[MLIR][FlatAffineConstraints] Remove duplicate divisions while merging local ids

This patch implements detecting duplicate local identifiers by extracting their
division representation while merging local identifiers.

For example, given the FACs A, B:

```
A: (x, y)[s0] : (exists d0 = [x / 4], d1 = [y / 4]: d0 <= s0, d1 <= s0, x + y >= 2)
B: (x, y)[s0] : (exists d0 = [x / 4], d1 = [y / 4]: d0 <= s0, d1 <= s0, x + y >= 5)
```

The intersection of A and B without this patch would lead to the following FAC:

```
(x, y)[s0] : (exists d0 = [x / 4], d1 = [y / 4], d2 = [x / 4], d3 = [x / 4]: d0 <= s0, d1 <= s0, d2 <= s0, d3 <= s0, x + y >= 2, x + y >= 5)
```

after this patch, merging of local ids will detect that `d0 = d2` and `d1 = d3`,
and the intersection of these two FACs will be (after removing duplicate constraints):

```
(x, y)[s0] : (exists d0 = [x / 4], d1 = [y / 4] : d0 <= s0, d1 <= s0, x + y >= 2, x + y >= 5)
```

This reduces the number of constraints by 2 (constraints) + 4 (2 constraints for each extra division) for this case.

This is used to reduce the output size representation of operations like
PresburgerSet::subtract, PresburgerSet::intersect which require merging local
variables.

Reviewed By: arjunp, bondhugula

Differential Revision: https://reviews.llvm.org/D112867
This commit is contained in:
Groverkss 2021-12-03 03:44:36 +05:30
parent cff427ee20
commit d257f7c1bf
3 changed files with 234 additions and 15 deletions

View File

@ -441,10 +441,16 @@ public:
/// variables.
void convertDimToLocal(unsigned dimStart, unsigned dimLimit);
/// Merge local ids of `this` and `other`. This is done by appending local ids
/// of `other` to `this` and inserting local ids of `this` to `other` at start
/// of its local ids. Number of dimension and symbol ids should match in
/// `this` and `other`.
/// Adds additional local ids to the sets such that they both have the union
/// of the local ids in each set, without changing the set of points that
/// lie in `this` and `other`. The ordering of the local ids in the
/// sets may also be changed. After merging, if the `i^th` local variable in
/// one set has a known division representation, then the `i^th` local
/// variable in the other set either has the same division representation or
/// no known division representation.
///
/// The number of dimensions and symbol ids in `this` and `other` should
/// match.
void mergeLocalIds(FlatAffineConstraints &other);
/// Removes all equalities and inequalities.
@ -819,8 +825,8 @@ public:
/// constraint systems are updated so that they have the union of all
/// identifiers, with `this`'s original identifiers appearing first followed
/// by any of `other`'s identifiers that didn't appear in `this`. Local
/// identifiers of each system are by design separate/local and are placed
/// one after other (`this`'s followed by `other`'s).
/// identifiers in `other` that have the same division representation as local
/// identifiers in `this` are merged into one.
// E.g.: Input: `this` has (%i, %j) [%M, %N]
// `other` has (%k, %j) [%P, %N, %M]
// Output: both `this`, `other` have (%i, %j, %k) [%M, %N, %P]

View File

@ -493,8 +493,8 @@ static bool LLVM_ATTRIBUTE_UNUSED areIdsUnique(
/// dimension-wise and symbol-wise unique; both constraint systems are updated
/// so that they have the union of all identifiers, with A's original
/// identifiers appearing first followed by any of B's identifiers that didn't
/// appear in A. Local identifiers of each system are by design separate/local
/// and are placed one after other (A's followed by B's).
/// appear in A. Local identifiers in B that have the same division
/// representation as local identifiers in A are merged into one.
// E.g.: Input: A has ((%i, %j) [%M, %N]) and B has (%k, %j) [%P, %N, %M])
// Output: both A, B have (%i, %j, %k) [%M, %N, %P]
static void mergeAndAlignIds(unsigned offset, FlatAffineValueConstraints *a,
@ -1918,18 +1918,108 @@ void FlatAffineConstraints::removeRedundantConstraints() {
equalities.resizeVertically(pos);
}
/// Merge local ids of `this` and `other`. This is done by appending local ids
/// of `other` to `this` and inserting local ids of `this` to `other` at start
/// of its local ids. Number of dimension and symbol ids should match in
/// `this` and `other`.
/// Eliminate `pos2^th` local identifier, replacing its every instance with
/// `pos1^th` local identifier. This function is intended to be used to remove
/// redundancy when local variables at position `pos1` and `pos2` are restricted
/// to have the same value.
static void eliminateRedundantLocalId(FlatAffineConstraints &fac, unsigned pos1,
unsigned pos2) {
assert(pos1 < fac.getNumLocalIds() && "Invalid local id position");
assert(pos2 < fac.getNumLocalIds() && "Invalid local id position");
unsigned localOffset = fac.getNumDimAndSymbolIds();
pos1 += localOffset;
pos2 += localOffset;
for (unsigned i = 0, e = fac.getNumInequalities(); i < e; ++i)
fac.atIneq(i, pos1) += fac.atIneq(i, pos2);
for (unsigned i = 0, e = fac.getNumEqualities(); i < e; ++i)
fac.atEq(i, pos1) += fac.atEq(i, pos2);
fac.removeId(pos2);
}
/// Adds additional local ids to the sets such that they both have the union
/// of the local ids in each set, without changing the set of points that
/// lie in `this` and `other`.
///
/// To detect local ids that always take the same in both sets, each local id is
/// represented as a floordiv with constant denominator in terms of other ids.
/// After extracting these divisions, local ids with the same division
/// representation are considered duplicate and are merged. It is possible that
/// division representation for some local id cannot be obtained, and thus these
/// local ids are not considered for detecting duplicates.
void FlatAffineConstraints::mergeLocalIds(FlatAffineConstraints &other) {
assert(getNumDimIds() == other.getNumDimIds() &&
"Number of dimension ids should match");
assert(getNumSymbolIds() == other.getNumSymbolIds() &&
"Number of symbol ids should match");
unsigned initLocals = getNumLocalIds();
insertLocalId(getNumLocalIds(), other.getNumLocalIds());
other.insertLocalId(0, initLocals);
FlatAffineConstraints &facA = *this;
FlatAffineConstraints &facB = other;
// Merge local ids of facA and facB without using division information,
// i.e. append local ids of `facB` to `facA` and insert local ids of `facA`
// to `facB` at start of its local ids.
unsigned initLocals = facA.getNumLocalIds();
insertLocalId(facA.getNumLocalIds(), facB.getNumLocalIds());
facB.insertLocalId(0, initLocals);
// Get division representations from each FAC.
std::vector<SmallVector<int64_t, 8>> divsA, divsB;
SmallVector<unsigned, 4> denomsA, denomsB;
facA.getLocalReprs(divsA, denomsA);
facB.getLocalReprs(divsB, denomsB);
// Copy division information for facB into `divsA` and `denomsA`, so that
// these have the combined division information of both FACs. Since newly
// added local variables in facA and facB have no constraints, they will not
// have any division representation.
std::copy(divsB.begin() + initLocals, divsB.end(),
divsA.begin() + initLocals);
std::copy(denomsB.begin() + initLocals, denomsB.end(),
denomsA.begin() + initLocals);
// Find and merge duplicate divisions.
// TODO: Add division normalization to support divisions that differ by
// a constant.
// TODO: Add division ordering such that a division representation for local
// identifier at position `i` only depends on local identifiers at position <
// `i`. This would make sure that all divisions depending on other local
// variables that can be merged, are merged.
unsigned localOffset = getIdKindOffset(IdKind::Local);
for (unsigned i = 0; i < divsA.size(); ++i) {
// Check if a division representation exists for the `i^th` local id.
if (denomsA[i] == 0)
continue;
// Check if a division exists which is a duplicate of the division at `i`.
for (unsigned j = i + 1; j < divsA.size(); ++j) {
// Check if a division representation exists for the `j^th` local id.
if (denomsA[j] == 0)
continue;
// Check if the denominators match.
if (denomsA[i] != denomsA[j])
continue;
// Check if the representations are equal.
if (divsA[i] != divsA[j])
continue;
// Merge divisions at position `j` into division at position `i`.
eliminateRedundantLocalId(facA, i, j);
eliminateRedundantLocalId(facB, i, j);
for (unsigned k = 0, g = divsA.size(); k < g; ++k) {
SmallVector<int64_t, 8> &div = divsA[k];
if (denomsA[k] != 0) {
div[localOffset + i] += div[localOffset + j];
div.erase(div.begin() + localOffset + j);
}
}
divsA.erase(divsA.begin() + j);
denomsA.erase(denomsA.begin() + j);
// Since `j` can never be zero, we do not need to worry about overflows.
--j;
}
}
}
/// Removes local variables using equalities. Each equality is checked if it

View File

@ -809,4 +809,127 @@ TEST(FlatAffineConstraintsTest, simplifyLocalsTest) {
EXPECT_TRUE(fac3.isEmpty());
}
TEST(FlatAffineConstraintsTest, mergeDivisionsSimple) {
{
// (x) : (exists z, y = [x / 2] : x = 3y and x + z + 1 >= 0).
FlatAffineConstraints fac1(1, 0, 1);
fac1.addLocalFloorDiv({1, 0, 0}, 2); // y = [x / 2].
fac1.addEquality({1, 0, -3, 0}); // x = 3y.
fac1.addInequality({1, 1, 0, 1}); // x + z + 1 >= 0.
// (x) : (exists y = [x / 2], z : x = 5y).
FlatAffineConstraints fac2(1);
fac2.addLocalFloorDiv({1, 0}, 2); // y = [x / 2].
fac2.addEquality({1, -5, 0}); // x = 5y.
fac2.appendLocalId(); // Add local id z.
fac1.mergeLocalIds(fac2);
// Local space should be same.
EXPECT_EQ(fac1.getNumLocalIds(), fac2.getNumLocalIds());
// 1 division should be matched + 2 unmatched local ids.
EXPECT_EQ(fac1.getNumLocalIds(), 3u);
EXPECT_EQ(fac2.getNumLocalIds(), 3u);
}
{
// (x) : (exists z = [x / 5], y = [x / 2] : x = 3y).
FlatAffineConstraints fac1(1);
fac1.addLocalFloorDiv({1, 0}, 5); // z = [x / 5].
fac1.addLocalFloorDiv({1, 0, 0}, 2); // y = [x / 2].
fac1.addEquality({1, 0, -3, 0}); // x = 3y.
// (x) : (exists y = [x / 2], z = [x / 5]: x = 5z).
FlatAffineConstraints fac2(1);
fac2.addLocalFloorDiv({1, 0}, 2); // y = [x / 2].
fac2.addLocalFloorDiv({1, 0, 0}, 5); // z = [x / 5].
fac2.addEquality({1, 0, -5, 0}); // x = 5z.
fac1.mergeLocalIds(fac2);
// Local space should be same.
EXPECT_EQ(fac1.getNumLocalIds(), fac2.getNumLocalIds());
// 2 divisions should be matched.
EXPECT_EQ(fac1.getNumLocalIds(), 2u);
EXPECT_EQ(fac2.getNumLocalIds(), 2u);
}
}
TEST(FlatAffineConstraintsTest, mergeDivisionsNestedDivsions) {
{
// (x) : (exists y = [x / 2], z = [x + y / 3]: y + z >= x).
FlatAffineConstraints fac1(1);
fac1.addLocalFloorDiv({1, 0}, 2); // y = [x / 2].
fac1.addLocalFloorDiv({1, 1, 0}, 3); // z = [x + y / 3].
fac1.addInequality({-1, 1, 1, 0}); // y + z >= x.
// (x) : (exists y = [x / 2], z = [x + y / 3]: y + z <= x).
FlatAffineConstraints fac2(1);
fac2.addLocalFloorDiv({1, 0}, 2); // y = [x / 2].
fac2.addLocalFloorDiv({1, 1, 0}, 3); // z = [x + y / 3].
fac2.addInequality({1, -1, -1, 0}); // y + z <= x.
fac1.mergeLocalIds(fac2);
// Local space should be same.
EXPECT_EQ(fac1.getNumLocalIds(), fac2.getNumLocalIds());
// 2 divisions should be matched.
EXPECT_EQ(fac1.getNumLocalIds(), 2u);
EXPECT_EQ(fac2.getNumLocalIds(), 2u);
}
{
// (x) : (exists y = [x / 2], z = [x + y / 3], w = [z + 1 / 5]: y + z >= x).
FlatAffineConstraints fac1(1);
fac1.addLocalFloorDiv({1, 0}, 2); // y = [x / 2].
fac1.addLocalFloorDiv({1, 1, 0}, 3); // z = [x + y / 3].
fac1.addLocalFloorDiv({0, 0, 1, 1}, 5); // w = [z + 1 / 5].
fac1.addInequality({-1, 1, 1, 0, 0}); // y + z >= x.
// (x) : (exists y = [x / 2], z = [x + y / 3], w = [z + 1 / 5]: y + z <= x).
FlatAffineConstraints fac2(1);
fac2.addLocalFloorDiv({1, 0}, 2); // y = [x / 2].
fac2.addLocalFloorDiv({1, 1, 0}, 3); // z = [x + y / 3].
fac2.addLocalFloorDiv({0, 0, 1, 1}, 5); // w = [z + 1 / 5].
fac2.addInequality({1, -1, -1, 0, 0}); // y + z <= x.
fac1.mergeLocalIds(fac2);
// Local space should be same.
EXPECT_EQ(fac1.getNumLocalIds(), fac2.getNumLocalIds());
// 3 divisions should be matched.
EXPECT_EQ(fac1.getNumLocalIds(), 3u);
EXPECT_EQ(fac2.getNumLocalIds(), 3u);
}
}
TEST(FlatAffineConstraintsTest, mergeDivisionsConstants) {
{
// (x) : (exists y = [x + 1 / 3], z = [x + 2 / 3]: y + z >= x).
FlatAffineConstraints fac1(1);
fac1.addLocalFloorDiv({1, 1}, 2); // y = [x + 1 / 2].
fac1.addLocalFloorDiv({1, 0, 2}, 3); // z = [x + 2 / 3].
fac1.addInequality({-1, 1, 1, 0}); // y + z >= x.
// (x) : (exists y = [x + 1 / 3], z = [x + 2 / 3]: y + z <= x).
FlatAffineConstraints fac2(1);
fac2.addLocalFloorDiv({1, 1}, 2); // y = [x + 1 / 2].
fac2.addLocalFloorDiv({1, 0, 2}, 3); // z = [x + 2 / 3].
fac2.addInequality({1, -1, -1, 0}); // y + z <= x.
fac1.mergeLocalIds(fac2);
// Local space should be same.
EXPECT_EQ(fac1.getNumLocalIds(), fac2.getNumLocalIds());
// 2 divisions should be matched.
EXPECT_EQ(fac1.getNumLocalIds(), 2u);
EXPECT_EQ(fac2.getNumLocalIds(), 2u);
}
}
} // namespace mlir