[LV] Ignore candidate VFs with invalid costs.

This follows on from discussion on the mailing-list:
  https://lists.llvm.org/pipermail/llvm-dev/2021-June/151047.html

to interpret an Invalid cost as 'infinitely expensive', as this
simplifies some of the legalization issues with scalable vectors.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D105473
This commit is contained in:
Sander de Smalen 2021-07-12 09:32:15 +01:00
parent e4aa6ad132
commit d2e4ccc790
2 changed files with 103 additions and 26 deletions

View File

@ -1261,9 +1261,11 @@ public:
const LoopVectorizationPlanner &LVP); const LoopVectorizationPlanner &LVP);
/// Setup cost-based decisions for user vectorization factor. /// Setup cost-based decisions for user vectorization factor.
void selectUserVectorizationFactor(ElementCount UserVF) { /// \return true if the UserVF is a feasible VF to be chosen.
bool selectUserVectorizationFactor(ElementCount UserVF) {
collectUniformsAndScalars(UserVF); collectUniformsAndScalars(UserVF);
collectInstsToScalarize(UserVF); collectInstsToScalarize(UserVF);
return expectedCost(UserVF).first.isValid();
} }
/// \return The size (in bits) of the smallest and widest types in the code /// \return The size (in bits) of the smallest and widest types in the code
@ -5725,8 +5727,14 @@ LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount,
auto MaxSafeUserVF = auto MaxSafeUserVF =
UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF;
if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) {
return UserVF; // If `VF=vscale x N` is safe, then so is `VF=N`
if (UserVF.isScalable())
return FixedScalableVFPair(
ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF);
else
return UserVF;
}
assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF)); assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF));
@ -6072,17 +6080,11 @@ VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
if (i.isScalar()) if (i.isScalar())
continue; continue;
// Notice that the vector loop needs to be executed less times, so
// we need to divide the cost of the vector loops by the width of
// the vector elements.
VectorizationCostTy C = expectedCost(i); VectorizationCostTy C = expectedCost(i);
assert(C.first.isValid() && "Unexpected invalid cost for vector loop");
VectorizationFactor Candidate(i, C.first); VectorizationFactor Candidate(i, C.first);
LLVM_DEBUG( LLVM_DEBUG(
dbgs() << "LV: Vector loop of width " << i << " costs: " dbgs() << "LV: Vector loop of width " << i << " costs: "
<< (*Candidate.Cost.getValue() / << (Candidate.Cost / Candidate.Width.getKnownMinValue())
Candidate.Width.getKnownMinValue())
<< (i.isScalable() ? " (assuming a minimum vscale of 1)" : "") << (i.isScalable() ? " (assuming a minimum vscale of 1)" : "")
<< ".\n"); << ".\n");
@ -6109,8 +6111,7 @@ VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor(
} }
LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() && LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&
*ChosenFactor.Cost.getValue() >= *ScalarCost.Cost.getValue()) ChosenFactor.Cost >= ScalarCost.Cost) dbgs()
dbgs()
<< "LV: Vectorization seems to be not beneficial, " << "LV: Vectorization seems to be not beneficial, "
<< "but was forced by a user.\n"); << "but was forced by a user.\n");
LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"); LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n");
@ -6438,8 +6439,9 @@ unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF,
// If we did not calculate the cost for VF (because the user selected the VF) // If we did not calculate the cost for VF (because the user selected the VF)
// then we calculate the cost of VF here. // then we calculate the cost of VF here.
if (LoopCost == 0) { if (LoopCost == 0) {
assert(expectedCost(VF).first.isValid() && "Expected a valid cost"); InstructionCost C = expectedCost(VF).first;
LoopCost = *expectedCost(VF).first.getValue(); assert(C.isValid() && "Expected to have chosen a VF with valid cost");
LoopCost = *C.getValue();
} }
assert(LoopCost && "Non-zero loop cost expected"); assert(LoopCost && "Non-zero loop cost expected");
@ -7295,6 +7297,8 @@ InstructionCost
LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I,
ElementCount VF) const { ElementCount VF) const {
// There is no mechanism yet to create a scalable scalarization loop,
// so this is currently Invalid.
if (VF.isScalable()) if (VF.isScalable())
return InstructionCost::getInvalid(); return InstructionCost::getInvalid();
@ -8013,17 +8017,19 @@ LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) {
UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF;
bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF);
if (!UserVF.isZero() && UserVFIsLegal) { if (!UserVF.isZero() && UserVFIsLegal) {
LLVM_DEBUG(dbgs() << "LV: Using " << (UserVFIsLegal ? "user" : "max")
<< " VF " << UserVF << ".\n");
assert(isPowerOf2_32(UserVF.getKnownMinValue()) && assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&
"VF needs to be a power of two"); "VF needs to be a power of two");
// Collect the instructions (and their associated costs) that will be more // Collect the instructions (and their associated costs) that will be more
// profitable to scalarize. // profitable to scalarize.
CM.selectUserVectorizationFactor(UserVF); if (CM.selectUserVectorizationFactor(UserVF)) {
CM.collectInLoopReductions(); LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
buildVPlansWithVPRecipes(UserVF, UserVF); CM.collectInLoopReductions();
LLVM_DEBUG(printPlans(dbgs())); buildVPlansWithVPRecipes(UserVF, UserVF);
return {{UserVF, 0}}; LLVM_DEBUG(printPlans(dbgs()));
return {{UserVF, 0}};
} else
reportVectorizationInfo("UserVF ignored because of invalid costs.",
"InvalidCost", ORE, OrigLoop);
} }
// Populate the set of Vectorization Factor Candidates. // Populate the set of Vectorization Factor Candidates.
@ -8798,8 +8804,6 @@ VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI,
InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize);
InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0;
bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost;
assert((IntrinsicCost.isValid() || CallCost.isValid()) &&
"Either the intrinsic cost or vector call cost must be valid");
return UseVectorIntrinsic || !NeedToScalarize; return UseVectorIntrinsic || !NeedToScalarize;
}; };

View File

@ -75,7 +75,7 @@ define void @vec_intrinsic(i64 %N, double* nocapture readonly %a) {
; CHECK-LABEL: @vec_intrinsic ; CHECK-LABEL: @vec_intrinsic
; CHECK: vector.body: ; CHECK: vector.body:
; CHECK: %[[LOAD:.*]] = load <vscale x 2 x double>, <vscale x 2 x double>* ; CHECK: %[[LOAD:.*]] = load <vscale x 2 x double>, <vscale x 2 x double>*
; CHECK: call fast <vscale x 2 x double> @sin_vec(<vscale x 2 x double> %[[LOAD]]) ; CHECK: call fast <vscale x 2 x double> @sin_vec_nxv2f64(<vscale x 2 x double> %[[LOAD]])
entry: entry:
%cmp7 = icmp sgt i64 %N, 0 %cmp7 = icmp sgt i64 %N, 0
br i1 %cmp7, label %for.body, label %for.end br i1 %cmp7, label %for.body, label %for.end
@ -95,17 +95,90 @@ for.end:
ret void ret void
} }
define void @vec_sin_no_mapping(float* noalias nocapture %dst, float* noalias nocapture readonly %src, i64 %n) {
; CHECK: @vec_sin_no_mapping
; CHECK: call fast <2 x float> @llvm.sin.v2f32
; CHECK-NOT: <vscale x
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%i.07 = phi i64 [ %inc, %for.body ], [ 0, %entry ]
%arrayidx = getelementptr inbounds float, float* %src, i64 %i.07
%0 = load float, float* %arrayidx, align 4
%1 = tail call fast float @llvm.sin.f32(float %0)
%arrayidx1 = getelementptr inbounds float, float* %dst, i64 %i.07
store float %1, float* %arrayidx1, align 4
%inc = add nuw nsw i64 %i.07, 1
%exitcond.not = icmp eq i64 %inc, %n
br i1 %exitcond.not, label %for.cond.cleanup, label %for.body, !llvm.loop !1
for.cond.cleanup: ; preds = %for.body
ret void
}
define void @vec_sin_fixed_mapping(float* noalias nocapture %dst, float* noalias nocapture readonly %src, i64 %n) {
; CHECK: @vec_sin_fixed_mapping
; CHECK: call fast <2 x float> @llvm.sin.v2f32
; CHECK-NOT: <vscale x
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%i.07 = phi i64 [ %inc, %for.body ], [ 0, %entry ]
%arrayidx = getelementptr inbounds float, float* %src, i64 %i.07
%0 = load float, float* %arrayidx, align 4
%1 = tail call fast float @llvm.sin.f32(float %0) #3
%arrayidx1 = getelementptr inbounds float, float* %dst, i64 %i.07
store float %1, float* %arrayidx1, align 4
%inc = add nuw nsw i64 %i.07, 1
%exitcond.not = icmp eq i64 %inc, %n
br i1 %exitcond.not, label %for.cond.cleanup, label %for.body, !llvm.loop !1
for.cond.cleanup: ; preds = %for.body
ret void
}
; Even though there are no function mappings attached to the call
; in the loop below we can still vectorize the loop because SVE has
; hardware support in the form of the 'fqsrt' instruction.
define void @vec_sqrt_no_mapping(float* noalias nocapture %dst, float* noalias nocapture readonly %src, i64 %n) #0 {
; CHECK: @vec_sqrt_no_mapping
; CHECK: call fast <vscale x 2 x float> @llvm.sqrt.nxv2f32
entry:
br label %for.body
for.body: ; preds = %entry, %for.body
%i.07 = phi i64 [ %inc, %for.body ], [ 0, %entry ]
%arrayidx = getelementptr inbounds float, float* %src, i64 %i.07
%0 = load float, float* %arrayidx, align 4
%1 = tail call fast float @llvm.sqrt.f32(float %0)
%arrayidx1 = getelementptr inbounds float, float* %dst, i64 %i.07
store float %1, float* %arrayidx1, align 4
%inc = add nuw nsw i64 %i.07, 1
%exitcond.not = icmp eq i64 %inc, %n
br i1 %exitcond.not, label %for.cond.cleanup, label %for.body, !llvm.loop !1
for.cond.cleanup: ; preds = %for.body
ret void
}
declare double @foo(double) declare double @foo(double)
declare i64 @bar(i64*) declare i64 @bar(i64*)
declare double @llvm.sin.f64(double) declare double @llvm.sin.f64(double)
declare float @llvm.sin.f32(float)
declare float @llvm.sqrt.f32(float)
declare <vscale x 2 x double> @foo_vec(<vscale x 2 x double>) declare <vscale x 2 x double> @foo_vec(<vscale x 2 x double>)
declare <vscale x 2 x i64> @bar_vec(<vscale x 2 x i64*>) declare <vscale x 2 x i64> @bar_vec(<vscale x 2 x i64*>)
declare <vscale x 2 x double> @sin_vec(<vscale x 2 x double>) declare <vscale x 2 x double> @sin_vec_nxv2f64(<vscale x 2 x double>)
declare <2 x double> @sin_vec_v2f64(<2 x double>)
attributes #0 = { "vector-function-abi-variant"="_ZGV_LLVM_Nxv_foo(foo_vec)" } attributes #0 = { "vector-function-abi-variant"="_ZGV_LLVM_Nxv_foo(foo_vec)" }
attributes #1 = { "vector-function-abi-variant"="_ZGV_LLVM_Nxv_bar(bar_vec)" } attributes #1 = { "vector-function-abi-variant"="_ZGV_LLVM_Nxv_bar(bar_vec)" }
attributes #2 = { "vector-function-abi-variant"="_ZGV_LLVM_Nxv_llvm.sin.f64(sin_vec)" } attributes #2 = { "vector-function-abi-variant"="_ZGV_LLVM_Nxv_llvm.sin.f64(sin_vec_nxv2f64)" }
attributes #3 = { "vector-function-abi-variant"="_ZGV_LLVM_N2v_llvm.sin.f64(sin_vec_v2f64)" }
!1 = distinct !{!1, !2, !3} !1 = distinct !{!1, !2, !3}
!2 = !{!"llvm.loop.vectorize.width", i32 2} !2 = !{!"llvm.loop.vectorize.width", i32 2}