Be more explicit concerning argument sizes.

Use VC++ byteswap intrinsics.

llvm-svn: 35267
This commit is contained in:
Jeff Cohen 2007-03-22 19:11:57 +00:00
parent d551a18783
commit d530a17cef
1 changed files with 41 additions and 31 deletions

View File

@ -23,39 +23,39 @@ namespace llvm {
// ambiguity.
/// Hi_32 - This function returns the high 32 bits of a 64 bit value.
inline unsigned Hi_32(uint64_t Value) {
return static_cast<unsigned>(Value >> 32);
inline uint32_t Hi_32(uint64_t Value) {
return static_cast<uint32_t>(Value >> 32);
}
/// Lo_32 - This function returns the low 32 bits of a 64 bit value.
inline unsigned Lo_32(uint64_t Value) {
return static_cast<unsigned>(Value);
inline uint32_t Lo_32(uint64_t Value) {
return static_cast<uint32_t>(Value);
}
/// is?Type - these functions produce optimal testing for integer data types.
inline bool isInt8 (int64_t Value) {
return static_cast<signed char>(Value) == Value;
return static_cast<int8_t>(Value) == Value;
}
inline bool isUInt8 (int64_t Value) {
return static_cast<unsigned char>(Value) == Value;
return static_cast<uint8_t>(Value) == Value;
}
inline bool isInt16 (int64_t Value) {
return static_cast<signed short>(Value) == Value;
return static_cast<int16_t>(Value) == Value;
}
inline bool isUInt16(int64_t Value) {
return static_cast<unsigned short>(Value) == Value;
return static_cast<uint16_t>(Value) == Value;
}
inline bool isInt32 (int64_t Value) {
return static_cast<signed int>(Value) == Value;
return static_cast<int32_t>(Value) == Value;
}
inline bool isUInt32(int64_t Value) {
return static_cast<unsigned int>(Value) == Value;
return static_cast<uint32_t>(Value) == Value;
}
/// isMask_32 - This function returns true if the argument is a sequence of ones
/// starting at the least significant bit with the remainder zero (32 bit
/// version). Ex. isMask_32(0x0000FFFFU) == true.
inline const bool isMask_32(unsigned Value) {
inline const bool isMask_32(uint32_t Value) {
return Value && ((Value + 1) & Value) == 0;
}
@ -69,7 +69,7 @@ inline const bool isMask_64(uint64_t Value) {
/// isShiftedMask_32 - This function returns true if the argument contains a
/// sequence of ones with the remainder zero (32 bit version.)
/// Ex. isShiftedMask_32(0x0000FF00U) == true.
inline const bool isShiftedMask_32(unsigned Value) {
inline const bool isShiftedMask_32(uint32_t Value) {
return isMask_32((Value - 1) | Value);
}
@ -81,7 +81,7 @@ inline const bool isShiftedMask_64(uint64_t Value) {
/// isPowerOf2_32 - This function returns true if the argument is a power of
/// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
inline bool isPowerOf2_32(unsigned Value) {
inline bool isPowerOf2_32(uint32_t Value) {
return Value && !(Value & (Value - 1));
}
@ -93,22 +93,30 @@ inline bool isPowerOf2_64(uint64_t Value) {
/// ByteSwap_16 - This function returns a byte-swapped representation of the
/// 16-bit argument, Value.
inline unsigned short ByteSwap_16(unsigned short Value) {
unsigned short Hi = Value << 8;
unsigned short Lo = Value >> 8;
inline uint16_t ByteSwap_16(uint16_t Value) {
#if defined(_MSC_VER) && !defined(_DEBUG)
// The DLL version of the runtime lacks these functions (bug!?), but in a
// release build they're replaced with BSWAP instructions anyway.
return _byteswap_ushort(Value);
#else
uint16_t Hi = Value << 8;
uint16_t Lo = Value >> 8;
return Hi | Lo;
#endif
}
/// ByteSwap_32 - This function returns a byte-swapped representation of the
/// 32-bit argument, Value.
inline unsigned ByteSwap_32(unsigned Value) {
inline uint32_t ByteSwap_32(uint32_t Value) {
#if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)
return __builtin_bswap32(Value);
#elif defined(_MSC_VER) && !defined(_DEBUG)
return _byteswap_ulong(Value);
#else
unsigned Byte0 = Value & 0x000000FF;
unsigned Byte1 = Value & 0x0000FF00;
unsigned Byte2 = Value & 0x00FF0000;
unsigned Byte3 = Value & 0xFF000000;
uint32_t Byte0 = Value & 0x000000FF;
uint32_t Byte1 = Value & 0x0000FF00;
uint32_t Byte2 = Value & 0x00FF0000;
uint32_t Byte3 = Value & 0xFF000000;
return (Byte0 << 24) | (Byte1 << 8) | (Byte2 >> 8) | (Byte3 >> 24);
#endif
}
@ -118,9 +126,11 @@ inline unsigned ByteSwap_32(unsigned Value) {
inline uint64_t ByteSwap_64(uint64_t Value) {
#if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)
return __builtin_bswap64(Value);
#elif defined(_MSC_VER) && !defined(_DEBUG)
return _byteswap_uint64(Value);
#else
uint64_t Hi = ByteSwap_32(unsigned(Value));
uint64_t Lo = ByteSwap_32(unsigned(Value >> 32));
uint64_t Hi = ByteSwap_32(uint32_t(Value));
uint32_t Lo = ByteSwap_32(uint32_t(Value >> 32));
return (Hi << 32) | Lo;
#endif
}
@ -129,7 +139,7 @@ inline uint64_t ByteSwap_64(uint64_t Value) {
/// counting the number of zeros from the most significant bit to the first one
/// bit. Ex. CountLeadingZeros_32(0x00F000FF) == 8.
/// Returns 32 if the word is zero.
inline unsigned CountLeadingZeros_32(unsigned Value) {
inline unsigned CountLeadingZeros_32(uint32_t Value) {
unsigned Count; // result
#if __GNUC__ >= 4
// PowerPC is defined for __builtin_clz(0)
@ -142,7 +152,7 @@ inline unsigned CountLeadingZeros_32(unsigned Value) {
Count = 0;
// bisecton method for count leading zeros
for (unsigned Shift = 32 >> 1; Shift; Shift >>= 1) {
unsigned Tmp = Value >> Shift;
uint32_t Tmp = Value >> Shift;
if (Tmp) {
Value = Tmp;
} else {
@ -170,7 +180,7 @@ inline unsigned CountLeadingZeros_64(uint64_t Value) {
if (!Value) return 64;
Count = 0;
// bisecton method for count leading zeros
for (uint64_t Shift = 64 >> 1; Shift; Shift >>= 1) {
for (unsigned Shift = 64 >> 1; Shift; Shift >>= 1) {
uint64_t Tmp = Value >> Shift;
if (Tmp) {
Value = Tmp;
@ -180,7 +190,7 @@ inline unsigned CountLeadingZeros_64(uint64_t Value) {
}
} else {
// get hi portion
unsigned Hi = Hi_32(Value);
uint32_t Hi = Hi_32(Value);
// if some bits in hi portion
if (Hi) {
@ -188,7 +198,7 @@ inline unsigned CountLeadingZeros_64(uint64_t Value) {
Count = CountLeadingZeros_32(Hi);
} else {
// get lo portion
unsigned Lo = Lo_32(Value);
uint32_t Lo = Lo_32(Value);
// same as 32 bit value
Count = CountLeadingZeros_32(Lo)+32;
}
@ -201,7 +211,7 @@ inline unsigned CountLeadingZeros_64(uint64_t Value) {
/// counting the number of zeros from the least significant bit to the first one
/// bit. Ex. CountTrailingZeros_32(0xFF00FF00) == 8.
/// Returns 32 if the word is zero.
inline unsigned CountTrailingZeros_32(unsigned Value) {
inline unsigned CountTrailingZeros_32(uint32_t Value) {
#if __GNUC__ >= 4
return Value ? __builtin_ctz(Value) : 32;
#else
@ -262,7 +272,7 @@ inline unsigned CountPopulation_64(uint64_t Value) {
/// Log2_32 - This function returns the floor log base 2 of the specified value,
/// -1 if the value is zero. (32 bit edition.)
/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
inline unsigned Log2_32(unsigned Value) {
inline unsigned Log2_32(uint32_t Value) {
return 31 - CountLeadingZeros_32(Value);
}
@ -275,7 +285,7 @@ inline unsigned Log2_64(uint64_t Value) {
/// Log2_32_Ceil - This function returns the ceil log base 2 of the specified
/// value, 32 if the value is zero. (32 bit edition).
/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
inline unsigned Log2_32_Ceil(unsigned Value) {
inline unsigned Log2_32_Ceil(uint32_t Value) {
return 32-CountLeadingZeros_32(Value-1);
}