forked from OSchip/llvm-project
Be more explicit concerning argument sizes.
Use VC++ byteswap intrinsics. llvm-svn: 35267
This commit is contained in:
parent
d551a18783
commit
d530a17cef
|
@ -23,39 +23,39 @@ namespace llvm {
|
||||||
// ambiguity.
|
// ambiguity.
|
||||||
|
|
||||||
/// Hi_32 - This function returns the high 32 bits of a 64 bit value.
|
/// Hi_32 - This function returns the high 32 bits of a 64 bit value.
|
||||||
inline unsigned Hi_32(uint64_t Value) {
|
inline uint32_t Hi_32(uint64_t Value) {
|
||||||
return static_cast<unsigned>(Value >> 32);
|
return static_cast<uint32_t>(Value >> 32);
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Lo_32 - This function returns the low 32 bits of a 64 bit value.
|
/// Lo_32 - This function returns the low 32 bits of a 64 bit value.
|
||||||
inline unsigned Lo_32(uint64_t Value) {
|
inline uint32_t Lo_32(uint64_t Value) {
|
||||||
return static_cast<unsigned>(Value);
|
return static_cast<uint32_t>(Value);
|
||||||
}
|
}
|
||||||
|
|
||||||
/// is?Type - these functions produce optimal testing for integer data types.
|
/// is?Type - these functions produce optimal testing for integer data types.
|
||||||
inline bool isInt8 (int64_t Value) {
|
inline bool isInt8 (int64_t Value) {
|
||||||
return static_cast<signed char>(Value) == Value;
|
return static_cast<int8_t>(Value) == Value;
|
||||||
}
|
}
|
||||||
inline bool isUInt8 (int64_t Value) {
|
inline bool isUInt8 (int64_t Value) {
|
||||||
return static_cast<unsigned char>(Value) == Value;
|
return static_cast<uint8_t>(Value) == Value;
|
||||||
}
|
}
|
||||||
inline bool isInt16 (int64_t Value) {
|
inline bool isInt16 (int64_t Value) {
|
||||||
return static_cast<signed short>(Value) == Value;
|
return static_cast<int16_t>(Value) == Value;
|
||||||
}
|
}
|
||||||
inline bool isUInt16(int64_t Value) {
|
inline bool isUInt16(int64_t Value) {
|
||||||
return static_cast<unsigned short>(Value) == Value;
|
return static_cast<uint16_t>(Value) == Value;
|
||||||
}
|
}
|
||||||
inline bool isInt32 (int64_t Value) {
|
inline bool isInt32 (int64_t Value) {
|
||||||
return static_cast<signed int>(Value) == Value;
|
return static_cast<int32_t>(Value) == Value;
|
||||||
}
|
}
|
||||||
inline bool isUInt32(int64_t Value) {
|
inline bool isUInt32(int64_t Value) {
|
||||||
return static_cast<unsigned int>(Value) == Value;
|
return static_cast<uint32_t>(Value) == Value;
|
||||||
}
|
}
|
||||||
|
|
||||||
/// isMask_32 - This function returns true if the argument is a sequence of ones
|
/// isMask_32 - This function returns true if the argument is a sequence of ones
|
||||||
/// starting at the least significant bit with the remainder zero (32 bit
|
/// starting at the least significant bit with the remainder zero (32 bit
|
||||||
/// version). Ex. isMask_32(0x0000FFFFU) == true.
|
/// version). Ex. isMask_32(0x0000FFFFU) == true.
|
||||||
inline const bool isMask_32(unsigned Value) {
|
inline const bool isMask_32(uint32_t Value) {
|
||||||
return Value && ((Value + 1) & Value) == 0;
|
return Value && ((Value + 1) & Value) == 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -69,7 +69,7 @@ inline const bool isMask_64(uint64_t Value) {
|
||||||
/// isShiftedMask_32 - This function returns true if the argument contains a
|
/// isShiftedMask_32 - This function returns true if the argument contains a
|
||||||
/// sequence of ones with the remainder zero (32 bit version.)
|
/// sequence of ones with the remainder zero (32 bit version.)
|
||||||
/// Ex. isShiftedMask_32(0x0000FF00U) == true.
|
/// Ex. isShiftedMask_32(0x0000FF00U) == true.
|
||||||
inline const bool isShiftedMask_32(unsigned Value) {
|
inline const bool isShiftedMask_32(uint32_t Value) {
|
||||||
return isMask_32((Value - 1) | Value);
|
return isMask_32((Value - 1) | Value);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -81,7 +81,7 @@ inline const bool isShiftedMask_64(uint64_t Value) {
|
||||||
|
|
||||||
/// isPowerOf2_32 - This function returns true if the argument is a power of
|
/// isPowerOf2_32 - This function returns true if the argument is a power of
|
||||||
/// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
|
/// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
|
||||||
inline bool isPowerOf2_32(unsigned Value) {
|
inline bool isPowerOf2_32(uint32_t Value) {
|
||||||
return Value && !(Value & (Value - 1));
|
return Value && !(Value & (Value - 1));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -93,22 +93,30 @@ inline bool isPowerOf2_64(uint64_t Value) {
|
||||||
|
|
||||||
/// ByteSwap_16 - This function returns a byte-swapped representation of the
|
/// ByteSwap_16 - This function returns a byte-swapped representation of the
|
||||||
/// 16-bit argument, Value.
|
/// 16-bit argument, Value.
|
||||||
inline unsigned short ByteSwap_16(unsigned short Value) {
|
inline uint16_t ByteSwap_16(uint16_t Value) {
|
||||||
unsigned short Hi = Value << 8;
|
#if defined(_MSC_VER) && !defined(_DEBUG)
|
||||||
unsigned short Lo = Value >> 8;
|
// The DLL version of the runtime lacks these functions (bug!?), but in a
|
||||||
|
// release build they're replaced with BSWAP instructions anyway.
|
||||||
|
return _byteswap_ushort(Value);
|
||||||
|
#else
|
||||||
|
uint16_t Hi = Value << 8;
|
||||||
|
uint16_t Lo = Value >> 8;
|
||||||
return Hi | Lo;
|
return Hi | Lo;
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
/// ByteSwap_32 - This function returns a byte-swapped representation of the
|
/// ByteSwap_32 - This function returns a byte-swapped representation of the
|
||||||
/// 32-bit argument, Value.
|
/// 32-bit argument, Value.
|
||||||
inline unsigned ByteSwap_32(unsigned Value) {
|
inline uint32_t ByteSwap_32(uint32_t Value) {
|
||||||
#if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)
|
#if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)
|
||||||
return __builtin_bswap32(Value);
|
return __builtin_bswap32(Value);
|
||||||
|
#elif defined(_MSC_VER) && !defined(_DEBUG)
|
||||||
|
return _byteswap_ulong(Value);
|
||||||
#else
|
#else
|
||||||
unsigned Byte0 = Value & 0x000000FF;
|
uint32_t Byte0 = Value & 0x000000FF;
|
||||||
unsigned Byte1 = Value & 0x0000FF00;
|
uint32_t Byte1 = Value & 0x0000FF00;
|
||||||
unsigned Byte2 = Value & 0x00FF0000;
|
uint32_t Byte2 = Value & 0x00FF0000;
|
||||||
unsigned Byte3 = Value & 0xFF000000;
|
uint32_t Byte3 = Value & 0xFF000000;
|
||||||
return (Byte0 << 24) | (Byte1 << 8) | (Byte2 >> 8) | (Byte3 >> 24);
|
return (Byte0 << 24) | (Byte1 << 8) | (Byte2 >> 8) | (Byte3 >> 24);
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
@ -118,9 +126,11 @@ inline unsigned ByteSwap_32(unsigned Value) {
|
||||||
inline uint64_t ByteSwap_64(uint64_t Value) {
|
inline uint64_t ByteSwap_64(uint64_t Value) {
|
||||||
#if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)
|
#if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)
|
||||||
return __builtin_bswap64(Value);
|
return __builtin_bswap64(Value);
|
||||||
|
#elif defined(_MSC_VER) && !defined(_DEBUG)
|
||||||
|
return _byteswap_uint64(Value);
|
||||||
#else
|
#else
|
||||||
uint64_t Hi = ByteSwap_32(unsigned(Value));
|
uint64_t Hi = ByteSwap_32(uint32_t(Value));
|
||||||
uint64_t Lo = ByteSwap_32(unsigned(Value >> 32));
|
uint32_t Lo = ByteSwap_32(uint32_t(Value >> 32));
|
||||||
return (Hi << 32) | Lo;
|
return (Hi << 32) | Lo;
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
@ -129,7 +139,7 @@ inline uint64_t ByteSwap_64(uint64_t Value) {
|
||||||
/// counting the number of zeros from the most significant bit to the first one
|
/// counting the number of zeros from the most significant bit to the first one
|
||||||
/// bit. Ex. CountLeadingZeros_32(0x00F000FF) == 8.
|
/// bit. Ex. CountLeadingZeros_32(0x00F000FF) == 8.
|
||||||
/// Returns 32 if the word is zero.
|
/// Returns 32 if the word is zero.
|
||||||
inline unsigned CountLeadingZeros_32(unsigned Value) {
|
inline unsigned CountLeadingZeros_32(uint32_t Value) {
|
||||||
unsigned Count; // result
|
unsigned Count; // result
|
||||||
#if __GNUC__ >= 4
|
#if __GNUC__ >= 4
|
||||||
// PowerPC is defined for __builtin_clz(0)
|
// PowerPC is defined for __builtin_clz(0)
|
||||||
|
@ -142,7 +152,7 @@ inline unsigned CountLeadingZeros_32(unsigned Value) {
|
||||||
Count = 0;
|
Count = 0;
|
||||||
// bisecton method for count leading zeros
|
// bisecton method for count leading zeros
|
||||||
for (unsigned Shift = 32 >> 1; Shift; Shift >>= 1) {
|
for (unsigned Shift = 32 >> 1; Shift; Shift >>= 1) {
|
||||||
unsigned Tmp = Value >> Shift;
|
uint32_t Tmp = Value >> Shift;
|
||||||
if (Tmp) {
|
if (Tmp) {
|
||||||
Value = Tmp;
|
Value = Tmp;
|
||||||
} else {
|
} else {
|
||||||
|
@ -170,7 +180,7 @@ inline unsigned CountLeadingZeros_64(uint64_t Value) {
|
||||||
if (!Value) return 64;
|
if (!Value) return 64;
|
||||||
Count = 0;
|
Count = 0;
|
||||||
// bisecton method for count leading zeros
|
// bisecton method for count leading zeros
|
||||||
for (uint64_t Shift = 64 >> 1; Shift; Shift >>= 1) {
|
for (unsigned Shift = 64 >> 1; Shift; Shift >>= 1) {
|
||||||
uint64_t Tmp = Value >> Shift;
|
uint64_t Tmp = Value >> Shift;
|
||||||
if (Tmp) {
|
if (Tmp) {
|
||||||
Value = Tmp;
|
Value = Tmp;
|
||||||
|
@ -180,7 +190,7 @@ inline unsigned CountLeadingZeros_64(uint64_t Value) {
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
// get hi portion
|
// get hi portion
|
||||||
unsigned Hi = Hi_32(Value);
|
uint32_t Hi = Hi_32(Value);
|
||||||
|
|
||||||
// if some bits in hi portion
|
// if some bits in hi portion
|
||||||
if (Hi) {
|
if (Hi) {
|
||||||
|
@ -188,7 +198,7 @@ inline unsigned CountLeadingZeros_64(uint64_t Value) {
|
||||||
Count = CountLeadingZeros_32(Hi);
|
Count = CountLeadingZeros_32(Hi);
|
||||||
} else {
|
} else {
|
||||||
// get lo portion
|
// get lo portion
|
||||||
unsigned Lo = Lo_32(Value);
|
uint32_t Lo = Lo_32(Value);
|
||||||
// same as 32 bit value
|
// same as 32 bit value
|
||||||
Count = CountLeadingZeros_32(Lo)+32;
|
Count = CountLeadingZeros_32(Lo)+32;
|
||||||
}
|
}
|
||||||
|
@ -201,7 +211,7 @@ inline unsigned CountLeadingZeros_64(uint64_t Value) {
|
||||||
/// counting the number of zeros from the least significant bit to the first one
|
/// counting the number of zeros from the least significant bit to the first one
|
||||||
/// bit. Ex. CountTrailingZeros_32(0xFF00FF00) == 8.
|
/// bit. Ex. CountTrailingZeros_32(0xFF00FF00) == 8.
|
||||||
/// Returns 32 if the word is zero.
|
/// Returns 32 if the word is zero.
|
||||||
inline unsigned CountTrailingZeros_32(unsigned Value) {
|
inline unsigned CountTrailingZeros_32(uint32_t Value) {
|
||||||
#if __GNUC__ >= 4
|
#if __GNUC__ >= 4
|
||||||
return Value ? __builtin_ctz(Value) : 32;
|
return Value ? __builtin_ctz(Value) : 32;
|
||||||
#else
|
#else
|
||||||
|
@ -262,7 +272,7 @@ inline unsigned CountPopulation_64(uint64_t Value) {
|
||||||
/// Log2_32 - This function returns the floor log base 2 of the specified value,
|
/// Log2_32 - This function returns the floor log base 2 of the specified value,
|
||||||
/// -1 if the value is zero. (32 bit edition.)
|
/// -1 if the value is zero. (32 bit edition.)
|
||||||
/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
|
/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
|
||||||
inline unsigned Log2_32(unsigned Value) {
|
inline unsigned Log2_32(uint32_t Value) {
|
||||||
return 31 - CountLeadingZeros_32(Value);
|
return 31 - CountLeadingZeros_32(Value);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -275,7 +285,7 @@ inline unsigned Log2_64(uint64_t Value) {
|
||||||
/// Log2_32_Ceil - This function returns the ceil log base 2 of the specified
|
/// Log2_32_Ceil - This function returns the ceil log base 2 of the specified
|
||||||
/// value, 32 if the value is zero. (32 bit edition).
|
/// value, 32 if the value is zero. (32 bit edition).
|
||||||
/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
|
/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
|
||||||
inline unsigned Log2_32_Ceil(unsigned Value) {
|
inline unsigned Log2_32_Ceil(uint32_t Value) {
|
||||||
return 32-CountLeadingZeros_32(Value-1);
|
return 32-CountLeadingZeros_32(Value-1);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue