAPHI) {
|
||||
LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
// The value used by the LCSSA PHI must be the same one that the inner
|
||||
// loop's PHI uses.
|
||||
if (LCSSAPHI->hasConstantValue() != LatchValue) {
|
||||
LLVM_DEBUG(
|
||||
dbgs() << "LCSSA PHI incoming value does not match latch value\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
LLVM_DEBUG(dbgs() << "PHI pair is safe:\n");
|
||||
LLVM_DEBUG(dbgs() << " Inner: "; InnerPHI.dump());
|
||||
LLVM_DEBUG(dbgs() << " Outer: "; OuterPHI->dump());
|
||||
SafeOuterPHIs.insert(OuterPHI);
|
||||
InnerPHIsToTransform.insert(&InnerPHI);
|
||||
}
|
||||
|
||||
for (PHINode &OuterPHI : OuterLoop->getHeader()->phis()) {
|
||||
if (!SafeOuterPHIs.count(&OuterPHI)) {
|
||||
LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump());
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool
|
||||
checkOuterLoopInsts(Loop *OuterLoop, Loop *InnerLoop,
|
||||
SmallPtrSetImpl<Instruction *> &IterationInstructions,
|
||||
Value *InnerLimit, PHINode *OuterPHI,
|
||||
TargetTransformInfo *TTI) {
|
||||
// Check for instructions in the outer but not inner loop. If any of these
|
||||
// have side-effects then this transformation is not legal, and if there is
|
||||
// a significant amount of code here which can't be optimised out that it's
|
||||
// not profitable (as these instructions would get executed for each
|
||||
// iteration of the inner loop).
|
||||
unsigned RepeatedInstrCost = 0;
|
||||
for (auto *B : OuterLoop->getBlocks()) {
|
||||
if (InnerLoop->contains(B))
|
||||
continue;
|
||||
|
||||
for (auto &I : *B) {
|
||||
if (!isa<PHINode>(&I) && !I.isTerminator() &&
|
||||
!isSafeToSpeculativelyExecute(&I)) {
|
||||
LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have "
|
||||
"side effects: ";
|
||||
I.dump());
|
||||
return false;
|
||||
}
|
||||
// The execution count of the outer loop's iteration instructions
|
||||
// (increment, compare and branch) will be increased, but the
|
||||
// equivalent instructions will be removed from the inner loop, so
|
||||
// they make a net difference of zero.
|
||||
if (IterationInstructions.count(&I))
|
||||
continue;
|
||||
// The uncoditional branch to the inner loop's header will turn into
|
||||
// a fall-through, so adds no cost.
|
||||
BranchInst *Br = dyn_cast<BranchInst>(&I);
|
||||
if (Br && Br->isUnconditional() &&
|
||||
Br->getSuccessor(0) == InnerLoop->getHeader())
|
||||
continue;
|
||||
// Multiplies of the outer iteration variable and inner iteration
|
||||
// count will be optimised out.
|
||||
if (match(&I, m_c_Mul(m_Specific(OuterPHI), m_Specific(InnerLimit))))
|
||||
continue;
|
||||
int Cost = TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
|
||||
LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump());
|
||||
RepeatedInstrCost += Cost;
|
||||
}
|
||||
}
|
||||
|
||||
LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: "
|
||||
<< RepeatedInstrCost << "\n");
|
||||
// Bail out if flattening the loops would cause instructions in the outer
|
||||
// loop but not in the inner loop to be executed extra times.
|
||||
if (RepeatedInstrCost > RepeatedInstructionThreshold)
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool checkIVUsers(PHINode *InnerPHI, PHINode *OuterPHI,
|
||||
BinaryOperator *InnerIncrement,
|
||||
BinaryOperator *OuterIncrement, Value *InnerLimit,
|
||||
SmallPtrSetImpl<Value *> &LinearIVUses) {
|
||||
// We require all uses of both induction variables to match this pattern:
|
||||
//
|
||||
// (OuterPHI * InnerLimit) + InnerPHI
|
||||
//
|
||||
// Any uses of the induction variables not matching that pattern would
|
||||
// require a div/mod to reconstruct in the flattened loop, so the
|
||||
// transformation wouldn't be profitable.
|
||||
|
||||
// Check that all uses of the inner loop's induction variable match the
|
||||
// expected pattern, recording the uses of the outer IV.
|
||||
SmallPtrSet<Value *, 4> ValidOuterPHIUses;
|
||||
for (User *U : InnerPHI->users()) {
|
||||
if (U == InnerIncrement)
|
||||
continue;
|
||||
|
||||
LLVM_DEBUG(dbgs() << "Found use of inner induction variable: "; U->dump());
|
||||
|
||||
Value *MatchedMul, *MatchedItCount;
|
||||
if (match(U, m_c_Add(m_Specific(InnerPHI), m_Value(MatchedMul))) &&
|
||||
match(MatchedMul,
|
||||
m_c_Mul(m_Specific(OuterPHI), m_Value(MatchedItCount))) &&
|
||||
MatchedItCount == InnerLimit) {
|
||||
LLVM_DEBUG(dbgs() << "Use is optimisable\n");
|
||||
ValidOuterPHIUses.insert(MatchedMul);
|
||||
LinearIVUses.insert(U);
|
||||
} else {
|
||||
LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Check that there are no uses of the outer IV other than the ones found
|
||||
// as part of the pattern above.
|
||||
for (User *U : OuterPHI->users()) {
|
||||
if (U == OuterIncrement)
|
||||
continue;
|
||||
|
||||
LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump());
|
||||
|
||||
if (!ValidOuterPHIUses.count(U)) {
|
||||
LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
|
||||
return false;
|
||||
} else {
|
||||
LLVM_DEBUG(dbgs() << "Use is optimisable\n");
|
||||
}
|
||||
}
|
||||
|
||||
LLVM_DEBUG(dbgs() << "Found " << LinearIVUses.size()
|
||||
<< " value(s) that can be replaced:\n";
|
||||
for (Value *V : LinearIVUses) {
|
||||
dbgs() << " ";
|
||||
V->dump();
|
||||
});
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// Return an OverflowResult dependant on if overflow of the multiplication of
|
||||
// InnerLimit and OuterLimit can be assumed not to happen.
|
||||
static OverflowResult checkOverflow(Loop *OuterLoop, Value *InnerLimit,
|
||||
Value *OuterLimit,
|
||||
SmallPtrSetImpl<Value *> &LinearIVUses,
|
||||
DominatorTree *DT, AssumptionCache *AC) {
|
||||
Function *F = OuterLoop->getHeader()->getParent();
|
||||
const DataLayout &DL = F->getParent()->getDataLayout();
|
||||
|
||||
// For debugging/testing.
|
||||
if (AssumeNoOverflow)
|
||||
return OverflowResult::NeverOverflows;
|
||||
|
||||
// Check if the multiply could not overflow due to known ranges of the
|
||||
// input values.
|
||||
OverflowResult OR = computeOverflowForUnsignedMul(
|
||||
InnerLimit, OuterLimit, DL, AC,
|
||||
OuterLoop->getLoopPreheader()->getTerminator(), DT);
|
||||
if (OR != OverflowResult::MayOverflow)
|
||||
return OR;
|
||||
|
||||
for (Value *V : LinearIVUses) {
|
||||
for (Value *U : V->users()) {
|
||||
if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
|
||||
// The IV is used as the operand of a GEP, and the IV is at least as
|
||||
// wide as the address space of the GEP. In this case, the GEP would
|
||||
// wrap around the address space before the IV increment wraps, which
|
||||
// would be UB.
|
||||
if (GEP->isInBounds() &&
|
||||
V->getType()->getIntegerBitWidth() >=
|
||||
DL.getPointerTypeSizeInBits(GEP->getType())) {
|
||||
LLVM_DEBUG(
|
||||
dbgs() << "use of linear IV would be UB if overflow occurred: ";
|
||||
GEP->dump());
|
||||
return OverflowResult::NeverOverflows;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return OverflowResult::MayOverflow;
|
||||
}
|
||||
|
||||
static bool FlattenLoopPair(Loop *OuterLoop, Loop *InnerLoop, DominatorTree *DT,
|
||||
LoopInfo *LI, ScalarEvolution *SE,
|
||||
AssumptionCache *AC, TargetTransformInfo *TTI,
|
||||
std::function<void(Loop *)> markLoopAsDeleted) {
|
||||
Function *F = OuterLoop->getHeader()->getParent();
|
||||
|
||||
LLVM_DEBUG(dbgs() << "Loop flattening running on outer loop "
|
||||
<< OuterLoop->getHeader()->getName() << " and inner loop "
|
||||
<< InnerLoop->getHeader()->getName() << " in "
|
||||
<< F->getName() << "\n");
|
||||
|
||||
SmallPtrSet<Instruction *, 8> IterationInstructions;
|
||||
|
||||
PHINode *InnerInductionPHI, *OuterInductionPHI;
|
||||
Value *InnerLimit, *OuterLimit;
|
||||
BinaryOperator *InnerIncrement, *OuterIncrement;
|
||||
BranchInst *InnerBranch, *OuterBranch;
|
||||
|
||||
if (!findLoopComponents(InnerLoop, IterationInstructions, InnerInductionPHI,
|
||||
InnerLimit, InnerIncrement, InnerBranch, SE))
|
||||
return false;
|
||||
if (!findLoopComponents(OuterLoop, IterationInstructions, OuterInductionPHI,
|
||||
OuterLimit, OuterIncrement, OuterBranch, SE))
|
||||
return false;
|
||||
|
||||
// Both of the loop limit values must be invariant in the outer loop
|
||||
// (non-instructions are all inherently invariant).
|
||||
if (!OuterLoop->isLoopInvariant(InnerLimit)) {
|
||||
LLVM_DEBUG(dbgs() << "inner loop limit not invariant\n");
|
||||
return false;
|
||||
}
|
||||
if (!OuterLoop->isLoopInvariant(OuterLimit)) {
|
||||
LLVM_DEBUG(dbgs() << "outer loop limit not invariant\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
SmallPtrSet<PHINode *, 4> InnerPHIsToTransform;
|
||||
if (!checkPHIs(OuterLoop, InnerLoop, InnerPHIsToTransform, InnerInductionPHI,
|
||||
OuterInductionPHI, TTI))
|
||||
return false;
|
||||
|
||||
// FIXME: it should be possible to handle different types correctly.
|
||||
if (InnerInductionPHI->getType() != OuterInductionPHI->getType())
|
||||
return false;
|
||||
|
||||
if (!checkOuterLoopInsts(OuterLoop, InnerLoop, IterationInstructions,
|
||||
InnerLimit, OuterInductionPHI, TTI))
|
||||
return false;
|
||||
|
||||
// Find the values in the loop that can be replaced with the linearized
|
||||
// induction variable, and check that there are no other uses of the inner
|
||||
// or outer induction variable. If there were, we could still do this
|
||||
// transformation, but we'd have to insert a div/mod to calculate the
|
||||
// original IVs, so it wouldn't be profitable.
|
||||
SmallPtrSet<Value *, 4> LinearIVUses;
|
||||
if (!checkIVUsers(InnerInductionPHI, OuterInductionPHI, InnerIncrement,
|
||||
OuterIncrement, InnerLimit, LinearIVUses))
|
||||
return false;
|
||||
|
||||
// Check if the new iteration variable might overflow. In this case, we
|
||||
// need to version the loop, and select the original version at runtime if
|
||||
// the iteration space is too large.
|
||||
// TODO: We currently don't version the loop.
|
||||
// TODO: it might be worth using a wider iteration variable rather than
|
||||
// versioning the loop, if a wide enough type is legal.
|
||||
bool MustVersionLoop = true;
|
||||
OverflowResult OR =
|
||||
checkOverflow(OuterLoop, InnerLimit, OuterLimit, LinearIVUses, DT, AC);
|
||||
if (OR == OverflowResult::AlwaysOverflowsHigh ||
|
||||
OR == OverflowResult::AlwaysOverflowsLow) {
|
||||
LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n");
|
||||
return false;
|
||||
} else if (OR == OverflowResult::MayOverflow) {
|
||||
LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n");
|
||||
} else {
|
||||
LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n");
|
||||
MustVersionLoop = false;
|
||||
}
|
||||
|
||||
// We cannot safely flatten the loop. Exit now.
|
||||
if (MustVersionLoop)
|
||||
return false;
|
||||
|
||||
// Do the actual transformation.
|
||||
LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n");
|
||||
|
||||
{
|
||||
using namespace ore;
|
||||
OptimizationRemark Remark(DEBUG_TYPE, "Flattened", InnerLoop->getStartLoc(),
|
||||
InnerLoop->getHeader());
|
||||
OptimizationRemarkEmitter ORE(F);
|
||||
Remark << "Flattened into outer loop";
|
||||
ORE.emit(Remark);
|
||||
}
|
||||
|
||||
Value *NewTripCount =
|
||||
BinaryOperator::CreateMul(InnerLimit, OuterLimit, "flatten.tripcount",
|
||||
OuterLoop->getLoopPreheader()->getTerminator());
|
||||
LLVM_DEBUG(dbgs() << "Created new trip count in preheader: ";
|
||||
NewTripCount->dump());
|
||||
|
||||
// Fix up PHI nodes that take values from the inner loop back-edge, which
|
||||
// we are about to remove.
|
||||
InnerInductionPHI->removeIncomingValue(InnerLoop->getLoopLatch());
|
||||
for (PHINode *PHI : InnerPHIsToTransform)
|
||||
PHI->removeIncomingValue(InnerLoop->getLoopLatch());
|
||||
|
||||
// Modify the trip count of the outer loop to be the product of the two
|
||||
// trip counts.
|
||||
cast<User>(OuterBranch->getCondition())->setOperand(1, NewTripCount);
|
||||
|
||||
// Replace the inner loop backedge with an unconditional branch to the exit.
|
||||
BasicBlock *InnerExitBlock = InnerLoop->getExitBlock();
|
||||
BasicBlock *InnerExitingBlock = InnerLoop->getExitingBlock();
|
||||
InnerExitingBlock->getTerminator()->eraseFromParent();
|
||||
BranchInst::Create(InnerExitBlock, InnerExitingBlock);
|
||||
DT->deleteEdge(InnerExitingBlock, InnerLoop->getHeader());
|
||||
|
||||
// Replace all uses of the polynomial calculated from the two induction
|
||||
// variables with the one new one.
|
||||
for (Value *V : LinearIVUses)
|
||||
V->replaceAllUsesWith(OuterInductionPHI);
|
||||
|
||||
// Tell LoopInfo, SCEV and the pass manager that the inner loop has been
|
||||
// deleted, and any information that have about the outer loop invalidated.
|
||||
markLoopAsDeleted(InnerLoop);
|
||||
SE->forgetLoop(OuterLoop);
|
||||
SE->forgetLoop(InnerLoop);
|
||||
LI->erase(InnerLoop);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
PreservedAnalyses LoopFlattenPass::run(Loop &L, LoopAnalysisManager &AM,
|
||||
LoopStandardAnalysisResults &AR,
|
||||
LPMUpdater &Updater) {
|
||||
if (L.getSubLoops().size() != 1)
|
||||
return PreservedAnalyses::all();
|
||||
|
||||
Loop *InnerLoop = *L.begin();
|
||||
std::string LoopName(InnerLoop->getName());
|
||||
if (!FlattenLoopPair(
|
||||
&L, InnerLoop, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI,
|
||||
[&](Loop *L) { Updater.markLoopAsDeleted(*L, LoopName); }))
|
||||
return PreservedAnalyses::all();
|
||||
return getLoopPassPreservedAnalyses();
|
||||
}
|
||||
|
||||
namespace {
|
||||
class LoopFlattenLegacyPass : public LoopPass {
|
||||
public:
|
||||
static char ID; // Pass ID, replacement for typeid
|
||||
LoopFlattenLegacyPass() : LoopPass(ID) {
|
||||
initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry());
|
||||
}
|
||||
|
||||
// Possibly flatten loop L into its child.
|
||||
bool runOnLoop(Loop *L, LPPassManager &) override;
|
||||
|
||||
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
||||
getLoopAnalysisUsage(AU);
|
||||
AU.addRequired<TargetTransformInfoWrapperPass>();
|
||||
AU.addPreserved<TargetTransformInfoWrapperPass>();
|
||||
AU.addRequired<AssumptionCacheTracker>();
|
||||
AU.addPreserved<AssumptionCacheTracker>();
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
char LoopFlattenLegacyPass::ID = 0;
|
||||
INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
|
||||
false, false)
|
||||
INITIALIZE_PASS_DEPENDENCY(LoopPass)
|
||||
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
||||
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
||||
INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
|
||||
false, false)
|
||||
|
||||
Pass *llvm::createLoopFlattenPass() { return new LoopFlattenLegacyPass(); }
|
||||
|
||||
bool LoopFlattenLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
|
||||
if (skipLoop(L))
|
||||
return false;
|
||||
|
||||
if (L->getSubLoops().size() != 1)
|
||||
return false;
|
||||
|
||||
ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
||||
LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
||||
auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
|
||||
DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
|
||||
auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>();
|
||||
TargetTransformInfo *TTI = &TTIP.getTTI(*L->getHeader()->getParent());
|
||||
AssumptionCache *AC =
|
||||
&getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
|
||||
*L->getHeader()->getParent());
|
||||
|
||||
Loop *InnerLoop = *L->begin();
|
||||
return FlattenLoopPair(L, InnerLoop, DT, LI, SE, AC, TTI,
|
||||
[&](Loop *L) { LPM.markLoopAsDeleted(*L); });
|
||||
}
|
|
@ -67,6 +67,7 @@ void llvm::initializeScalarOpts(PassRegistry &Registry) {
|
|||
initializeLoopAccessLegacyAnalysisPass(Registry);
|
||||
initializeLoopInstSimplifyLegacyPassPass(Registry);
|
||||
initializeLoopInterchangePass(Registry);
|
||||
initializeLoopFlattenLegacyPassPass(Registry);
|
||||
initializeLoopPredicationLegacyPassPass(Registry);
|
||||
initializeLoopRotateLegacyPassPass(Registry);
|
||||
initializeLoopStrengthReducePass(Registry);
|
||||
|
@ -186,6 +187,10 @@ void LLVMAddLoopDeletionPass(LLVMPassManagerRef PM) {
|
|||
unwrap(PM)->add(createLoopDeletionPass());
|
||||
}
|
||||
|
||||
void LLVMAddLoopFlattenPass(LLVMPassManagerRef PM) {
|
||||
unwrap(PM)->add(createLoopFlattenPass());
|
||||
}
|
||||
|
||||
void LLVMAddLoopIdiomPass(LLVMPassManagerRef PM) {
|
||||
unwrap(PM)->add(createLoopIdiomPass());
|
||||
}
|
||||
|
|
|
@ -0,0 +1,395 @@
|
|||
; RUN: opt < %s -S -loop-flatten -debug-only=loop-flatten 2>&1 | FileCheck %s
|
||||
; REQUIRES: asserts
|
||||
|
||||
; Every function in this file has a reason that it can't be transformed.
|
||||
|
||||
; CHECK-NOT: Checks all passed, doing the transformation
|
||||
|
||||
; Outer loop does not start at zero
|
||||
define void @test_1(i32 %N, i32* nocapture %C, i32* nocapture readonly %A, i32 %scale) {
|
||||
entry:
|
||||
%cmp25 = icmp sgt i32 %N, 0
|
||||
br i1 %cmp25, label %for.body4.lr.ph, label %for.cond.cleanup
|
||||
|
||||
for.body4.lr.ph:
|
||||
%i.026 = phi i32 [ %inc10, %for.cond.cleanup3 ], [ 1, %entry ]
|
||||
%mul = mul nsw i32 %i.026, %N
|
||||
br label %for.body4
|
||||
|
||||
for.body4:
|
||||
%j.024 = phi i32 [ 0, %for.body4.lr.ph ], [ %inc, %for.body4 ]
|
||||
%add = add nsw i32 %j.024, %mul
|
||||
%arrayidx = getelementptr inbounds i32, i32* %A, i32 %add
|
||||
%0 = load i32, i32* %arrayidx, align 4
|
||||
%mul5 = mul nsw i32 %0, %scale
|
||||
%arrayidx8 = getelementptr inbounds i32, i32* %C, i32 %add
|
||||
store i32 %mul5, i32* %arrayidx8, align 4
|
||||
%inc = add nuw nsw i32 %j.024, 1
|
||||
%exitcond = icmp eq i32 %inc, %N
|
||||
br i1 %exitcond, label %for.cond.cleanup3, label %for.body4
|
||||
|
||||
for.cond.cleanup3:
|
||||
%inc10 = add nuw nsw i32 %i.026, 1
|
||||
%exitcond27 = icmp eq i32 %inc10, %N
|
||||
br i1 %exitcond27, label %for.cond.cleanup, label %for.body4.lr.ph
|
||||
|
||||
for.cond.cleanup:
|
||||
ret void
|
||||
}
|
||||
|
||||
; Inner loop does not start at zero
|
||||
define void @test_2(i32 %N, i32* nocapture %C, i32* nocapture readonly %A, i32 %scale) {
|
||||
entry:
|
||||
%cmp25 = icmp sgt i32 %N, 0
|
||||
br i1 %cmp25, label %for.body4.lr.ph, label %for.cond.cleanup
|
||||
|
||||
for.body4.lr.ph:
|
||||
%i.026 = phi i32 [ %inc10, %for.cond.cleanup3 ], [ 0, %entry ]
|
||||
%mul = mul nsw i32 %i.026, %N
|
||||
br label %for.body4
|
||||
|
||||
for.body4:
|
||||
%j.024 = phi i32 [ 1, %for.body4.lr.ph ], [ %inc, %for.body4 ]
|
||||
%add = add nsw i32 %j.024, %mul
|
||||
%arrayidx = getelementptr inbounds i32, i32* %A, i32 %add
|
||||
%0 = load i32, i32* %arrayidx, align 4
|
||||
%mul5 = mul nsw i32 %0, %scale
|
||||
%arrayidx8 = getelementptr inbounds i32, i32* %C, i32 %add
|
||||
store i32 %mul5, i32* %arrayidx8, align 4
|
||||
%inc = add nuw nsw i32 %j.024, 1
|
||||
%exitcond = icmp eq i32 %inc, %N
|
||||
br i1 %exitcond, label %for.cond.cleanup3, label %for.body4
|
||||
|
||||
for.cond.cleanup3:
|
||||
%inc10 = add nuw nsw i32 %i.026, 1
|
||||
%exitcond27 = icmp eq i32 %inc10, %N
|
||||
br i1 %exitcond27, label %for.cond.cleanup, label %for.body4.lr.ph
|
||||
|
||||
for.cond.cleanup:
|
||||
ret void
|
||||
}
|
||||
|
||||
; Outer IV used directly
|
||||
define hidden void @test_3(i16 zeroext %N, i32* nocapture %C, i32* nocapture readonly %A, i32 %scale) {
|
||||
entry:
|
||||
%conv = zext i16 %N to i32
|
||||
%cmp25 = icmp eq i16 %N, 0
|
||||
br i1 %cmp25, label %for.cond.cleanup, label %for.body.lr.ph.split.us
|
||||
|
||||
for.body.lr.ph.split.us: ; preds = %entry
|
||||
br label %for.body.us
|
||||
|
||||
for.body.us: ; preds = %for.cond2.for.cond.cleanup6_crit_edge.us, %for.body.lr.ph.split.us
|
||||
%i.026.us = phi i32 [ 0, %for.body.lr.ph.split.us ], [ %inc12.us, %for.cond2.for.cond.cleanup6_crit_edge.us ]
|
||||
%arrayidx.us = getelementptr inbounds i32, i32* %A, i32 %i.026.us
|
||||
%mul9.us = mul nuw nsw i32 %i.026.us, %conv
|
||||
br label %for.body7.us
|
||||
|
||||
for.body7.us: ; preds = %for.body.us, %for.body7.us
|
||||
%j.024.us = phi i32 [ 0, %for.body.us ], [ %inc.us, %for.body7.us ]
|
||||
%0 = load i32, i32* %arrayidx.us, align 4
|
||||
%mul.us = mul nsw i32 %0, %scale
|
||||
%add.us = add nuw nsw i32 %j.024.us, %mul9.us
|
||||
%arrayidx10.us = getelementptr inbounds i32, i32* %C, i32 %add.us
|
||||
store i32 %mul.us, i32* %arrayidx10.us, align 4
|
||||
%inc.us = add nuw nsw i32 %j.024.us, 1
|
||||
%exitcond = icmp ne i32 %inc.us, %conv
|
||||
br i1 %exitcond, label %for.body7.us, label %for.cond2.for.cond.cleanup6_crit_edge.us
|
||||
|
||||
for.cond2.for.cond.cleanup6_crit_edge.us: ; preds = %for.body7.us
|
||||
%inc12.us = add nuw nsw i32 %i.026.us, 1
|
||||
%exitcond27 = icmp ne i32 %inc12.us, %conv
|
||||
br i1 %exitcond27, label %for.body.us, label %for.cond.cleanup.loopexit
|
||||
|
||||
for.cond.cleanup.loopexit: ; preds = %for.cond2.for.cond.cleanup6_crit_edge.us
|
||||
br label %for.cond.cleanup
|
||||
|
||||
for.cond.cleanup: ; preds = %for.cond.cleanup.loopexit, %entry
|
||||
ret void
|
||||
}
|
||||
|
||||
; Inner IV used directly
|
||||
define hidden void @test_4(i16 zeroext %N, i32* nocapture %C, i32* nocapture readonly %A, i32 %scale) {
|
||||
entry:
|
||||
%conv = zext i16 %N to i32
|
||||
%cmp25 = icmp eq i16 %N, 0
|
||||
br i1 %cmp25, label %for.cond.cleanup, label %for.body.lr.ph.split.us
|
||||
|
||||
for.body.lr.ph.split.us: ; preds = %entry
|
||||
br label %for.body.us
|
||||
|
||||
for.body.us: ; preds = %for.cond2.for.cond.cleanup6_crit_edge.us, %for.body.lr.ph.split.us
|
||||
%i.026.us = phi i32 [ 0, %for.body.lr.ph.split.us ], [ %inc12.us, %for.cond2.for.cond.cleanup6_crit_edge.us ]
|
||||
%mul9.us = mul nuw nsw i32 %i.026.us, %conv
|
||||
br label %for.body7.us
|
||||
|
||||
for.body7.us: ; preds = %for.body.us, %for.body7.us
|
||||
%j.024.us = phi i32 [ 0, %for.body.us ], [ %inc.us, %for.body7.us ]
|
||||
%arrayidx.us = getelementptr inbounds i32, i32* %A, i32 %j.024.us
|
||||
%0 = load i32, i32* %arrayidx.us, align 4
|
||||
%mul.us = mul nsw i32 %0, %scale
|
||||
%add.us = add nuw nsw i32 %j.024.us, %mul9.us
|
||||
%arrayidx10.us = getelementptr inbounds i32, i32* %C, i32 %add.us
|
||||
store i32 %mul.us, i32* %arrayidx10.us, align 4
|
||||
%inc.us = add nuw nsw i32 %j.024.us, 1
|
||||
%exitcond = icmp ne i32 %inc.us, %conv
|
||||
br i1 %exitcond, label %for.body7.us, label %for.cond2.for.cond.cleanup6_crit_edge.us
|
||||
|
||||
for.cond2.for.cond.cleanup6_crit_edge.us: ; preds = %for.body7.us
|
||||
%inc12.us = add nuw nsw i32 %i.026.us, 1
|
||||
%exitcond27 = icmp ne i32 %inc12.us, %conv
|
||||
br i1 %exitcond27, label %for.body.us, label %for.cond.cleanup.loopexit
|
||||
|
||||
for.cond.cleanup.loopexit: ; preds = %for.cond2.for.cond.cleanup6_crit_edge.us
|
||||
br label %for.cond.cleanup
|
||||
|
||||
for.cond.cleanup: ; preds = %for.cond.cleanup.loopexit, %entry
|
||||
ret void
|
||||
}
|
||||
|
||||
; Inner iteration count not invariant in outer loop
|
||||
declare i32 @get_int() readonly
|
||||
define void @test_5(i16 zeroext %N, i32* nocapture %C, i32* nocapture readonly %A, i32 %scale) {
|
||||
entry:
|
||||
%conv = zext i16 %N to i32
|
||||
%cmp27 = icmp eq i16 %N, 0
|
||||
br i1 %cmp27, label %for.cond.cleanup, label %for.body.lr.ph
|
||||
|
||||
for.body.lr.ph: ; preds = %entry
|
||||
br label %for.body
|
||||
|
||||
for.cond.cleanup.loopexit: ; preds = %for.cond.cleanup5
|
||||
br label %for.cond.cleanup
|
||||
|
||||
for.cond.cleanup: ; preds = %for.cond.cleanup.loopexit, %entry
|
||||
ret void
|
||||
|
||||
for.body: ; preds = %for.body.lr.ph, %for.cond.cleanup5
|
||||
%i.028 = phi i32 [ 0, %for.body.lr.ph ], [ %inc12, %for.cond.cleanup5 ]
|
||||
%call = tail call i32 @get_int()
|
||||
%cmp325 = icmp sgt i32 %call, 0
|
||||
br i1 %cmp325, label %for.body6.lr.ph, label %for.cond.cleanup5
|
||||
|
||||
for.body6.lr.ph: ; preds = %for.body
|
||||
%mul = mul nsw i32 %call, %i.028
|
||||
br label %for.body6
|
||||
|
||||
for.cond.cleanup5.loopexit: ; preds = %for.body6
|
||||
br label %for.cond.cleanup5
|
||||
|
||||
for.cond.cleanup5: ; preds = %for.cond.cleanup5.loopexit, %for.body
|
||||
%inc12 = add nuw nsw i32 %i.028, 1
|
||||
%exitcond29 = icmp ne i32 %inc12, %conv
|
||||
br i1 %exitcond29, label %for.body, label %for.cond.cleanup.loopexit
|
||||
|
||||
for.body6: ; preds = %for.body6.lr.ph, %for.body6
|
||||
%j.026 = phi i32 [ 0, %for.body6.lr.ph ], [ %inc, %for.body6 ]
|
||||
%add = add nsw i32 %j.026, %mul
|
||||
%arrayidx = getelementptr inbounds i32, i32* %A, i32 %add
|
||||
%0 = load i32, i32* %arrayidx, align 4
|
||||
%mul7 = mul nsw i32 %0, %scale
|
||||
%arrayidx10 = getelementptr inbounds i32, i32* %C, i32 %add
|
||||
store i32 %mul7, i32* %arrayidx10, align 4
|
||||
%inc = add nuw nsw i32 %j.026, 1
|
||||
%exitcond = icmp ne i32 %inc, %call
|
||||
br i1 %exitcond, label %for.body6, label %for.cond.cleanup5.loopexit
|
||||
}
|
||||
|
||||
; Inner loop has an early exit
|
||||
define hidden void @test_6(i16 zeroext %N, i32* nocapture %C, i32* nocapture readonly %A, i32 %scale) {
|
||||
entry:
|
||||
%conv = zext i16 %N to i32
|
||||
%cmp39 = icmp eq i16 %N, 0
|
||||
br i1 %cmp39, label %for.cond.cleanup, label %for.body.us.preheader
|
||||
|
||||
for.body.us.preheader: ; preds = %entry
|
||||
br label %for.body.us
|
||||
|
||||
for.body.us: ; preds = %for.body.us.preheader, %cleanup.us
|
||||
%i.040.us = phi i32 [ %inc19.us, %cleanup.us ], [ 0, %for.body.us.preheader ]
|
||||
%mul.us = mul nuw nsw i32 %i.040.us, %conv
|
||||
br label %for.body7.us
|
||||
|
||||
for.body7.us: ; preds = %for.body.us, %if.end.us
|
||||
%j.038.us = phi i32 [ 0, %for.body.us ], [ %inc.us, %if.end.us ]
|
||||
%add.us = add nuw nsw i32 %j.038.us, %mul.us
|
||||
%arrayidx.us = getelementptr inbounds i32, i32* %A, i32 %add.us
|
||||
%0 = load i32, i32* %arrayidx.us, align 4
|
||||
%tobool.us = icmp eq i32 %0, 0
|
||||
br i1 %tobool.us, label %if.end.us, label %cleanup.us
|
||||
|
||||
cleanup.us: ; preds = %if.end.us, %for.body7.us
|
||||
%inc19.us = add nuw nsw i32 %i.040.us, 1
|
||||
%exitcond = icmp eq i32 %inc19.us, %conv
|
||||
br i1 %exitcond, label %for.cond.cleanup, label %for.body.us
|
||||
|
||||
if.end.us: ; preds = %for.body7.us
|
||||
%arrayidx17.us = getelementptr inbounds i32, i32* %C, i32 %add.us
|
||||
store i32 0, i32* %arrayidx17.us, align 4
|
||||
%inc.us = add nuw nsw i32 %j.038.us, 1
|
||||
%cmp4.us = icmp ult i32 %inc.us, %conv
|
||||
br i1 %cmp4.us, label %for.body7.us, label %cleanup.us
|
||||
|
||||
for.cond.cleanup: ; preds = %cleanup.us, %entry
|
||||
ret void
|
||||
}
|
||||
|
||||
define hidden void @test_7(i16 zeroext %N, i32* nocapture %C, i32* nocapture readonly %A, i32 %scale) {
|
||||
entry:
|
||||
%conv = zext i16 %N to i32
|
||||
%cmp30 = icmp eq i16 %N, 0
|
||||
br i1 %cmp30, label %cleanup, label %for.body.us.preheader
|
||||
|
||||
for.body.us.preheader: ; preds = %entry
|
||||
br label %for.body.us
|
||||
|
||||
for.body.us: ; preds = %for.body.us.preheader, %for.cond2.for.cond.cleanup6_crit_edge.us
|
||||
%i.031.us = phi i32 [ %inc15.us, %for.cond2.for.cond.cleanup6_crit_edge.us ], [ 0, %for.body.us.preheader ]
|
||||
%call.us = tail call i32 @get_int() #2
|
||||
%tobool.us = icmp eq i32 %call.us, 0
|
||||
br i1 %tobool.us, label %for.body7.lr.ph.us, label %cleanup
|
||||
|
||||
for.body7.us: ; preds = %for.body7.us, %for.body7.lr.ph.us
|
||||
%j.029.us = phi i32 [ 0, %for.body7.lr.ph.us ], [ %inc.us, %for.body7.us ]
|
||||
%add.us = add nuw nsw i32 %j.029.us, %mul.us
|
||||
%arrayidx.us = getelementptr inbounds i32, i32* %A, i32 %add.us
|
||||
%0 = load i32, i32* %arrayidx.us, align 4
|
||||
%mul9.us = mul nsw i32 %0, %scale
|
||||
%arrayidx13.us = getelementptr inbounds i32, i32* %C, i32 %add.us
|
||||
store i32 %mul9.us, i32* %arrayidx13.us, align 4
|
||||
%inc.us = add nuw nsw i32 %j.029.us, 1
|
||||
%exitcond = icmp eq i32 %inc.us, %conv
|
||||
br i1 %exitcond, label %for.cond2.for.cond.cleanup6_crit_edge.us, label %for.body7.us
|
||||
|
||||
for.body7.lr.ph.us: ; preds = %for.body.us
|
||||
%mul.us = mul nuw nsw i32 %i.031.us, %conv
|
||||
br label %for.body7.us
|
||||
|
||||
for.cond2.for.cond.cleanup6_crit_edge.us: ; preds = %for.body7.us
|
||||
%inc15.us = add nuw nsw i32 %i.031.us, 1
|
||||
%cmp.us = icmp ult i32 %inc15.us, %conv
|
||||
br i1 %cmp.us, label %for.body.us, label %cleanup
|
||||
|
||||
cleanup: ; preds = %for.cond2.for.cond.cleanup6_crit_edge.us, %for.body.us, %entry
|
||||
ret void
|
||||
}
|
||||
|
||||
; Step is not 1
|
||||
define i32 @test_8(i32 %val, i16* nocapture %A) {
|
||||
entry:
|
||||
br label %for.body
|
||||
|
||||
for.body: ; preds = %entry, %for.inc6
|
||||
%i.018 = phi i32 [ 0, %entry ], [ %inc7, %for.inc6 ]
|
||||
%mul = mul nuw nsw i32 %i.018, 20
|
||||
br label %for.body3
|
||||
|
||||
for.body3: ; preds = %for.body, %for.body3
|
||||
%j.017 = phi i32 [ 0, %for.body ], [ %inc, %for.body3 ]
|
||||
%add = add nuw nsw i32 %j.017, %mul
|
||||
%arrayidx = getelementptr inbounds i16, i16* %A, i32 %add
|
||||
%0 = load i16, i16* %arrayidx, align 2
|
||||
%conv16 = zext i16 %0 to i32
|
||||
%add4 = add i32 %conv16, %val
|
||||
%conv5 = trunc i32 %add4 to i16
|
||||
store i16 %conv5, i16* %arrayidx, align 2
|
||||
%inc = add nuw nsw i32 %j.017, 1
|
||||
%exitcond = icmp ne i32 %inc, 20
|
||||
br i1 %exitcond, label %for.body3, label %for.inc6
|
||||
|
||||
for.inc6: ; preds = %for.body3
|
||||
%inc7 = add nuw nsw i32 %i.018, 2
|
||||
%exitcond19 = icmp ne i32 %inc7, 10
|
||||
br i1 %exitcond19, label %for.body, label %for.end8
|
||||
|
||||
for.end8: ; preds = %for.inc6
|
||||
ret i32 10
|
||||
}
|
||||
|
||||
|
||||
; Step is not 1
|
||||
define i32 @test_9(i32 %val, i16* nocapture %A) {
|
||||
entry:
|
||||
br label %for.body
|
||||
|
||||
for.body: ; preds = %entry, %for.inc6
|
||||
%i.018 = phi i32 [ 0, %entry ], [ %inc7, %for.inc6 ]
|
||||
%mul = mul nuw nsw i32 %i.018, 20
|
||||
br label %for.body3
|
||||
|
||||
for.body3: ; preds = %for.body, %for.body3
|
||||
%j.017 = phi i32 [ 0, %for.body ], [ %inc, %for.body3 ]
|
||||
%add = add nuw nsw i32 %j.017, %mul
|
||||
%arrayidx = getelementptr inbounds i16, i16* %A, i32 %add
|
||||
%0 = load i16, i16* %arrayidx, align 2
|
||||
%conv16 = zext i16 %0 to i32
|
||||
%add4 = add i32 %conv16, %val
|
||||
%conv5 = trunc i32 %add4 to i16
|
||||
store i16 %conv5, i16* %arrayidx, align 2
|
||||
%inc = add nuw nsw i32 %j.017, 2
|
||||
%exitcond = icmp ne i32 %inc, 20
|
||||
br i1 %exitcond, label %for.body3, label %for.inc6
|
||||
|
||||
for.inc6: ; preds = %for.body3
|
||||
%inc7 = add nuw nsw i32 %i.018, 1
|
||||
%exitcond19 = icmp ne i32 %inc7, 10
|
||||
br i1 %exitcond19, label %for.body, label %for.end8
|
||||
|
||||
for.end8: ; preds = %for.inc6
|
||||
ret i32 10
|
||||
}
|
||||
|
||||
|
||||
; Outer loop conditional phi
|
||||
define i32 @e() {
|
||||
entry:
|
||||
br label %for.body
|
||||
|
||||
for.body: ; preds = %entry, %for.end16
|
||||
%f.033 = phi i32 [ 0, %entry ], [ %inc18, %for.end16 ]
|
||||
%g.032 = phi i32 [ undef, %entry ], [ %g.3.lcssa, %for.end16 ]
|
||||
%.pr = add i32 10, 10
|
||||
%tobool29 = icmp eq i32 %.pr, 0
|
||||
br i1 %tobool29, label %for.end, label %for.body2.lr.ph
|
||||
|
||||
for.body2.lr.ph: ; preds = %for.body
|
||||
br label %for.cond1.for.end_crit_edge
|
||||
|
||||
for.cond1.for.end_crit_edge: ; preds = %for.body2.lr.ph
|
||||
br label %for.end
|
||||
|
||||
for.end: ; preds = %for.cond1.for.end_crit_edge, %for.body
|
||||
%g.1.lcssa = phi i32 [ 0, %for.cond1.for.end_crit_edge ], [ %g.032, %for.body ]
|
||||
br label %for.body5
|
||||
|
||||
for.body5: ; preds = %for.end, %lor.end
|
||||
%i.031 = phi i32 [ 0, %for.end ], [ %inc15, %lor.end ]
|
||||
%g.230 = phi i32 [ %g.1.lcssa, %for.end ], [ %g.3, %lor.end ]
|
||||
%0 = add i32 10, 10
|
||||
%1 = add i32 10, 10
|
||||
%tobool9 = icmp eq i32 %1, 0
|
||||
br i1 %tobool9, label %lor.rhs, label %lor.end
|
||||
|
||||
lor.rhs: ; preds = %for.body5
|
||||
%2 = add i32 10, 10
|
||||
%call11 = add i32 10, 10
|
||||
%tobool12 = icmp ne i32 %call11, 0
|
||||
br label %lor.end
|
||||
|
||||
lor.end: ; preds = %for.body5, %lor.rhs
|
||||
%g.3 = phi i32 [ %g.230, %for.body5 ], [ %call11, %lor.rhs ]
|
||||
%3 = phi i1 [ true, %for.body5 ], [ %tobool12, %lor.rhs ]
|
||||
%lor.ext = zext i1 %3 to i32
|
||||
%inc15 = add nuw nsw i32 %i.031, 1
|
||||
%exitcond = icmp ne i32 %inc15, 9
|
||||
br i1 %exitcond, label %for.body5, label %for.end16
|
||||
|
||||
for.end16: ; preds = %lor.end
|
||||
%g.3.lcssa = phi i32 [ %g.3, %lor.end ]
|
||||
%inc18 = add nuw nsw i32 %f.033, 1
|
||||
%exitcond34 = icmp ne i32 %inc18, 7
|
||||
br i1 %exitcond34, label %for.body, label %for.end19
|
||||
|
||||
for.end19: ; preds = %for.end16
|
||||
ret i32 undef
|
||||
}
|
|
@ -0,0 +1,591 @@
|
|||
; RUN: opt < %s -S -loop-flatten -verify-loop-info -verify-dom-info -verify-scev -verify | FileCheck %s
|
||||
|
||||
target datalayout = "e-m:e-p:32:32-i64:64-v128:64:128-a:0:32-n32-S64"
|
||||
|
||||
; CHECK-LABEL: test1
|
||||
; Simple loop where the IV's is constant
|
||||
define i32 @test1(i32 %val, i16* nocapture %A) {
|
||||
entry:
|
||||
br label %for.body
|
||||
; CHECK: entry:
|
||||
; CHECK: %flatten.tripcount = mul i32 20, 10
|
||||
; CHECK: br label %for.body
|
||||
|
||||
for.body: ; preds = %entry, %for.inc6
|
||||
%i.018 = phi i32 [ 0, %entry ], [ %inc7, %for.inc6 ]
|
||||
%mul = mul nuw nsw i32 %i.018, 20
|
||||
br label %for.body3
|
||||
; CHECK: for.body:
|
||||
; CHECK: %i.018 = phi i32 [ 0, %entry ], [ %inc7, %for.inc6 ]
|
||||
; CHECK: %mul = mul nuw nsw i32 %i.018, 20
|
||||
; CHECK: br label %for.body3
|
||||
|
||||
for.body3: ; preds = %for.body, %for.body3
|
||||
%j.017 = phi i32 [ 0, %for.body ], [ %inc, %for.body3 ]
|
||||
%add = add nuw nsw i32 %j.017, %mul
|
||||
%arrayidx = getelementptr inbounds i16, i16* %A, i32 %add
|
||||
%0 = load i16, i16* %arrayidx, align 2
|
||||
%conv16 = zext i16 %0 to i32
|
||||
%add4 = add i32 %conv16, %val
|
||||
%conv5 = trunc i32 %add4 to i16
|
||||
store i16 %conv5, i16* %arrayidx, align 2
|
||||
%inc = add nuw nsw i32 %j.017, 1
|
||||
%exitcond = icmp ne i32 %inc, 20
|
||||
br i1 %exitcond, label %for.body3, label %for.inc6
|
||||
; CHECK: for.body3:
|
||||
; CHECK: %j.017 = phi i32 [ 0, %for.body ]
|
||||
; CHECK: %add = add nuw nsw i32 %j.017, %mul
|
||||
; CHECK: %arrayidx = getelementptr inbounds i16, i16* %A, i32 %i.018
|
||||
; CHECK: %0 = load i16, i16* %arrayidx, align 2
|
||||
; CHECK: %conv16 = zext i16 %0 to i32
|
||||
; CHECK: %add4 = add i32 %conv16, %val
|
||||
; CHECK: %conv5 = trunc i32 %add4 to i16
|
||||
; CHECK: store i16 %conv5, i16* %arrayidx, align 2
|
||||
; CHECK: %inc = add nuw nsw i32 %j.017, 1
|
||||
; CHECK: %exitcond = icmp ne i32 %inc, 20
|
||||
; CHECK: br label %for.inc6
|
||||
|
||||
for.inc6: ; preds = %for.body3
|
||||
%inc7 = add nuw nsw i32 %i.018, 1
|
||||
%exitcond19 = icmp ne i32 %inc7, 10
|
||||
br i1 %exitcond19, label %for.body, label %for.end8
|
||||
; CHECK: for.inc6:
|
||||
; CHECK: %inc7 = add nuw nsw i32 %i.018, 1
|
||||
; CHECK: %exitcond19 = icmp ne i32 %inc7, %flatten.tripcount
|
||||
; CHECK: br i1 %exitcond19, label %for.body, label %for.end8
|
||||
|
||||
for.end8: ; preds = %for.inc6
|
||||
ret i32 10
|
||||
}
|
||||
|
||||
|
||||
; CHECK-LABEL: test2
|
||||
; Same as above but non constant IV (which still cannot overflow)
|
||||
define i32 @test2(i8 zeroext %I, i32 %val, i16* nocapture %A) {
|
||||
entry:
|
||||
%conv = zext i8 %I to i32
|
||||
%cmp26 = icmp eq i8 %I, 0
|
||||
br i1 %cmp26, label %for.end13, label %for.body.lr.ph.split.us
|
||||
|
||||
for.body.lr.ph.split.us: ; preds = %entry
|
||||
br label %for.body.us
|
||||
; CHECK: for.body.lr.ph.split.us:
|
||||
; CHECK: %flatten.tripcount = mul i32 %conv, %conv
|
||||
; CHECK: br label %for.body.us
|
||||
|
||||
for.body.us: ; preds = %for.cond2.for.inc11_crit_edge.us, %for.body.lr.ph.split.us
|
||||
%i.027.us = phi i32 [ 0, %for.body.lr.ph.split.us ], [ %inc12.us, %for.cond2.for.inc11_crit_edge.us ]
|
||||
%mul.us = mul nuw nsw i32 %i.027.us, %conv
|
||||
br label %for.body6.us
|
||||
; CHECK: for.body.us:
|
||||
; CHECK: %i.027.us = phi i32 [ 0, %for.body.lr.ph.split.us ], [ %inc12.us, %for.cond2.for.inc11_crit_edge.us ]
|
||||
; CHECK: %mul.us = mul nuw nsw i32 %i.027.us, %conv
|
||||
; CHECK: br label %for.body6.us
|
||||
|
||||
for.body6.us: ; preds = %for.body.us, %for.body6.us
|
||||
%j.025.us = phi i32 [ 0, %for.body.us ], [ %inc.us, %for.body6.us ]
|
||||
%add.us = add nuw nsw i32 %j.025.us, %mul.us
|
||||
%arrayidx.us = getelementptr inbounds i16, i16* %A, i32 %add.us
|
||||
%0 = load i16, i16* %arrayidx.us, align 2
|
||||
%conv823.us = zext i16 %0 to i32
|
||||
%add9.us = add i32 %conv823.us, %val
|
||||
%conv10.us = trunc i32 %add9.us to i16
|
||||
store i16 %conv10.us, i16* %arrayidx.us, align 2
|
||||
%inc.us = add nuw nsw i32 %j.025.us, 1
|
||||
%exitcond = icmp ne i32 %inc.us, %conv
|
||||
br i1 %exitcond, label %for.body6.us, label %for.cond2.for.inc11_crit_edge.us
|
||||
; CHECK: for.body6.us:
|
||||
; CHECK: %j.025.us = phi i32 [ 0, %for.body.us ]
|
||||
; CHECK: %add.us = add nuw nsw i32 %j.025.us, %mul.us
|
||||
; CHECK: %arrayidx.us = getelementptr inbounds i16, i16* %A, i32 %i.027.us
|
||||
; CHECK: %0 = load i16, i16* %arrayidx.us, align 2
|
||||
; CHECK: %conv823.us = zext i16 %0 to i32
|
||||
; CHECK: %add9.us = add i32 %conv823.us, %val
|
||||
; CHECK: %conv10.us = trunc i32 %add9.us to i16
|
||||
; CHECK: store i16 %conv10.us, i16* %arrayidx.us, align 2
|
||||
; CHECK: %inc.us = add nuw nsw i32 %j.025.us, 1
|
||||
; CHECK: %exitcond = icmp ne i32 %inc.us, %conv
|
||||
; CHECK: br label %for.cond2.for.inc11_crit_edge.us
|
||||
|
||||
for.cond2.for.inc11_crit_edge.us: ; preds = %for.body6.us
|
||||
%inc12.us = add nuw nsw i32 %i.027.us, 1
|
||||
%exitcond28 = icmp ne i32 %inc12.us, %conv
|
||||
br i1 %exitcond28, label %for.body.us, label %for.end13.loopexit
|
||||
; CHECK: for.cond2.for.inc11_crit_edge.us: ; preds = %for.body6.us
|
||||
; CHECK: %inc12.us = add nuw nsw i32 %i.027.us, 1
|
||||
; CHECK: %exitcond28 = icmp ne i32 %inc12.us, %flatten.tripcount
|
||||
; CHECK: br i1 %exitcond28, label %for.body.us, label %for.end13.loopexit
|
||||
|
||||
for.end13.loopexit: ; preds = %for.cond2.for.inc11_crit_edge.us
|
||||
br label %for.end13
|
||||
|
||||
for.end13: ; preds = %for.end13.loopexit, %entry
|
||||
%i.0.lcssa = phi i32 [ 0, %entry ], [ %conv, %for.end13.loopexit ]
|
||||
ret i32 %i.0.lcssa
|
||||
}
|
||||
|
||||
|
||||
; CHECK-LABEL: test3
|
||||
; Same as above, uses load to determine it can't overflow
|
||||
define i32 @test3(i32 %N, i32 %val, i16* nocapture %A) local_unnamed_addr #0 {
|
||||
entry:
|
||||
%cmp21 = icmp eq i32 %N, 0
|
||||
br i1 %cmp21, label %for.end8, label %for.body.lr.ph.split.us
|
||||
|
||||
for.body.lr.ph.split.us: ; preds = %entry
|
||||
br label %for.body.us
|
||||
; CHECK: for.body.lr.ph.split.us:
|
||||
; CHECK: %flatten.tripcount = mul i32 %N, %N
|
||||
; CHECK: br label %for.body.us
|
||||
|
||||
for.body.us: ; preds = %for.cond1.for.inc6_crit_edge.us, %for.body.lr.ph.split.us
|
||||
%i.022.us = phi i32 [ 0, %for.body.lr.ph.split.us ], [ %inc7.us, %for.cond1.for.inc6_crit_edge.us ]
|
||||
%mul.us = mul i32 %i.022.us, %N
|
||||
br label %for.body3.us
|
||||
; CHECK: for.body.us:
|
||||
; CHECK: %i.022.us = phi i32 [ 0, %for.body.lr.ph.split.us ], [ %inc7.us, %for.cond1.for.inc6_crit_edge.us ]
|
||||
; CHECK: %mul.us = mul i32 %i.022.us, %N
|
||||
; CHECK: br label %for.body3.us
|
||||
|
||||
for.body3.us: ; preds = %for.body.us, %for.body3.us
|
||||
%j.020.us = phi i32 [ 0, %for.body.us ], [ %inc.us, %for.body3.us ]
|
||||
%add.us = add i32 %j.020.us, %mul.us
|
||||
%arrayidx.us = getelementptr inbounds i16, i16* %A, i32 %add.us
|
||||
%0 = load i16, i16* %arrayidx.us, align 2
|
||||
%conv18.us = zext i16 %0 to i32
|
||||
%add4.us = add i32 %conv18.us, %val
|
||||
%conv5.us = trunc i32 %add4.us to i16
|
||||
store i16 %conv5.us, i16* %arrayidx.us, align 2
|
||||
%inc.us = add nuw i32 %j.020.us, 1
|
||||
%exitcond = icmp ne i32 %inc.us, %N
|
||||
br i1 %exitcond, label %for.body3.us, label %for.cond1.for.inc6_crit_edge.us
|
||||
; CHECK: for.body3.us:
|
||||
; CHECK: %j.020.us = phi i32 [ 0, %for.body.us ]
|
||||
; CHECK: %add.us = add i32 %j.020.us, %mul.us
|
||||
; CHECK: %arrayidx.us = getelementptr inbounds i16, i16* %A, i32 %i.022.us
|
||||
; CHECK: %0 = load i16, i16* %arrayidx.us, align 2
|
||||
; CHECK: %conv18.us = zext i16 %0 to i32
|
||||
; CHECK: %add4.us = add i32 %conv18.us, %val
|
||||
; CHECK: %conv5.us = trunc i32 %add4.us to i16
|
||||
; CHECK: store i16 %conv5.us, i16* %arrayidx.us, align 2
|
||||
; CHECK: %inc.us = add nuw i32 %j.020.us, 1
|
||||
; CHECK: %exitcond = icmp ne i32 %inc.us, %N
|
||||
; CHECK: br label %for.cond1.for.inc6_crit_edge.us
|
||||
|
||||
for.cond1.for.inc6_crit_edge.us: ; preds = %for.body3.us
|
||||
%inc7.us = add nuw i32 %i.022.us, 1
|
||||
%exitcond23 = icmp ne i32 %inc7.us, %N
|
||||
br i1 %exitcond23, label %for.body.us, label %for.end8.loopexit
|
||||
; CHECK: for.cond1.for.inc6_crit_edge.us:
|
||||
; CHECK: %inc7.us = add nuw i32 %i.022.us, 1
|
||||
; CHECK: %exitcond23 = icmp ne i32 %inc7.us, %flatten.tripcount
|
||||
; CHECK: br i1 %exitcond23, label %for.body.us, label %for.end8.loopexit
|
||||
|
||||
for.end8.loopexit: ; preds = %for.cond1.for.inc6_crit_edge.us
|
||||
br label %for.end8
|
||||
|
||||
for.end8: ; preds = %for.end8.loopexit, %entry
|
||||
%i.0.lcssa = phi i32 [ 0, %entry ], [ %N, %for.end8.loopexit ]
|
||||
ret i32 %i.0.lcssa
|
||||
}
|
||||
|
||||
|
||||
; CHECK-LABEL: test4
|
||||
; Multiplication cannot overflow, so we can replace the original loop.
|
||||
define void @test4(i16 zeroext %N, i32* nocapture %C, i32* nocapture readonly %A, i32 %scale) {
|
||||
entry:
|
||||
%conv = zext i16 %N to i32
|
||||
%cmp30 = icmp eq i16 %N, 0
|
||||
br i1 %cmp30, label %for.cond.cleanup, label %for.body.lr.ph.split.us
|
||||
; CHECK: entry:
|
||||
; CHECK: %[[LIMIT:.*]] = zext i16 %N to i32
|
||||
; CHECK: br i1 %{{.*}} label %for.cond.cleanup, label %for.body.lr.ph.split.us
|
||||
|
||||
for.body.lr.ph.split.us: ; preds = %entry
|
||||
br label %for.body.us
|
||||
; CHECK: for.body.lr.ph.split.us:
|
||||
; CHECK: %[[TRIPCOUNT:.*]] = mul i32 %[[LIMIT]], %[[LIMIT]]
|
||||
; CHECK: br label %for.body.us
|
||||
|
||||
for.body.us: ; preds = %for.cond2.for.cond.cleanup6_crit_edge.us, %for.body.lr.ph.split.us
|
||||
%i.031.us = phi i32 [ 0, %for.body.lr.ph.split.us ], [ %inc15.us, %for.cond2.for.cond.cleanup6_crit_edge.us ]
|
||||
%mul.us = mul nuw nsw i32 %i.031.us, %conv
|
||||
br label %for.body7.us
|
||||
; CHECK: for.body.us:
|
||||
; CHECK: %[[OUTER_IV:.*]] = phi i32
|
||||
; CHECK: br label %for.body7.us
|
||||
|
||||
for.body7.us: ; preds = %for.body.us, %for.body7.us
|
||||
; CHECK: for.body7.us:
|
||||
%j.029.us = phi i32 [ 0, %for.body.us ], [ %inc.us, %for.body7.us ]
|
||||
%add.us = add nuw nsw i32 %j.029.us, %mul.us
|
||||
%arrayidx.us = getelementptr inbounds i32, i32* %A, i32 %add.us
|
||||
; CHECK: getelementptr inbounds i32, i32* %A, i32 %[[OUTER_IV]]
|
||||
%0 = load i32, i32* %arrayidx.us, align 4
|
||||
%mul9.us = mul nsw i32 %0, %scale
|
||||
; CHECK: getelementptr inbounds i32, i32* %C, i32 %[[OUTER_IV]]
|
||||
%arrayidx13.us = getelementptr inbounds i32, i32* %C, i32 %add.us
|
||||
store i32 %mul9.us, i32* %arrayidx13.us, align 4
|
||||
%inc.us = add nuw nsw i32 %j.029.us, 1
|
||||
%exitcond = icmp ne i32 %inc.us, %conv
|
||||
br i1 %exitcond, label %for.body7.us, label %for.cond2.for.cond.cleanup6_crit_edge.us
|
||||
; CHECK: br label %for.cond2.for.cond.cleanup6_crit_edge.us
|
||||
|
||||
for.cond2.for.cond.cleanup6_crit_edge.us: ; preds = %for.body7.us
|
||||
%inc15.us = add nuw nsw i32 %i.031.us, 1
|
||||
%exitcond32 = icmp ne i32 %inc15.us, %conv
|
||||
br i1 %exitcond32, label %for.body.us, label %for.cond.cleanup.loopexit
|
||||
; CHECK: for.cond2.for.cond.cleanup6_crit_edge.us:
|
||||
; CHECK: br i1 %exitcond32, label %for.body.us, label %for.cond.cleanup.loopexit
|
||||
|
||||
for.cond.cleanup.loopexit: ; preds = %for.cond2.for.cond.cleanup6_crit_edge.us
|
||||
br label %for.cond.cleanup
|
||||
; CHECK: for.cond.cleanup.loopexit:
|
||||
; CHECK: br label %for.cond.cleanup
|
||||
|
||||
for.cond.cleanup: ; preds = %for.cond.cleanup.loopexit, %entry
|
||||
ret void
|
||||
; CHECK: for.cond.cleanup:
|
||||
; CHECK: ret void
|
||||
}
|
||||
|
||||
|
||||
; CHECK-LABEL: test5
|
||||
define i32 @test5(i8 zeroext %I, i16 zeroext %J) {
|
||||
entry:
|
||||
%0 = lshr i8 %I, 1
|
||||
%div = zext i8 %0 to i32
|
||||
%cmp30 = icmp eq i8 %0, 0
|
||||
br i1 %cmp30, label %for.cond.cleanup, label %for.body.lr.ph
|
||||
|
||||
for.body.lr.ph: ; preds = %entry
|
||||
%1 = lshr i16 %J, 1
|
||||
%div5 = zext i16 %1 to i32
|
||||
%cmp627 = icmp eq i16 %1, 0
|
||||
br i1 %cmp627, label %for.body.lr.ph.split, label %for.body.lr.ph.split.us
|
||||
|
||||
for.body.lr.ph.split.us: ; preds = %for.body.lr.ph
|
||||
br label %for.body.us
|
||||
; CHECK: for.body.lr.ph.split.us:
|
||||
; CHECK: %flatten.tripcount = mul i32 %div5, %div
|
||||
; CHECK: br label %for.body.us
|
||||
|
||||
for.body.us: ; preds = %for.cond3.for.cond.cleanup8_crit_edge.us, %for.body.lr.ph.split.us
|
||||
%i.032.us = phi i32 [ 0, %for.body.lr.ph.split.us ], [ %inc13.us, %for.cond3.for.cond.cleanup8_crit_edge.us ]
|
||||
%x.031.us = phi i32 [ 1, %for.body.lr.ph.split.us ], [ %xor.us.lcssa, %for.cond3.for.cond.cleanup8_crit_edge.us ]
|
||||
br label %for.body9.us
|
||||
; CHECK: for.body.us:
|
||||
; CHECK: %i.032.us = phi i32 [ 0, %for.body.lr.ph.split.us ], [ %inc13.us, %for.cond3.for.cond.cleanup8_crit_edge.us ]
|
||||
; CHECK: %x.031.us = phi i32 [ 1, %for.body.lr.ph.split.us ], [ %xor.us.lcssa, %for.cond3.for.cond.cleanup8_crit_edge.us ]
|
||||
; CHECK: br label %for.body9.us
|
||||
|
||||
for.body9.us: ; preds = %for.body.us, %for.body9.us
|
||||
%j.029.us = phi i32 [ 0, %for.body.us ], [ %inc.us, %for.body9.us ]
|
||||
%x.128.us = phi i32 [ %x.031.us, %for.body.us ], [ %xor.us, %for.body9.us ]
|
||||
%call.us = tail call i32 @func(i32 1)
|
||||
%sub.us = sub nsw i32 %call.us, %x.128.us
|
||||
%xor.us = xor i32 %sub.us, %x.128.us
|
||||
%inc.us = add nuw nsw i32 %j.029.us, 1
|
||||
%cmp6.us = icmp ult i32 %inc.us, %div5
|
||||
br i1 %cmp6.us, label %for.body9.us, label %for.cond3.for.cond.cleanup8_crit_edge.us
|
||||
; CHECK: for.body9.us:
|
||||
; CHECK: %j.029.us = phi i32 [ 0, %for.body.us ]
|
||||
; CHECK: %x.128.us = phi i32 [ %x.031.us, %for.body.us ]
|
||||
; CHECK: %call.us = tail call i32 @func(i32 1)
|
||||
; CHECK: %sub.us = sub nsw i32 %call.us, %x.128.us
|
||||
; CHECK: %xor.us = xor i32 %sub.us, %x.128.us
|
||||
; CHECK: %inc.us = add nuw nsw i32 %j.029.us, 1
|
||||
; CHECK: %cmp6.us = icmp ult i32 %inc.us, %div5
|
||||
; CHECK: br label %for.cond3.for.cond.cleanup8_crit_edge.us
|
||||
|
||||
for.cond3.for.cond.cleanup8_crit_edge.us: ; preds = %for.body9.us
|
||||
%xor.us.lcssa = phi i32 [ %xor.us, %for.body9.us ]
|
||||
%inc13.us = add nuw nsw i32 %i.032.us, 1
|
||||
%cmp.us = icmp ult i32 %inc13.us, %div
|
||||
br i1 %cmp.us, label %for.body.us, label %for.cond.cleanup.loopexit
|
||||
; CHECK: for.cond3.for.cond.cleanup8_crit_edge.us:
|
||||
; CHECK: %xor.us.lcssa = phi i32 [ %xor.us, %for.body9.us ]
|
||||
; CHECK: %inc13.us = add nuw nsw i32 %i.032.us, 1
|
||||
; CHECK: %cmp.us = icmp ult i32 %inc13.us, %flatten.tripcount
|
||||
; CHECK: br i1 %cmp.us, label %for.body.us, label %for.cond.cleanup.loopexit
|
||||
|
||||
for.body.lr.ph.split: ; preds = %for.body.lr.ph
|
||||
br label %for.body
|
||||
|
||||
for.cond.cleanup.loopexit: ; preds = %for.cond3.for.cond.cleanup8_crit_edge.us
|
||||
%xor.us.lcssa.lcssa = phi i32 [ %xor.us.lcssa, %for.cond3.for.cond.cleanup8_crit_edge.us ]
|
||||
br label %for.cond.cleanup
|
||||
|
||||
for.cond.cleanup.loopexit34: ; preds = %for.body
|
||||
br label %for.cond.cleanup
|
||||
|
||||
for.cond.cleanup: ; preds = %for.cond.cleanup.loopexit34, %for.cond.cleanup.loopexit, %entry
|
||||
%x.0.lcssa = phi i32 [ 1, %entry ], [ %xor.us.lcssa.lcssa, %for.cond.cleanup.loopexit ], [ 1, %for.cond.cleanup.loopexit34 ]
|
||||
ret i32 %x.0.lcssa
|
||||
|
||||
for.body: ; preds = %for.body.lr.ph.split, %for.body
|
||||
%i.032 = phi i32 [ 0, %for.body.lr.ph.split ], [ %inc13, %for.body ]
|
||||
%inc13 = add nuw nsw i32 %i.032, 1
|
||||
%cmp = icmp ult i32 %inc13, %div
|
||||
br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit34
|
||||
}
|
||||
|
||||
|
||||
; CHECK-LABEL: test6
|
||||
define i32 @test6(i8 zeroext %I, i16 zeroext %J) {
|
||||
entry:
|
||||
%0 = lshr i8 %I, 1
|
||||
%div = zext i8 %0 to i32
|
||||
%cmp30 = icmp eq i8 %0, 0
|
||||
br i1 %cmp30, label %for.cond.cleanup, label %for.body.lr.ph
|
||||
|
||||
for.body.lr.ph: ; preds = %entry
|
||||
%1 = lshr i16 %J, 1
|
||||
%div5 = zext i16 %1 to i32
|
||||
%cmp627 = icmp eq i16 %1, 0
|
||||
br i1 %cmp627, label %for.body.lr.ph.split, label %for.body.lr.ph.split.us
|
||||
|
||||
for.body.lr.ph.split.us: ; preds = %for.body.lr.ph
|
||||
br label %for.body.us
|
||||
; CHECK: for.body.lr.ph.split.us:
|
||||
; CHECK: %flatten.tripcount = mul i32 %div5, %div
|
||||
; CHECK: br label %for.body.us
|
||||
|
||||
for.body.us: ; preds = %for.cond3.for.cond.cleanup8_crit_edge.us, %for.body.lr.ph.split.us
|
||||
%i.032.us = phi i32 [ 0, %for.body.lr.ph.split.us ], [ %inc13.us, %for.cond3.for.cond.cleanup8_crit_edge.us ]
|
||||
%x.031.us = phi i32 [ 1, %for.body.lr.ph.split.us ], [ %xor.us.lcssa, %for.cond3.for.cond.cleanup8_crit_edge.us ]
|
||||
%mul.us = mul nuw nsw i32 %i.032.us, %div5
|
||||
br label %for.body9.us
|
||||
; CHECK: for.body.us:
|
||||
; CHECK: %i.032.us = phi i32 [ 0, %for.body.lr.ph.split.us ], [ %inc13.us, %for.cond3.for.cond.cleanup8_crit_edge.us ]
|
||||
; CHECK: %x.031.us = phi i32 [ 1, %for.body.lr.ph.split.us ], [ %xor.us.lcssa, %for.cond3.for.cond.cleanup8_crit_edge.us ]
|
||||
; CHECK: %mul.us = mul nuw nsw i32 %i.032.us, %div5
|
||||
; CHECK: br label %for.body9.us
|
||||
|
||||
for.body9.us: ; preds = %for.body.us, %for.body9.us
|
||||
%j.029.us = phi i32 [ 0, %for.body.us ], [ %inc.us, %for.body9.us ]
|
||||
%x.128.us = phi i32 [ %x.031.us, %for.body.us ], [ %xor.us, %for.body9.us ]
|
||||
%add.us = add nuw nsw i32 %j.029.us, %mul.us
|
||||
%call.us = tail call i32 @func(i32 %add.us)
|
||||
%sub.us = sub nsw i32 %call.us, %x.128.us
|
||||
%xor.us = xor i32 %sub.us, %x.128.us
|
||||
%inc.us = add nuw nsw i32 %j.029.us, 1
|
||||
%cmp6.us = icmp ult i32 %inc.us, %div5
|
||||
br i1 %cmp6.us, label %for.body9.us, label %for.cond3.for.cond.cleanup8_crit_edge.us
|
||||
; CHECK: for.body9.us:
|
||||
; CHECK: %j.029.us = phi i32 [ 0, %for.body.us ]
|
||||
; CHECK: %x.128.us = phi i32 [ %x.031.us, %for.body.us ]
|
||||
; CHECK: %add.us = add nuw nsw i32 %j.029.us, %mul.us
|
||||
; CHECK: %call.us = tail call i32 @func(i32 %i.032.us)
|
||||
; CHECK: %sub.us = sub nsw i32 %call.us, %x.128.us
|
||||
; CHECK: %xor.us = xor i32 %sub.us, %x.128.us
|
||||
; CHECK: %inc.us = add nuw nsw i32 %j.029.us, 1
|
||||
; CHECK: %cmp6.us = icmp ult i32 %inc.us, %div5
|
||||
; CHECK: br label %for.cond3.for.cond.cleanup8_crit_edge.us
|
||||
|
||||
for.cond3.for.cond.cleanup8_crit_edge.us: ; preds = %for.body9.us
|
||||
%xor.us.lcssa = phi i32 [ %xor.us, %for.body9.us ]
|
||||
%inc13.us = add nuw nsw i32 %i.032.us, 1
|
||||
%cmp.us = icmp ult i32 %inc13.us, %div
|
||||
br i1 %cmp.us, label %for.body.us, label %for.cond.cleanup.loopexit
|
||||
; CHECK: for.cond3.for.cond.cleanup8_crit_edge.us:
|
||||
; CHECK: %xor.us.lcssa = phi i32 [ %xor.us, %for.body9.us ]
|
||||
; CHECK: %inc13.us = add nuw nsw i32 %i.032.us, 1
|
||||
; CHECK: %cmp.us = icmp ult i32 %inc13.us, %flatten.tripcount
|
||||
; CHECK: br i1 %cmp.us, label %for.body.us, label %for.cond.cleanup.loopexit
|
||||
|
||||
for.body.lr.ph.split: ; preds = %for.body.lr.ph
|
||||
br label %for.body
|
||||
|
||||
for.cond.cleanup.loopexit: ; preds = %for.cond3.for.cond.cleanup8_crit_edge.us
|
||||
%xor.us.lcssa.lcssa = phi i32 [ %xor.us.lcssa, %for.cond3.for.cond.cleanup8_crit_edge.us ]
|
||||
br label %for.cond.cleanup
|
||||
|
||||
for.cond.cleanup.loopexit34: ; preds = %for.body
|
||||
br label %for.cond.cleanup
|
||||
|
||||
for.cond.cleanup: ; preds = %for.cond.cleanup.loopexit34, %for.cond.cleanup.loopexit, %entry
|
||||
%x.0.lcssa = phi i32 [ 1, %entry ], [ %xor.us.lcssa.lcssa, %for.cond.cleanup.loopexit ], [ 1, %for.cond.cleanup.loopexit34 ]
|
||||
ret i32 %x.0.lcssa
|
||||
|
||||
for.body: ; preds = %for.body.lr.ph.split, %for.body
|
||||
%i.032 = phi i32 [ 0, %for.body.lr.ph.split ], [ %inc13, %for.body ]
|
||||
%inc13 = add nuw nsw i32 %i.032, 1
|
||||
%cmp = icmp ult i32 %inc13, %div
|
||||
br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit34
|
||||
}
|
||||
|
||||
; CHECK-LABEL: test7
|
||||
; Various inner phis and conditions which we can still work with
|
||||
define signext i16 @test7(i32 %I, i32 %J, i32* nocapture readonly %C, i16 signext %limit) {
|
||||
entry:
|
||||
%cmp43 = icmp eq i32 %J, 0
|
||||
br i1 %cmp43, label %for.end17, label %for.body.lr.ph
|
||||
|
||||
for.body.lr.ph: ; preds = %entry
|
||||
%conv = sext i16 %limit to i32
|
||||
br label %for.body.us
|
||||
; CHECK: for.body.lr.ph:
|
||||
; CHECK: %conv = sext i16 %limit to i32
|
||||
; CHECK: %flatten.tripcount = mul i32 %J, %J
|
||||
; CHECK: br label %for.body.us
|
||||
|
||||
for.body.us: ; preds = %for.cond1.for.inc15_crit_edge.us, %for.body.lr.ph
|
||||
%i.047.us = phi i32 [ 0, %for.body.lr.ph ], [ %inc16.us, %for.cond1.for.inc15_crit_edge.us ]
|
||||
%ret.046.us = phi i16 [ 0, %for.body.lr.ph ], [ %ret.2.us.lcssa, %for.cond1.for.inc15_crit_edge.us ]
|
||||
%prev.045.us = phi i32 [ 0, %for.body.lr.ph ], [ %.lcssa, %for.cond1.for.inc15_crit_edge.us ]
|
||||
%tmp.044.us = phi i32 [ 0, %for.body.lr.ph ], [ %tmp.2.us.lcssa, %for.cond1.for.inc15_crit_edge.us ]
|
||||
%mul.us = mul i32 %i.047.us, %J
|
||||
br label %for.body3.us
|
||||
; CHECK: for.body.us:
|
||||
; CHECK: %i.047.us = phi i32 [ 0, %for.body.lr.ph ], [ %inc16.us, %for.cond1.for.inc15_crit_edge.us ]
|
||||
; CHECK: %ret.046.us = phi i16 [ 0, %for.body.lr.ph ], [ %ret.2.us.lcssa, %for.cond1.for.inc15_crit_edge.us ]
|
||||
; CHECK: %prev.045.us = phi i32 [ 0, %for.body.lr.ph ], [ %.lcssa, %for.cond1.for.inc15_crit_edge.us ]
|
||||
; CHECK: %tmp.044.us = phi i32 [ 0, %for.body.lr.ph ], [ %tmp.2.us.lcssa, %for.cond1.for.inc15_crit_edge.us ]
|
||||
; CHECK: %mul.us = mul i32 %i.047.us, %J
|
||||
; CHECK: br label %for.body3.us
|
||||
|
||||
for.body3.us: ; preds = %for.body.us, %if.end.us
|
||||
%j.040.us = phi i32 [ 0, %for.body.us ], [ %inc.us, %if.end.us ]
|
||||
%ret.139.us = phi i16 [ %ret.046.us, %for.body.us ], [ %ret.2.us, %if.end.us ]
|
||||
%prev.138.us = phi i32 [ %prev.045.us, %for.body.us ], [ %0, %if.end.us ]
|
||||
%tmp.137.us = phi i32 [ %tmp.044.us, %for.body.us ], [ %tmp.2.us, %if.end.us ]
|
||||
%add.us = add i32 %j.040.us, %mul.us
|
||||
%arrayidx.us = getelementptr inbounds i32, i32* %C, i32 %add.us
|
||||
%0 = load i32, i32* %arrayidx.us, align 4
|
||||
%add4.us = add nsw i32 %0, %tmp.137.us
|
||||
%cmp5.us = icmp sgt i32 %add4.us, %conv
|
||||
br i1 %cmp5.us, label %if.then.us, label %if.else.us
|
||||
; CHECK: for.body3.us:
|
||||
; CHECK: %j.040.us = phi i32 [ 0, %for.body.us ]
|
||||
; CHECK: %ret.139.us = phi i16 [ %ret.046.us, %for.body.us ]
|
||||
; CHECK: %prev.138.us = phi i32 [ %prev.045.us, %for.body.us ]
|
||||
; CHECK: %tmp.137.us = phi i32 [ %tmp.044.us, %for.body.us ]
|
||||
; CHECK: %add.us = add i32 %j.040.us, %mul.us
|
||||
; CHECK: %arrayidx.us = getelementptr inbounds i32, i32* %C, i32 %i.047.us
|
||||
; CHECK: %0 = load i32, i32* %arrayidx.us, align 4
|
||||
; CHECK: %add4.us = add nsw i32 %0, %tmp.137.us
|
||||
; CHECK: %cmp5.us = icmp sgt i32 %add4.us, %conv
|
||||
; CHECK: br i1 %cmp5.us, label %if.then.us, label %if.else.us
|
||||
|
||||
if.else.us: ; preds = %for.body3.us
|
||||
%cmp10.us = icmp sgt i32 %0, %prev.138.us
|
||||
%cond.us = zext i1 %cmp10.us to i32
|
||||
%conv1235.us = zext i16 %ret.139.us to i32
|
||||
%add13.us = add nuw nsw i32 %cond.us, %conv1235.us
|
||||
br label %if.end.us
|
||||
; CHECK: if.else.us:
|
||||
; CHECK: %cmp10.us = icmp sgt i32 %0, %prev.138.us
|
||||
; CHECK: %cond.us = zext i1 %cmp10.us to i32
|
||||
; CHECK: %conv1235.us = zext i16 %ret.139.us to i32
|
||||
; CHECK: %add13.us = add nuw nsw i32 %cond.us, %conv1235.us
|
||||
; CHECK: br label %if.end.us
|
||||
|
||||
if.then.us: ; preds = %for.body3.us
|
||||
%conv7.us = sext i16 %ret.139.us to i32
|
||||
%add8.us = add nsw i32 %conv7.us, 10
|
||||
br label %if.end.us
|
||||
; CHECK: if.then.us:
|
||||
; CHECK: %conv7.us = sext i16 %ret.139.us to i32
|
||||
; CHECK: %add8.us = add nsw i32 %conv7.us, 10
|
||||
; CHECK: br label %if.end.us
|
||||
|
||||
if.end.us: ; preds = %if.then.us, %if.else.us
|
||||
%tmp.2.us = phi i32 [ 0, %if.then.us ], [ %add4.us, %if.else.us ]
|
||||
%ret.2.in.us = phi i32 [ %add8.us, %if.then.us ], [ %add13.us, %if.else.us ]
|
||||
%ret.2.us = trunc i32 %ret.2.in.us to i16
|
||||
%inc.us = add nuw i32 %j.040.us, 1
|
||||
%exitcond = icmp ne i32 %inc.us, %J
|
||||
br i1 %exitcond, label %for.body3.us, label %for.cond1.for.inc15_crit_edge.us
|
||||
; CHECK: if.end.us:
|
||||
; CHECK: %tmp.2.us = phi i32 [ 0, %if.then.us ], [ %add4.us, %if.else.us ]
|
||||
; CHECK: %ret.2.in.us = phi i32 [ %add8.us, %if.then.us ], [ %add13.us, %if.else.us ]
|
||||
; CHECK: %ret.2.us = trunc i32 %ret.2.in.us to i16
|
||||
; CHECK: %inc.us = add nuw i32 %j.040.us, 1
|
||||
; CHECK: %exitcond = icmp ne i32 %inc.us, %J
|
||||
; CHECK: br label %for.cond1.for.inc15_crit_edge.us
|
||||
|
||||
for.cond1.for.inc15_crit_edge.us: ; preds = %if.end.us
|
||||
%tmp.2.us.lcssa = phi i32 [ %tmp.2.us, %if.end.us ]
|
||||
%ret.2.us.lcssa = phi i16 [ %ret.2.us, %if.end.us ]
|
||||
%.lcssa = phi i32 [ %0, %if.end.us ]
|
||||
%inc16.us = add nuw i32 %i.047.us, 1
|
||||
%exitcond49 = icmp ne i32 %inc16.us, %J
|
||||
br i1 %exitcond49, label %for.body.us, label %for.end17.loopexit
|
||||
; CHECK: for.cond1.for.inc15_crit_edge.us:
|
||||
; CHECK: %tmp.2.us.lcssa = phi i32 [ %tmp.2.us, %if.end.us ]
|
||||
; CHECK: %ret.2.us.lcssa = phi i16 [ %ret.2.us, %if.end.us ]
|
||||
; CHECK: %.lcssa = phi i32 [ %0, %if.end.us ]
|
||||
; CHECK: %inc16.us = add nuw i32 %i.047.us, 1
|
||||
; CHECK: %exitcond49 = icmp ne i32 %inc16.us, %flatten.tripcount
|
||||
; CHECK: br i1 %exitcond49, label %for.body.us, label %for.end17.loopexit
|
||||
|
||||
for.end17.loopexit: ; preds = %for.cond1.for.inc15_crit_edge.us
|
||||
%ret.2.us.lcssa.lcssa = phi i16 [ %ret.2.us.lcssa, %for.cond1.for.inc15_crit_edge.us ]
|
||||
br label %for.end17
|
||||
|
||||
for.end17: ; preds = %for.end17.loopexit, %entry
|
||||
%ret.0.lcssa = phi i16 [ 0, %entry ], [ %ret.2.us.lcssa.lcssa, %for.end17.loopexit ]
|
||||
ret i16 %ret.0.lcssa
|
||||
}
|
||||
|
||||
; CHECK-LABEL: test8
|
||||
; Same as test1, but with different continue block order
|
||||
; (uses icmp eq and loops on false)
|
||||
define i32 @test8(i32 %val, i16* nocapture %A) {
|
||||
entry:
|
||||
br label %for.body
|
||||
; CHECK: entry:
|
||||
; CHECK: %flatten.tripcount = mul i32 20, 10
|
||||
; CHECK: br label %for.body
|
||||
|
||||
for.body: ; preds = %entry, %for.inc6
|
||||
%i.018 = phi i32 [ 0, %entry ], [ %inc7, %for.inc6 ]
|
||||
%mul = mul nuw nsw i32 %i.018, 20
|
||||
br label %for.body3
|
||||
; CHECK: for.body:
|
||||
; CHECK: %i.018 = phi i32 [ 0, %entry ], [ %inc7, %for.inc6 ]
|
||||
; CHECK: %mul = mul nuw nsw i32 %i.018, 20
|
||||
; CHECK: br label %for.body3
|
||||
|
||||
for.body3: ; preds = %for.body, %for.body3
|
||||
%j.017 = phi i32 [ 0, %for.body ], [ %inc, %for.body3 ]
|
||||
%add = add nuw nsw i32 %j.017, %mul
|
||||
%arrayidx = getelementptr inbounds i16, i16* %A, i32 %add
|
||||
%0 = load i16, i16* %arrayidx, align 2
|
||||
%conv16 = zext i16 %0 to i32
|
||||
%add4 = add i32 %conv16, %val
|
||||
%conv5 = trunc i32 %add4 to i16
|
||||
store i16 %conv5, i16* %arrayidx, align 2
|
||||
%inc = add nuw nsw i32 %j.017, 1
|
||||
%exitcond = icmp eq i32 %inc, 20
|
||||
br i1 %exitcond, label %for.inc6, label %for.body3
|
||||
; CHECK: for.body3:
|
||||
; CHECK: %j.017 = phi i32 [ 0, %for.body ]
|
||||
; CHECK: %add = add nuw nsw i32 %j.017, %mul
|
||||
; CHECK: %arrayidx = getelementptr inbounds i16, i16* %A, i32 %i.018
|
||||
; CHECK: %0 = load i16, i16* %arrayidx, align 2
|
||||
; CHECK: %conv16 = zext i16 %0 to i32
|
||||
; CHECK: %add4 = add i32 %conv16, %val
|
||||
; CHECK: %conv5 = trunc i32 %add4 to i16
|
||||
; CHECK: store i16 %conv5, i16* %arrayidx, align 2
|
||||
; CHECK: %inc = add nuw nsw i32 %j.017, 1
|
||||
; CHECK: %exitcond = icmp eq i32 %inc, 20
|
||||
; CHECK: br label %for.inc6
|
||||
|
||||
for.inc6: ; preds = %for.body3
|
||||
%inc7 = add nuw nsw i32 %i.018, 1
|
||||
%exitcond19 = icmp eq i32 %inc7, 10
|
||||
br i1 %exitcond19, label %for.end8, label %for.body
|
||||
; CHECK: for.inc6:
|
||||
; CHECK: %inc7 = add nuw nsw i32 %i.018, 1
|
||||
; CHECK: %exitcond19 = icmp eq i32 %inc7, %flatten.tripcount
|
||||
; CHECK: br i1 %exitcond19, label %for.end8, label %for.body
|
||||
|
||||
for.end8: ; preds = %for.inc6
|
||||
ret i32 10
|
||||
}
|
||||
|
||||
|
||||
declare i32 @func(i32)
|
||||
|
|
@ -0,0 +1,108 @@
|
|||
; RUN: opt < %s -S -loop-flatten -verify-loop-info -verify-dom-info -verify-scev -verify | FileCheck %s
|
||||
|
||||
target datalayout = "e-m:e-p:32:32-i64:64-v128:64:128-a:0:32-n32-S64"
|
||||
|
||||
; Test case and IR corresponding to this code:
|
||||
;
|
||||
; int k = 0;
|
||||
; for(int i = 0; i < n; i++)
|
||||
; for(int j = 0; j < n; j++) {
|
||||
; A[k] = B[k];
|
||||
; k++;
|
||||
; }
|
||||
;
|
||||
; TODO: this case doesn't trigger yet.
|
||||
;
|
||||
define dso_local void @v0(i32 %n, i32* nocapture %A, i32* nocapture readonly %B) local_unnamed_addr #0 {
|
||||
;
|
||||
; CHECK-LABEL: @v0
|
||||
; CHECK-NOT: %flatten.tripcount = mul i32 %n, %n
|
||||
;
|
||||
entry:
|
||||
%cmp21 = icmp sgt i32 %n, 0
|
||||
br i1 %cmp21, label %for.cond1.preheader.us.preheader, label %for.cond.cleanup
|
||||
|
||||
for.cond1.preheader.us.preheader:
|
||||
br label %for.cond1.preheader.us
|
||||
|
||||
for.cond1.preheader.us:
|
||||
%i.023.us = phi i32 [ %inc8.us, %for.cond1.for.cond.cleanup3_crit_edge.us ], [ 0, %for.cond1.preheader.us.preheader ]
|
||||
%k.022.us = phi i32 [ %inc.us.lcssa, %for.cond1.for.cond.cleanup3_crit_edge.us ], [ 0, %for.cond1.preheader.us.preheader ]
|
||||
%0 = add i32 %n, %k.022.us
|
||||
br label %for.body4.us
|
||||
|
||||
for.body4.us:
|
||||
%k.119.us = phi i32 [ %k.022.us, %for.cond1.preheader.us ], [ %inc.us, %for.body4.us ]
|
||||
%arrayidx.us = getelementptr inbounds i32, i32* %B, i32 %k.119.us
|
||||
%1 = load i32, i32* %arrayidx.us, align 4
|
||||
%arrayidx5.us = getelementptr inbounds i32, i32* %A, i32 %k.119.us
|
||||
store i32 %1, i32* %arrayidx5.us, align 4
|
||||
%inc.us = add i32 %k.119.us, 1
|
||||
%exitcond = icmp ne i32 %inc.us, %0
|
||||
br i1 %exitcond, label %for.body4.us, label %for.cond1.for.cond.cleanup3_crit_edge.us
|
||||
|
||||
for.cond1.for.cond.cleanup3_crit_edge.us:
|
||||
%inc.us.lcssa = phi i32 [ %inc.us, %for.body4.us ]
|
||||
%inc8.us = add nuw nsw i32 %i.023.us, 1
|
||||
%cmp.us = icmp slt i32 %inc8.us, %n
|
||||
br i1 %cmp.us, label %for.cond1.preheader.us, label %for.cond.cleanup.loopexit
|
||||
|
||||
for.cond.cleanup.loopexit:
|
||||
br label %for.cond.cleanup
|
||||
|
||||
for.cond.cleanup:
|
||||
ret void
|
||||
}
|
||||
|
||||
; Test case and IR corresponding to this code:
|
||||
;
|
||||
; for(int i = 0; i < n; i++)
|
||||
; for(int j = 0; j < n; j++) {
|
||||
; int k = i*n+j;
|
||||
; A[k] = B[k];
|
||||
; k++;
|
||||
; }
|
||||
;
|
||||
define dso_local void @v1(i32 %n, i32* nocapture %A, i32* nocapture readonly %B) local_unnamed_addr #0 {
|
||||
;
|
||||
; CHECK-LABEL: @v1
|
||||
; CHECK: for.cond1.preheader.us.preheader:
|
||||
; CHECK: %flatten.tripcount = mul i32 %n, %n
|
||||
; CHECK: for.cond1.for.cond.cleanup3_crit_edge.us:
|
||||
; CHECK: %inc8.us = add nuw nsw i32 %i.024.us, 1
|
||||
; CHECK: %cmp.us = icmp slt i32 %inc8.us, %flatten.tripcount
|
||||
;
|
||||
entry:
|
||||
%cmp23 = icmp sgt i32 %n, 0
|
||||
br i1 %cmp23, label %for.cond1.preheader.us.preheader, label %for.cond.cleanup
|
||||
|
||||
for.cond1.preheader.us.preheader:
|
||||
br label %for.cond1.preheader.us
|
||||
|
||||
for.cond1.preheader.us:
|
||||
%i.024.us = phi i32 [ %inc8.us, %for.cond1.for.cond.cleanup3_crit_edge.us ], [ 0, %for.cond1.preheader.us.preheader ]
|
||||
%mul.us = mul nsw i32 %i.024.us, %n
|
||||
br label %for.body4.us
|
||||
|
||||
for.body4.us:
|
||||
%j.022.us = phi i32 [ 0, %for.cond1.preheader.us ], [ %inc6.us, %for.body4.us ]
|
||||
%add.us = add nsw i32 %j.022.us, %mul.us
|
||||
%arrayidx.us = getelementptr inbounds i32, i32* %B, i32 %add.us
|
||||
%0 = load i32, i32* %arrayidx.us, align 4
|
||||
%arrayidx5.us = getelementptr inbounds i32, i32* %A, i32 %add.us
|
||||
store i32 %0, i32* %arrayidx5.us, align 4
|
||||
%inc6.us = add nuw nsw i32 %j.022.us, 1
|
||||
%exitcond = icmp ne i32 %inc6.us, %n
|
||||
br i1 %exitcond, label %for.body4.us, label %for.cond1.for.cond.cleanup3_crit_edge.us
|
||||
|
||||
for.cond1.for.cond.cleanup3_crit_edge.us:
|
||||
%inc8.us = add nuw nsw i32 %i.024.us, 1
|
||||
%cmp.us = icmp slt i32 %inc8.us, %n
|
||||
br i1 %cmp.us, label %for.cond1.preheader.us, label %for.cond.cleanup.loopexit
|
||||
|
||||
for.cond.cleanup.loopexit:
|
||||
br label %for.cond.cleanup
|
||||
|
||||
for.cond.cleanup:
|
||||
ret void
|
||||
}
|
Loading…
Reference in New Issue