forked from OSchip/llvm-project
Combine the implementations of the core part of the SSAUpdater and
MachineSSAUpdater to avoid duplicating all the code. llvm-svn: 103060
This commit is contained in:
parent
a00830df31
commit
d1b38e317d
|
@ -23,6 +23,7 @@ namespace llvm {
|
|||
class TargetInstrInfo;
|
||||
class TargetRegisterClass;
|
||||
template<typename T> class SmallVectorImpl;
|
||||
template<typename T> class SSAUpdaterTraits;
|
||||
class BumpPtrAllocator;
|
||||
|
||||
/// MachineSSAUpdater - This class updates SSA form for a set of virtual
|
||||
|
@ -30,9 +31,7 @@ namespace llvm {
|
|||
/// or another unstructured transformation wants to rewrite a set of uses of one
|
||||
/// vreg with uses of a set of vregs.
|
||||
class MachineSSAUpdater {
|
||||
public:
|
||||
class BBInfo;
|
||||
typedef SmallVectorImpl<BBInfo*> BlockListTy;
|
||||
friend class SSAUpdaterTraits<MachineSSAUpdater>;
|
||||
|
||||
private:
|
||||
/// AvailableVals - This keeps track of which value to use on a per-block
|
||||
|
@ -40,11 +39,6 @@ private:
|
|||
//typedef DenseMap<MachineBasicBlock*, unsigned > AvailableValsTy;
|
||||
void *AV;
|
||||
|
||||
/// BBMap - The GetValueAtEndOfBlock method maintains this mapping from
|
||||
/// basic blocks to BBInfo structures.
|
||||
/// typedef DenseMap<MachineBasicBlock*, BBInfo*> BBMapTy;
|
||||
void *BM;
|
||||
|
||||
/// VR - Current virtual register whose uses are being updated.
|
||||
unsigned VR;
|
||||
|
||||
|
@ -111,14 +105,6 @@ public:
|
|||
private:
|
||||
void ReplaceRegWith(unsigned OldReg, unsigned NewReg);
|
||||
unsigned GetValueAtEndOfBlockInternal(MachineBasicBlock *BB);
|
||||
void BuildBlockList(MachineBasicBlock *BB, BlockListTy *BlockList,
|
||||
BumpPtrAllocator *Allocator);
|
||||
void FindDominators(BlockListTy *BlockList);
|
||||
void FindPHIPlacement(BlockListTy *BlockList);
|
||||
void FindAvailableVals(BlockListTy *BlockList);
|
||||
void FindExistingPHI(MachineBasicBlock *BB, BlockListTy *BlockList);
|
||||
bool CheckIfPHIMatches(MachineInstr *PHI);
|
||||
void RecordMatchingPHI(MachineInstr *PHI);
|
||||
|
||||
void operator=(const MachineSSAUpdater&); // DO NOT IMPLEMENT
|
||||
MachineSSAUpdater(const MachineSSAUpdater&); // DO NOT IMPLEMENT
|
||||
|
|
|
@ -19,8 +19,8 @@ namespace llvm {
|
|||
class BasicBlock;
|
||||
class Use;
|
||||
class PHINode;
|
||||
template<typename T>
|
||||
class SmallVectorImpl;
|
||||
template<typename T> class SmallVectorImpl;
|
||||
template<typename T> class SSAUpdaterTraits;
|
||||
class BumpPtrAllocator;
|
||||
|
||||
/// SSAUpdater - This class updates SSA form for a set of values defined in
|
||||
|
@ -28,9 +28,7 @@ namespace llvm {
|
|||
/// transformation wants to rewrite a set of uses of one value with uses of a
|
||||
/// set of values.
|
||||
class SSAUpdater {
|
||||
public:
|
||||
class BBInfo;
|
||||
typedef SmallVectorImpl<BBInfo*> BlockListTy;
|
||||
friend class SSAUpdaterTraits<SSAUpdater>;
|
||||
|
||||
private:
|
||||
/// AvailableVals - This keeps track of which value to use on a per-block
|
||||
|
@ -42,14 +40,10 @@ private:
|
|||
/// and a type for PHI nodes.
|
||||
Value *PrototypeValue;
|
||||
|
||||
/// BBMap - The GetValueAtEndOfBlock method maintains this mapping from
|
||||
/// basic blocks to BBInfo structures.
|
||||
/// typedef DenseMap<BasicBlock*, BBInfo*> BBMapTy;
|
||||
void *BM;
|
||||
|
||||
/// InsertedPHIs - If this is non-null, the SSAUpdater adds all PHI nodes that
|
||||
/// it creates to the vector.
|
||||
SmallVectorImpl<PHINode*> *InsertedPHIs;
|
||||
|
||||
public:
|
||||
/// SSAUpdater constructor. If InsertedPHIs is specified, it will be filled
|
||||
/// in with all PHI Nodes created by rewriting.
|
||||
|
@ -102,14 +96,6 @@ public:
|
|||
|
||||
private:
|
||||
Value *GetValueAtEndOfBlockInternal(BasicBlock *BB);
|
||||
void BuildBlockList(BasicBlock *BB, BlockListTy *BlockList,
|
||||
BumpPtrAllocator *Allocator);
|
||||
void FindDominators(BlockListTy *BlockList);
|
||||
void FindPHIPlacement(BlockListTy *BlockList);
|
||||
void FindAvailableVals(BlockListTy *BlockList);
|
||||
void FindExistingPHI(BasicBlock *BB, BlockListTy *BlockList);
|
||||
bool CheckIfPHIMatches(PHINode *PHI);
|
||||
void RecordMatchingPHI(PHINode *PHI);
|
||||
|
||||
void operator=(const SSAUpdater&); // DO NOT IMPLEMENT
|
||||
SSAUpdater(const SSAUpdater&); // DO NOT IMPLEMENT
|
||||
|
|
|
@ -0,0 +1,463 @@
|
|||
//===-- SSAUpdaterImpl.h - SSA Updater Implementation -----------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file provides a template that implements the core algorithm for the
|
||||
// SSAUpdater and MachineSSAUpdater.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
|
||||
#define LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
|
||||
|
||||
namespace llvm {
|
||||
|
||||
template<typename T> class SSAUpdaterTraits;
|
||||
|
||||
template<typename UpdaterT>
|
||||
class SSAUpdaterImpl {
|
||||
private:
|
||||
UpdaterT *Updater;
|
||||
|
||||
typedef SSAUpdaterTraits<UpdaterT> Traits;
|
||||
typedef typename Traits::BlkT BlkT;
|
||||
typedef typename Traits::ValT ValT;
|
||||
typedef typename Traits::PhiT PhiT;
|
||||
|
||||
/// BBInfo - Per-basic block information used internally by SSAUpdaterImpl.
|
||||
/// The predecessors of each block are cached here since pred_iterator is
|
||||
/// slow and we need to iterate over the blocks at least a few times.
|
||||
class BBInfo {
|
||||
public:
|
||||
BlkT *BB; // Back-pointer to the corresponding block.
|
||||
ValT AvailableVal; // Value to use in this block.
|
||||
BBInfo *DefBB; // Block that defines the available value.
|
||||
int BlkNum; // Postorder number.
|
||||
BBInfo *IDom; // Immediate dominator.
|
||||
unsigned NumPreds; // Number of predecessor blocks.
|
||||
BBInfo **Preds; // Array[NumPreds] of predecessor blocks.
|
||||
PhiT *PHITag; // Marker for existing PHIs that match.
|
||||
|
||||
BBInfo(BlkT *ThisBB, ValT V)
|
||||
: BB(ThisBB), AvailableVal(V), DefBB(V ? this : 0), BlkNum(0), IDom(0),
|
||||
NumPreds(0), Preds(0), PHITag(0) { }
|
||||
};
|
||||
|
||||
typedef DenseMap<BlkT*, ValT> AvailableValsTy;
|
||||
AvailableValsTy *AvailableVals;
|
||||
|
||||
SmallVectorImpl<PhiT*> *InsertedPHIs;
|
||||
|
||||
typedef SmallVectorImpl<BBInfo*> BlockListTy;
|
||||
typedef DenseMap<BlkT*, BBInfo*> BBMapTy;
|
||||
BBMapTy BBMap;
|
||||
BumpPtrAllocator Allocator;
|
||||
|
||||
public:
|
||||
explicit SSAUpdaterImpl(UpdaterT *U, AvailableValsTy *A,
|
||||
SmallVectorImpl<PhiT*> *Ins) :
|
||||
Updater(U), AvailableVals(A), InsertedPHIs(Ins) { }
|
||||
|
||||
/// GetValue - Check to see if AvailableVals has an entry for the specified
|
||||
/// BB and if so, return it. If not, construct SSA form by first
|
||||
/// calculating the required placement of PHIs and then inserting new PHIs
|
||||
/// where needed.
|
||||
ValT GetValue(BlkT *BB) {
|
||||
SmallVector<BBInfo*, 100> BlockList;
|
||||
BuildBlockList(BB, &BlockList);
|
||||
|
||||
// Special case: bail out if BB is unreachable.
|
||||
if (BlockList.size() == 0) {
|
||||
ValT V = Traits::GetUndefVal(BB, Updater);
|
||||
(*AvailableVals)[BB] = V;
|
||||
return V;
|
||||
}
|
||||
|
||||
FindDominators(&BlockList);
|
||||
FindPHIPlacement(&BlockList);
|
||||
FindAvailableVals(&BlockList);
|
||||
|
||||
return BBMap[BB]->DefBB->AvailableVal;
|
||||
}
|
||||
|
||||
/// BuildBlockList - Starting from the specified basic block, traverse back
|
||||
/// through its predecessors until reaching blocks with known values.
|
||||
/// Create BBInfo structures for the blocks and append them to the block
|
||||
/// list.
|
||||
void BuildBlockList(BlkT *BB, BlockListTy *BlockList) {
|
||||
SmallVector<BBInfo*, 10> RootList;
|
||||
SmallVector<BBInfo*, 64> WorkList;
|
||||
|
||||
BBInfo *Info = new (Allocator) BBInfo(BB, 0);
|
||||
BBMap[BB] = Info;
|
||||
WorkList.push_back(Info);
|
||||
|
||||
// Search backward from BB, creating BBInfos along the way and stopping
|
||||
// when reaching blocks that define the value. Record those defining
|
||||
// blocks on the RootList.
|
||||
SmallVector<BlkT*, 10> Preds;
|
||||
while (!WorkList.empty()) {
|
||||
Info = WorkList.pop_back_val();
|
||||
Preds.clear();
|
||||
Traits::FindPredecessorBlocks(Info->BB, &Preds);
|
||||
Info->NumPreds = Preds.size();
|
||||
Info->Preds = static_cast<BBInfo**>
|
||||
(Allocator.Allocate(Info->NumPreds * sizeof(BBInfo*),
|
||||
AlignOf<BBInfo*>::Alignment));
|
||||
|
||||
// Treat an unreachable predecessor as a definition with 'undef'.
|
||||
if (Info->NumPreds == 0) {
|
||||
Info->AvailableVal = Traits::GetUndefVal(Info->BB, Updater);
|
||||
Info->DefBB = Info;
|
||||
RootList.push_back(Info);
|
||||
continue;
|
||||
}
|
||||
|
||||
for (unsigned p = 0; p != Info->NumPreds; ++p) {
|
||||
BlkT *Pred = Preds[p];
|
||||
// Check if BBMap already has a BBInfo for the predecessor block.
|
||||
typename BBMapTy::value_type &BBMapBucket =
|
||||
BBMap.FindAndConstruct(Pred);
|
||||
if (BBMapBucket.second) {
|
||||
Info->Preds[p] = BBMapBucket.second;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Create a new BBInfo for the predecessor.
|
||||
ValT PredVal = AvailableVals->lookup(Pred);
|
||||
BBInfo *PredInfo = new (Allocator) BBInfo(Pred, PredVal);
|
||||
BBMapBucket.second = PredInfo;
|
||||
Info->Preds[p] = PredInfo;
|
||||
|
||||
if (PredInfo->AvailableVal) {
|
||||
RootList.push_back(PredInfo);
|
||||
continue;
|
||||
}
|
||||
WorkList.push_back(PredInfo);
|
||||
}
|
||||
}
|
||||
|
||||
// Now that we know what blocks are backwards-reachable from the starting
|
||||
// block, do a forward depth-first traversal to assign postorder numbers
|
||||
// to those blocks.
|
||||
BBInfo *PseudoEntry = new (Allocator) BBInfo(0, 0);
|
||||
unsigned BlkNum = 1;
|
||||
|
||||
// Initialize the worklist with the roots from the backward traversal.
|
||||
while (!RootList.empty()) {
|
||||
Info = RootList.pop_back_val();
|
||||
Info->IDom = PseudoEntry;
|
||||
Info->BlkNum = -1;
|
||||
WorkList.push_back(Info);
|
||||
}
|
||||
|
||||
while (!WorkList.empty()) {
|
||||
Info = WorkList.back();
|
||||
|
||||
if (Info->BlkNum == -2) {
|
||||
// All the successors have been handled; assign the postorder number.
|
||||
Info->BlkNum = BlkNum++;
|
||||
// If not a root, put it on the BlockList.
|
||||
if (!Info->AvailableVal)
|
||||
BlockList->push_back(Info);
|
||||
WorkList.pop_back();
|
||||
continue;
|
||||
}
|
||||
|
||||
// Leave this entry on the worklist, but set its BlkNum to mark that its
|
||||
// successors have been put on the worklist. When it returns to the top
|
||||
// the list, after handling its successors, it will be assigned a
|
||||
// number.
|
||||
Info->BlkNum = -2;
|
||||
|
||||
// Add unvisited successors to the work list.
|
||||
for (typename Traits::BlkSucc_iterator SI =
|
||||
Traits::BlkSucc_begin(Info->BB),
|
||||
E = Traits::BlkSucc_end(Info->BB); SI != E; ++SI) {
|
||||
BBInfo *SuccInfo = BBMap[*SI];
|
||||
if (!SuccInfo || SuccInfo->BlkNum)
|
||||
continue;
|
||||
SuccInfo->BlkNum = -1;
|
||||
WorkList.push_back(SuccInfo);
|
||||
}
|
||||
}
|
||||
PseudoEntry->BlkNum = BlkNum;
|
||||
}
|
||||
|
||||
/// IntersectDominators - This is the dataflow lattice "meet" operation for
|
||||
/// finding dominators. Given two basic blocks, it walks up the dominator
|
||||
/// tree until it finds a common dominator of both. It uses the postorder
|
||||
/// number of the blocks to determine how to do that.
|
||||
BBInfo *IntersectDominators(BBInfo *Blk1, BBInfo *Blk2) {
|
||||
while (Blk1 != Blk2) {
|
||||
while (Blk1->BlkNum < Blk2->BlkNum) {
|
||||
Blk1 = Blk1->IDom;
|
||||
if (!Blk1)
|
||||
return Blk2;
|
||||
}
|
||||
while (Blk2->BlkNum < Blk1->BlkNum) {
|
||||
Blk2 = Blk2->IDom;
|
||||
if (!Blk2)
|
||||
return Blk1;
|
||||
}
|
||||
}
|
||||
return Blk1;
|
||||
}
|
||||
|
||||
/// FindDominators - Calculate the dominator tree for the subset of the CFG
|
||||
/// corresponding to the basic blocks on the BlockList. This uses the
|
||||
/// algorithm from: "A Simple, Fast Dominance Algorithm" by Cooper, Harvey
|
||||
/// and Kennedy, published in Software--Practice and Experience, 2001,
|
||||
/// 4:1-10. Because the CFG subset does not include any edges leading into
|
||||
/// blocks that define the value, the results are not the usual dominator
|
||||
/// tree. The CFG subset has a single pseudo-entry node with edges to a set
|
||||
/// of root nodes for blocks that define the value. The dominators for this
|
||||
/// subset CFG are not the standard dominators but they are adequate for
|
||||
/// placing PHIs within the subset CFG.
|
||||
void FindDominators(BlockListTy *BlockList) {
|
||||
bool Changed;
|
||||
do {
|
||||
Changed = false;
|
||||
// Iterate over the list in reverse order, i.e., forward on CFG edges.
|
||||
for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
|
||||
E = BlockList->rend(); I != E; ++I) {
|
||||
BBInfo *Info = *I;
|
||||
|
||||
// Start with the first predecessor.
|
||||
assert(Info->NumPreds > 0 && "unreachable block");
|
||||
BBInfo *NewIDom = Info->Preds[0];
|
||||
|
||||
// Iterate through the block's other predecessors.
|
||||
for (unsigned p = 1; p != Info->NumPreds; ++p) {
|
||||
BBInfo *Pred = Info->Preds[p];
|
||||
NewIDom = IntersectDominators(NewIDom, Pred);
|
||||
}
|
||||
|
||||
// Check if the IDom value has changed.
|
||||
if (NewIDom != Info->IDom) {
|
||||
Info->IDom = NewIDom;
|
||||
Changed = true;
|
||||
}
|
||||
}
|
||||
} while (Changed);
|
||||
}
|
||||
|
||||
/// IsDefInDomFrontier - Search up the dominator tree from Pred to IDom for
|
||||
/// any blocks containing definitions of the value. If one is found, then
|
||||
/// the successor of Pred is in the dominance frontier for the definition,
|
||||
/// and this function returns true.
|
||||
bool IsDefInDomFrontier(const BBInfo *Pred, const BBInfo *IDom) {
|
||||
for (; Pred != IDom; Pred = Pred->IDom) {
|
||||
if (Pred->DefBB == Pred)
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/// FindPHIPlacement - PHIs are needed in the iterated dominance frontiers
|
||||
/// of the known definitions. Iteratively add PHIs in the dom frontiers
|
||||
/// until nothing changes. Along the way, keep track of the nearest
|
||||
/// dominating definitions for non-PHI blocks.
|
||||
void FindPHIPlacement(BlockListTy *BlockList) {
|
||||
bool Changed;
|
||||
do {
|
||||
Changed = false;
|
||||
// Iterate over the list in reverse order, i.e., forward on CFG edges.
|
||||
for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
|
||||
E = BlockList->rend(); I != E; ++I) {
|
||||
BBInfo *Info = *I;
|
||||
|
||||
// If this block already needs a PHI, there is nothing to do here.
|
||||
if (Info->DefBB == Info)
|
||||
continue;
|
||||
|
||||
// Default to use the same def as the immediate dominator.
|
||||
BBInfo *NewDefBB = Info->IDom->DefBB;
|
||||
for (unsigned p = 0; p != Info->NumPreds; ++p) {
|
||||
if (IsDefInDomFrontier(Info->Preds[p], Info->IDom)) {
|
||||
// Need a PHI here.
|
||||
NewDefBB = Info;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Check if anything changed.
|
||||
if (NewDefBB != Info->DefBB) {
|
||||
Info->DefBB = NewDefBB;
|
||||
Changed = true;
|
||||
}
|
||||
}
|
||||
} while (Changed);
|
||||
}
|
||||
|
||||
/// FindAvailableVal - If this block requires a PHI, first check if an
|
||||
/// existing PHI matches the PHI placement and reaching definitions computed
|
||||
/// earlier, and if not, create a new PHI. Visit all the block's
|
||||
/// predecessors to calculate the available value for each one and fill in
|
||||
/// the incoming values for a new PHI.
|
||||
void FindAvailableVals(BlockListTy *BlockList) {
|
||||
// Go through the worklist in forward order (i.e., backward through the CFG)
|
||||
// and check if existing PHIs can be used. If not, create empty PHIs where
|
||||
// they are needed.
|
||||
for (typename BlockListTy::iterator I = BlockList->begin(),
|
||||
E = BlockList->end(); I != E; ++I) {
|
||||
BBInfo *Info = *I;
|
||||
// Check if there needs to be a PHI in BB.
|
||||
if (Info->DefBB != Info)
|
||||
continue;
|
||||
|
||||
// Look for an existing PHI.
|
||||
FindExistingPHI(Info->BB, BlockList);
|
||||
if (Info->AvailableVal)
|
||||
continue;
|
||||
|
||||
ValT PHI = Traits::CreateEmptyPHI(Info->BB, Info->NumPreds, Updater);
|
||||
Info->AvailableVal = PHI;
|
||||
(*AvailableVals)[Info->BB] = PHI;
|
||||
}
|
||||
|
||||
// Now go back through the worklist in reverse order to fill in the
|
||||
// arguments for any new PHIs added in the forward traversal.
|
||||
for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
|
||||
E = BlockList->rend(); I != E; ++I) {
|
||||
BBInfo *Info = *I;
|
||||
|
||||
if (Info->DefBB != Info) {
|
||||
// Record the available value at join nodes to speed up subsequent
|
||||
// uses of this SSAUpdater for the same value.
|
||||
if (Info->NumPreds > 1)
|
||||
(*AvailableVals)[Info->BB] = Info->DefBB->AvailableVal;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Check if this block contains a newly added PHI.
|
||||
PhiT *PHI = Traits::ValueIsNewPHI(Info->AvailableVal, Updater);
|
||||
if (!PHI)
|
||||
continue;
|
||||
|
||||
// Iterate through the block's predecessors.
|
||||
for (unsigned p = 0; p != Info->NumPreds; ++p) {
|
||||
BBInfo *PredInfo = Info->Preds[p];
|
||||
BlkT *Pred = PredInfo->BB;
|
||||
// Skip to the nearest preceding definition.
|
||||
if (PredInfo->DefBB != PredInfo)
|
||||
PredInfo = PredInfo->DefBB;
|
||||
Traits::AddPHIOperand(PHI, PredInfo->AvailableVal, Pred);
|
||||
}
|
||||
|
||||
DEBUG(dbgs() << " Inserted PHI: " << *PHI << "\n");
|
||||
|
||||
// If the client wants to know about all new instructions, tell it.
|
||||
if (InsertedPHIs) InsertedPHIs->push_back(PHI);
|
||||
}
|
||||
}
|
||||
|
||||
/// FindExistingPHI - Look through the PHI nodes in a block to see if any of
|
||||
/// them match what is needed.
|
||||
void FindExistingPHI(BlkT *BB, BlockListTy *BlockList) {
|
||||
for (typename BlkT::iterator BBI = BB->begin(), BBE = BB->end();
|
||||
BBI != BBE; ++BBI) {
|
||||
PhiT *SomePHI = Traits::InstrIsPHI(BBI);
|
||||
if (!SomePHI)
|
||||
break;
|
||||
if (CheckIfPHIMatches(SomePHI)) {
|
||||
RecordMatchingPHI(SomePHI);
|
||||
break;
|
||||
}
|
||||
// Match failed: clear all the PHITag values.
|
||||
for (typename BlockListTy::iterator I = BlockList->begin(),
|
||||
E = BlockList->end(); I != E; ++I)
|
||||
(*I)->PHITag = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/// CheckIfPHIMatches - Check if a PHI node matches the placement and values
|
||||
/// in the BBMap.
|
||||
bool CheckIfPHIMatches(PhiT *PHI) {
|
||||
SmallVector<PhiT*, 20> WorkList;
|
||||
WorkList.push_back(PHI);
|
||||
|
||||
// Mark that the block containing this PHI has been visited.
|
||||
BBMap[PHI->getParent()]->PHITag = PHI;
|
||||
|
||||
while (!WorkList.empty()) {
|
||||
PHI = WorkList.pop_back_val();
|
||||
|
||||
// Iterate through the PHI's incoming values.
|
||||
for (typename Traits::PHI_iterator I = Traits::PHI_begin(PHI),
|
||||
E = Traits::PHI_end(PHI); I != E; ++I) {
|
||||
ValT IncomingVal = I.getIncomingValue();
|
||||
BBInfo *PredInfo = BBMap[I.getIncomingBlock()];
|
||||
// Skip to the nearest preceding definition.
|
||||
if (PredInfo->DefBB != PredInfo)
|
||||
PredInfo = PredInfo->DefBB;
|
||||
|
||||
// Check if it matches the expected value.
|
||||
if (PredInfo->AvailableVal) {
|
||||
if (IncomingVal == PredInfo->AvailableVal)
|
||||
continue;
|
||||
return false;
|
||||
}
|
||||
|
||||
// Check if the value is a PHI in the correct block.
|
||||
PhiT *IncomingPHIVal = Traits::ValueIsPHI(IncomingVal, Updater);
|
||||
if (!IncomingPHIVal || IncomingPHIVal->getParent() != PredInfo->BB)
|
||||
return false;
|
||||
|
||||
// If this block has already been visited, check if this PHI matches.
|
||||
if (PredInfo->PHITag) {
|
||||
if (IncomingPHIVal == PredInfo->PHITag)
|
||||
continue;
|
||||
return false;
|
||||
}
|
||||
PredInfo->PHITag = IncomingPHIVal;
|
||||
|
||||
WorkList.push_back(IncomingPHIVal);
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/// RecordMatchingPHI - For a PHI node that matches, record it and its input
|
||||
/// PHIs in both the BBMap and the AvailableVals mapping.
|
||||
void RecordMatchingPHI(PhiT *PHI) {
|
||||
SmallVector<PhiT*, 20> WorkList;
|
||||
WorkList.push_back(PHI);
|
||||
|
||||
// Record this PHI.
|
||||
BlkT *BB = PHI->getParent();
|
||||
ValT PHIVal = Traits::GetPHIValue(PHI);
|
||||
(*AvailableVals)[BB] = PHIVal;
|
||||
BBMap[BB]->AvailableVal = PHIVal;
|
||||
|
||||
while (!WorkList.empty()) {
|
||||
PHI = WorkList.pop_back_val();
|
||||
|
||||
// Iterate through the PHI's incoming values.
|
||||
for (typename Traits::PHI_iterator I = Traits::PHI_begin(PHI),
|
||||
E = Traits::PHI_end(PHI); I != E; ++I) {
|
||||
ValT IncomingVal = I.getIncomingValue();
|
||||
PhiT *IncomingPHI = Traits::ValueIsPHI(IncomingVal, Updater);
|
||||
if (!IncomingPHI) continue;
|
||||
BB = IncomingPHI->getParent();
|
||||
BBInfo *Info = BBMap[BB];
|
||||
if (!Info || Info->AvailableVal)
|
||||
continue;
|
||||
|
||||
// Record the PHI and add it to the worklist.
|
||||
(*AvailableVals)[BB] = IncomingVal;
|
||||
Info->AvailableVal = IncomingVal;
|
||||
WorkList.push_back(IncomingPHI);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // End llvm namespace
|
||||
|
||||
#endif
|
|
@ -26,39 +26,17 @@
|
|||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Support/ErrorHandling.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
#include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
|
||||
using namespace llvm;
|
||||
|
||||
/// BBInfo - Per-basic block information used internally by MachineSSAUpdater.
|
||||
class MachineSSAUpdater::BBInfo {
|
||||
public:
|
||||
MachineBasicBlock *BB; // Back-pointer to the corresponding block.
|
||||
unsigned AvailableVal; // Value to use in this block.
|
||||
BBInfo *DefBB; // Block that defines the available value.
|
||||
int BlkNum; // Postorder number.
|
||||
BBInfo *IDom; // Immediate dominator.
|
||||
unsigned NumPreds; // Number of predecessor blocks.
|
||||
BBInfo **Preds; // Array[NumPreds] of predecessor blocks.
|
||||
MachineInstr *PHITag; // Marker for existing PHIs that match.
|
||||
|
||||
BBInfo(MachineBasicBlock *ThisBB, unsigned V)
|
||||
: BB(ThisBB), AvailableVal(V), DefBB(V ? this : 0), BlkNum(0), IDom(0),
|
||||
NumPreds(0), Preds(0), PHITag(0) { }
|
||||
};
|
||||
|
||||
typedef DenseMap<MachineBasicBlock*, MachineSSAUpdater::BBInfo*> BBMapTy;
|
||||
|
||||
typedef DenseMap<MachineBasicBlock*, unsigned> AvailableValsTy;
|
||||
static AvailableValsTy &getAvailableVals(void *AV) {
|
||||
return *static_cast<AvailableValsTy*>(AV);
|
||||
}
|
||||
|
||||
static BBMapTy *getBBMap(void *BM) {
|
||||
return static_cast<BBMapTy*>(BM);
|
||||
}
|
||||
|
||||
MachineSSAUpdater::MachineSSAUpdater(MachineFunction &MF,
|
||||
SmallVectorImpl<MachineInstr*> *NewPHI)
|
||||
: AV(0), BM(0), InsertedPHIs(NewPHI) {
|
||||
: AV(0), InsertedPHIs(NewPHI) {
|
||||
TII = MF.getTarget().getInstrInfo();
|
||||
MRI = &MF.getRegInfo();
|
||||
}
|
||||
|
@ -134,7 +112,8 @@ static
|
|||
MachineInstr *InsertNewDef(unsigned Opcode,
|
||||
MachineBasicBlock *BB, MachineBasicBlock::iterator I,
|
||||
const TargetRegisterClass *RC,
|
||||
MachineRegisterInfo *MRI, const TargetInstrInfo *TII) {
|
||||
MachineRegisterInfo *MRI,
|
||||
const TargetInstrInfo *TII) {
|
||||
unsigned NewVR = MRI->createVirtualRegister(RC);
|
||||
return BuildMI(*BB, I, DebugLoc(), TII->get(Opcode), NewVR);
|
||||
}
|
||||
|
@ -263,6 +242,122 @@ void MachineSSAUpdater::ReplaceRegWith(unsigned OldReg, unsigned NewReg) {
|
|||
I->second = NewReg;
|
||||
}
|
||||
|
||||
/// MachinePHIiter - Iterator for PHI operands. This is used for the
|
||||
/// PHI_iterator in the SSAUpdaterImpl template.
|
||||
namespace {
|
||||
class MachinePHIiter {
|
||||
private:
|
||||
MachineInstr *PHI;
|
||||
unsigned idx;
|
||||
|
||||
public:
|
||||
explicit MachinePHIiter(MachineInstr *P) // begin iterator
|
||||
: PHI(P), idx(1) {}
|
||||
MachinePHIiter(MachineInstr *P, bool) // end iterator
|
||||
: PHI(P), idx(PHI->getNumOperands()) {}
|
||||
|
||||
MachinePHIiter &operator++() { idx += 2; return *this; }
|
||||
bool operator==(const MachinePHIiter& x) const { return idx == x.idx; }
|
||||
bool operator!=(const MachinePHIiter& x) const { return !operator==(x); }
|
||||
unsigned getIncomingValue() { return PHI->getOperand(idx).getReg(); }
|
||||
MachineBasicBlock *getIncomingBlock() {
|
||||
return PHI->getOperand(idx+1).getMBB();
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
/// SSAUpdaterTraits<MachineSSAUpdater> - Traits for the SSAUpdaterImpl
|
||||
/// template, specialized for MachineSSAUpdater.
|
||||
namespace llvm {
|
||||
template<>
|
||||
class SSAUpdaterTraits<MachineSSAUpdater> {
|
||||
public:
|
||||
typedef MachineBasicBlock BlkT;
|
||||
typedef unsigned ValT;
|
||||
typedef MachineInstr PhiT;
|
||||
|
||||
typedef MachineBasicBlock::succ_iterator BlkSucc_iterator;
|
||||
static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
|
||||
static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
|
||||
|
||||
typedef MachinePHIiter PHI_iterator;
|
||||
static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
|
||||
static inline PHI_iterator PHI_end(PhiT *PHI) {
|
||||
return PHI_iterator(PHI, true);
|
||||
}
|
||||
|
||||
/// FindPredecessorBlocks - Put the predecessors of BB into the Preds
|
||||
/// vector.
|
||||
static void FindPredecessorBlocks(MachineBasicBlock *BB,
|
||||
SmallVectorImpl<MachineBasicBlock*> *Preds){
|
||||
for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
|
||||
E = BB->pred_end(); PI != E; ++PI)
|
||||
Preds->push_back(*PI);
|
||||
}
|
||||
|
||||
/// GetUndefVal - Create an IMPLICIT_DEF instruction with a new register.
|
||||
/// Add it into the specified block and return the register.
|
||||
static unsigned GetUndefVal(MachineBasicBlock *BB,
|
||||
MachineSSAUpdater *Updater) {
|
||||
// Insert an implicit_def to represent an undef value.
|
||||
MachineInstr *NewDef = InsertNewDef(TargetOpcode::IMPLICIT_DEF,
|
||||
BB, BB->getFirstTerminator(),
|
||||
Updater->VRC, Updater->MRI,
|
||||
Updater->TII);
|
||||
return NewDef->getOperand(0).getReg();
|
||||
}
|
||||
|
||||
/// CreateEmptyPHI - Create a PHI instruction that defines a new register.
|
||||
/// Add it into the specified block and return the register.
|
||||
static unsigned CreateEmptyPHI(MachineBasicBlock *BB, unsigned NumPreds,
|
||||
MachineSSAUpdater *Updater) {
|
||||
MachineBasicBlock::iterator Loc = BB->empty() ? BB->end() : BB->front();
|
||||
MachineInstr *PHI = InsertNewDef(TargetOpcode::PHI, BB, Loc,
|
||||
Updater->VRC, Updater->MRI,
|
||||
Updater->TII);
|
||||
return PHI->getOperand(0).getReg();
|
||||
}
|
||||
|
||||
/// AddPHIOperand - Add the specified value as an operand of the PHI for
|
||||
/// the specified predecessor block.
|
||||
static void AddPHIOperand(MachineInstr *PHI, unsigned Val,
|
||||
MachineBasicBlock *Pred) {
|
||||
PHI->addOperand(MachineOperand::CreateReg(Val, false));
|
||||
PHI->addOperand(MachineOperand::CreateMBB(Pred));
|
||||
}
|
||||
|
||||
/// InstrIsPHI - Check if an instruction is a PHI.
|
||||
///
|
||||
static MachineInstr *InstrIsPHI(MachineInstr *I) {
|
||||
if (I->isPHI())
|
||||
return I;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// ValueIsPHI - Check if the instruction that defines the specified register
|
||||
/// is a PHI instruction.
|
||||
static MachineInstr *ValueIsPHI(unsigned Val, MachineSSAUpdater *Updater) {
|
||||
return InstrIsPHI(Updater->MRI->getVRegDef(Val));
|
||||
}
|
||||
|
||||
/// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
|
||||
/// operands, i.e., it was just added.
|
||||
static MachineInstr *ValueIsNewPHI(unsigned Val, MachineSSAUpdater *Updater) {
|
||||
MachineInstr *PHI = ValueIsPHI(Val, Updater);
|
||||
if (PHI && PHI->getNumOperands() <= 1)
|
||||
return PHI;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// GetPHIValue - For the specified PHI instruction, return the register
|
||||
/// that it defines.
|
||||
static unsigned GetPHIValue(MachineInstr *PHI) {
|
||||
return PHI->getOperand(0).getReg();
|
||||
}
|
||||
};
|
||||
|
||||
} // End llvm namespace
|
||||
|
||||
/// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
|
||||
/// for the specified BB and if so, return it. If not, construct SSA form by
|
||||
/// first calculating the required placement of PHIs and then inserting new
|
||||
|
@ -272,429 +367,6 @@ unsigned MachineSSAUpdater::GetValueAtEndOfBlockInternal(MachineBasicBlock *BB){
|
|||
if (unsigned V = AvailableVals[BB])
|
||||
return V;
|
||||
|
||||
// Pool allocation used internally by GetValueAtEndOfBlock.
|
||||
BumpPtrAllocator Allocator;
|
||||
BBMapTy BBMapObj;
|
||||
BM = &BBMapObj;
|
||||
|
||||
SmallVector<BBInfo*, 100> BlockList;
|
||||
BuildBlockList(BB, &BlockList, &Allocator);
|
||||
|
||||
// Special case: bail out if BB is unreachable.
|
||||
if (BlockList.size() == 0) {
|
||||
BM = 0;
|
||||
// Insert an implicit_def to represent an undef value.
|
||||
MachineInstr *NewDef = InsertNewDef(TargetOpcode::IMPLICIT_DEF,
|
||||
BB, BB->getFirstTerminator(),
|
||||
VRC, MRI, TII);
|
||||
unsigned V = NewDef->getOperand(0).getReg();
|
||||
AvailableVals[BB] = V;
|
||||
return V;
|
||||
}
|
||||
|
||||
FindDominators(&BlockList);
|
||||
FindPHIPlacement(&BlockList);
|
||||
FindAvailableVals(&BlockList);
|
||||
|
||||
BM = 0;
|
||||
return BBMapObj[BB]->DefBB->AvailableVal;
|
||||
}
|
||||
|
||||
/// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
|
||||
/// vector, set Info->NumPreds, and allocate space in Info->Preds.
|
||||
static void FindPredecessorBlocks(MachineSSAUpdater::BBInfo *Info,
|
||||
SmallVectorImpl<MachineBasicBlock*> *Preds,
|
||||
BumpPtrAllocator *Allocator) {
|
||||
MachineBasicBlock *BB = Info->BB;
|
||||
for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
|
||||
E = BB->pred_end(); PI != E; ++PI)
|
||||
Preds->push_back(*PI);
|
||||
|
||||
Info->NumPreds = Preds->size();
|
||||
Info->Preds = static_cast<MachineSSAUpdater::BBInfo**>
|
||||
(Allocator->Allocate(Info->NumPreds * sizeof(MachineSSAUpdater::BBInfo*),
|
||||
AlignOf<MachineSSAUpdater::BBInfo*>::Alignment));
|
||||
}
|
||||
|
||||
/// BuildBlockList - Starting from the specified basic block, traverse back
|
||||
/// through its predecessors until reaching blocks with known values. Create
|
||||
/// BBInfo structures for the blocks and append them to the block list.
|
||||
void MachineSSAUpdater::BuildBlockList(MachineBasicBlock *BB,
|
||||
BlockListTy *BlockList,
|
||||
BumpPtrAllocator *Allocator) {
|
||||
AvailableValsTy &AvailableVals = getAvailableVals(AV);
|
||||
BBMapTy *BBMap = getBBMap(BM);
|
||||
SmallVector<BBInfo*, 10> RootList;
|
||||
SmallVector<BBInfo*, 64> WorkList;
|
||||
|
||||
BBInfo *Info = new (*Allocator) BBInfo(BB, 0);
|
||||
(*BBMap)[BB] = Info;
|
||||
WorkList.push_back(Info);
|
||||
|
||||
// Search backward from BB, creating BBInfos along the way and stopping when
|
||||
// reaching blocks that define the value. Record those defining blocks on
|
||||
// the RootList.
|
||||
SmallVector<MachineBasicBlock*, 10> Preds;
|
||||
while (!WorkList.empty()) {
|
||||
Info = WorkList.pop_back_val();
|
||||
Preds.clear();
|
||||
FindPredecessorBlocks(Info, &Preds, Allocator);
|
||||
|
||||
// Treat an unreachable predecessor as a definition with 'undef'.
|
||||
if (Info->NumPreds == 0) {
|
||||
// Insert an implicit_def to represent an undef value.
|
||||
MachineInstr *NewDef = InsertNewDef(TargetOpcode::IMPLICIT_DEF,
|
||||
Info->BB,
|
||||
Info->BB->getFirstTerminator(),
|
||||
VRC, MRI, TII);
|
||||
Info->AvailableVal = NewDef->getOperand(0).getReg();
|
||||
Info->DefBB = Info;
|
||||
RootList.push_back(Info);
|
||||
continue;
|
||||
}
|
||||
|
||||
for (unsigned p = 0; p != Info->NumPreds; ++p) {
|
||||
MachineBasicBlock *Pred = Preds[p];
|
||||
// Check if BBMap already has a BBInfo for the predecessor block.
|
||||
BBMapTy::value_type &BBMapBucket = BBMap->FindAndConstruct(Pred);
|
||||
if (BBMapBucket.second) {
|
||||
Info->Preds[p] = BBMapBucket.second;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Create a new BBInfo for the predecessor.
|
||||
unsigned PredVal = AvailableVals.lookup(Pred);
|
||||
BBInfo *PredInfo = new (*Allocator) BBInfo(Pred, PredVal);
|
||||
BBMapBucket.second = PredInfo;
|
||||
Info->Preds[p] = PredInfo;
|
||||
|
||||
if (PredInfo->AvailableVal) {
|
||||
RootList.push_back(PredInfo);
|
||||
continue;
|
||||
}
|
||||
WorkList.push_back(PredInfo);
|
||||
}
|
||||
}
|
||||
|
||||
// Now that we know what blocks are backwards-reachable from the starting
|
||||
// block, do a forward depth-first traversal to assign postorder numbers
|
||||
// to those blocks.
|
||||
BBInfo *PseudoEntry = new (*Allocator) BBInfo(0, 0);
|
||||
unsigned BlkNum = 1;
|
||||
|
||||
// Initialize the worklist with the roots from the backward traversal.
|
||||
while (!RootList.empty()) {
|
||||
Info = RootList.pop_back_val();
|
||||
Info->IDom = PseudoEntry;
|
||||
Info->BlkNum = -1;
|
||||
WorkList.push_back(Info);
|
||||
}
|
||||
|
||||
while (!WorkList.empty()) {
|
||||
Info = WorkList.back();
|
||||
|
||||
if (Info->BlkNum == -2) {
|
||||
// All the successors have been handled; assign the postorder number.
|
||||
Info->BlkNum = BlkNum++;
|
||||
// If not a root, put it on the BlockList.
|
||||
if (!Info->AvailableVal)
|
||||
BlockList->push_back(Info);
|
||||
WorkList.pop_back();
|
||||
continue;
|
||||
}
|
||||
|
||||
// Leave this entry on the worklist, but set its BlkNum to mark that its
|
||||
// successors have been put on the worklist. When it returns to the top
|
||||
// the list, after handling its successors, it will be assigned a number.
|
||||
Info->BlkNum = -2;
|
||||
|
||||
// Add unvisited successors to the work list.
|
||||
for (MachineBasicBlock::succ_iterator SI = Info->BB->succ_begin(),
|
||||
E = Info->BB->succ_end(); SI != E; ++SI) {
|
||||
BBInfo *SuccInfo = (*BBMap)[*SI];
|
||||
if (!SuccInfo || SuccInfo->BlkNum)
|
||||
continue;
|
||||
SuccInfo->BlkNum = -1;
|
||||
WorkList.push_back(SuccInfo);
|
||||
}
|
||||
}
|
||||
PseudoEntry->BlkNum = BlkNum;
|
||||
}
|
||||
|
||||
/// IntersectDominators - This is the dataflow lattice "meet" operation for
|
||||
/// finding dominators. Given two basic blocks, it walks up the dominator
|
||||
/// tree until it finds a common dominator of both. It uses the postorder
|
||||
/// number of the blocks to determine how to do that.
|
||||
static MachineSSAUpdater::BBInfo *
|
||||
IntersectDominators(MachineSSAUpdater::BBInfo *Blk1,
|
||||
MachineSSAUpdater::BBInfo *Blk2) {
|
||||
while (Blk1 != Blk2) {
|
||||
while (Blk1->BlkNum < Blk2->BlkNum) {
|
||||
Blk1 = Blk1->IDom;
|
||||
if (!Blk1)
|
||||
return Blk2;
|
||||
}
|
||||
while (Blk2->BlkNum < Blk1->BlkNum) {
|
||||
Blk2 = Blk2->IDom;
|
||||
if (!Blk2)
|
||||
return Blk1;
|
||||
}
|
||||
}
|
||||
return Blk1;
|
||||
}
|
||||
|
||||
/// FindDominators - Calculate the dominator tree for the subset of the CFG
|
||||
/// corresponding to the basic blocks on the BlockList. This uses the
|
||||
/// algorithm from: "A Simple, Fast Dominance Algorithm" by Cooper, Harvey and
|
||||
/// Kennedy, published in Software--Practice and Experience, 2001, 4:1-10.
|
||||
/// Because the CFG subset does not include any edges leading into blocks that
|
||||
/// define the value, the results are not the usual dominator tree. The CFG
|
||||
/// subset has a single pseudo-entry node with edges to a set of root nodes
|
||||
/// for blocks that define the value. The dominators for this subset CFG are
|
||||
/// not the standard dominators but they are adequate for placing PHIs within
|
||||
/// the subset CFG.
|
||||
void MachineSSAUpdater::FindDominators(BlockListTy *BlockList) {
|
||||
bool Changed;
|
||||
do {
|
||||
Changed = false;
|
||||
// Iterate over the list in reverse order, i.e., forward on CFG edges.
|
||||
for (BlockListTy::reverse_iterator I = BlockList->rbegin(),
|
||||
E = BlockList->rend(); I != E; ++I) {
|
||||
BBInfo *Info = *I;
|
||||
|
||||
// Start with the first predecessor.
|
||||
assert(Info->NumPreds > 0 && "unreachable block");
|
||||
BBInfo *NewIDom = Info->Preds[0];
|
||||
|
||||
// Iterate through the block's other predecessors.
|
||||
for (unsigned p = 1; p != Info->NumPreds; ++p) {
|
||||
BBInfo *Pred = Info->Preds[p];
|
||||
NewIDom = IntersectDominators(NewIDom, Pred);
|
||||
}
|
||||
|
||||
// Check if the IDom value has changed.
|
||||
if (NewIDom != Info->IDom) {
|
||||
Info->IDom = NewIDom;
|
||||
Changed = true;
|
||||
}
|
||||
}
|
||||
} while (Changed);
|
||||
}
|
||||
|
||||
/// IsDefInDomFrontier - Search up the dominator tree from Pred to IDom for
|
||||
/// any blocks containing definitions of the value. If one is found, then the
|
||||
/// successor of Pred is in the dominance frontier for the definition, and
|
||||
/// this function returns true.
|
||||
static bool IsDefInDomFrontier(const MachineSSAUpdater::BBInfo *Pred,
|
||||
const MachineSSAUpdater::BBInfo *IDom) {
|
||||
for (; Pred != IDom; Pred = Pred->IDom) {
|
||||
if (Pred->DefBB == Pred)
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/// FindPHIPlacement - PHIs are needed in the iterated dominance frontiers of
|
||||
/// the known definitions. Iteratively add PHIs in the dom frontiers until
|
||||
/// nothing changes. Along the way, keep track of the nearest dominating
|
||||
/// definitions for non-PHI blocks.
|
||||
void MachineSSAUpdater::FindPHIPlacement(BlockListTy *BlockList) {
|
||||
bool Changed;
|
||||
do {
|
||||
Changed = false;
|
||||
// Iterate over the list in reverse order, i.e., forward on CFG edges.
|
||||
for (BlockListTy::reverse_iterator I = BlockList->rbegin(),
|
||||
E = BlockList->rend(); I != E; ++I) {
|
||||
BBInfo *Info = *I;
|
||||
|
||||
// If this block already needs a PHI, there is nothing to do here.
|
||||
if (Info->DefBB == Info)
|
||||
continue;
|
||||
|
||||
// Default to use the same def as the immediate dominator.
|
||||
BBInfo *NewDefBB = Info->IDom->DefBB;
|
||||
for (unsigned p = 0; p != Info->NumPreds; ++p) {
|
||||
if (IsDefInDomFrontier(Info->Preds[p], Info->IDom)) {
|
||||
// Need a PHI here.
|
||||
NewDefBB = Info;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Check if anything changed.
|
||||
if (NewDefBB != Info->DefBB) {
|
||||
Info->DefBB = NewDefBB;
|
||||
Changed = true;
|
||||
}
|
||||
}
|
||||
} while (Changed);
|
||||
}
|
||||
|
||||
/// FindAvailableVal - If this block requires a PHI, first check if an existing
|
||||
/// PHI matches the PHI placement and reaching definitions computed earlier,
|
||||
/// and if not, create a new PHI. Visit all the block's predecessors to
|
||||
/// calculate the available value for each one and fill in the incoming values
|
||||
/// for a new PHI.
|
||||
void MachineSSAUpdater::FindAvailableVals(BlockListTy *BlockList) {
|
||||
AvailableValsTy &AvailableVals = getAvailableVals(AV);
|
||||
|
||||
// Go through the worklist in forward order (i.e., backward through the CFG)
|
||||
// and check if existing PHIs can be used. If not, create empty PHIs where
|
||||
// they are needed.
|
||||
for (BlockListTy::iterator I = BlockList->begin(), E = BlockList->end();
|
||||
I != E; ++I) {
|
||||
BBInfo *Info = *I;
|
||||
// Check if there needs to be a PHI in BB.
|
||||
if (Info->DefBB != Info)
|
||||
continue;
|
||||
|
||||
// Look for an existing PHI.
|
||||
FindExistingPHI(Info->BB, BlockList);
|
||||
if (Info->AvailableVal)
|
||||
continue;
|
||||
|
||||
MachineBasicBlock::iterator Loc =
|
||||
Info->BB->empty() ? Info->BB->end() : Info->BB->front();
|
||||
MachineInstr *InsertedPHI = InsertNewDef(TargetOpcode::PHI, Info->BB, Loc,
|
||||
VRC, MRI, TII);
|
||||
unsigned PHI = InsertedPHI->getOperand(0).getReg();
|
||||
Info->AvailableVal = PHI;
|
||||
AvailableVals[Info->BB] = PHI;
|
||||
}
|
||||
|
||||
// Now go back through the worklist in reverse order to fill in the arguments
|
||||
// for any new PHIs added in the forward traversal.
|
||||
for (BlockListTy::reverse_iterator I = BlockList->rbegin(),
|
||||
E = BlockList->rend(); I != E; ++I) {
|
||||
BBInfo *Info = *I;
|
||||
|
||||
if (Info->DefBB != Info) {
|
||||
// Record the available value at join nodes to speed up subsequent
|
||||
// uses of this SSAUpdater for the same value.
|
||||
if (Info->NumPreds > 1)
|
||||
AvailableVals[Info->BB] = Info->DefBB->AvailableVal;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Check if this block contains a newly added PHI.
|
||||
unsigned PHI = Info->AvailableVal;
|
||||
MachineInstr *InsertedPHI = MRI->getVRegDef(PHI);
|
||||
if (!InsertedPHI->isPHI() || InsertedPHI->getNumOperands() > 1)
|
||||
continue;
|
||||
|
||||
// Iterate through the block's predecessors.
|
||||
MachineInstrBuilder MIB(InsertedPHI);
|
||||
for (unsigned p = 0; p != Info->NumPreds; ++p) {
|
||||
BBInfo *PredInfo = Info->Preds[p];
|
||||
MachineBasicBlock *Pred = PredInfo->BB;
|
||||
// Skip to the nearest preceding definition.
|
||||
if (PredInfo->DefBB != PredInfo)
|
||||
PredInfo = PredInfo->DefBB;
|
||||
MIB.addReg(PredInfo->AvailableVal).addMBB(Pred);
|
||||
}
|
||||
|
||||
DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n");
|
||||
|
||||
// If the client wants to know about all new instructions, tell it.
|
||||
if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
|
||||
}
|
||||
}
|
||||
|
||||
/// FindExistingPHI - Look through the PHI nodes in a block to see if any of
|
||||
/// them match what is needed.
|
||||
void MachineSSAUpdater::FindExistingPHI(MachineBasicBlock *BB,
|
||||
BlockListTy *BlockList) {
|
||||
for (MachineBasicBlock::iterator BBI = BB->begin(), BBE = BB->end();
|
||||
BBI != BBE && BBI->isPHI(); ++BBI) {
|
||||
if (CheckIfPHIMatches(BBI)) {
|
||||
RecordMatchingPHI(BBI);
|
||||
break;
|
||||
}
|
||||
// Match failed: clear all the PHITag values.
|
||||
for (BlockListTy::iterator I = BlockList->begin(), E = BlockList->end();
|
||||
I != E; ++I)
|
||||
(*I)->PHITag = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/// CheckIfPHIMatches - Check if a PHI node matches the placement and values
|
||||
/// in the BBMap.
|
||||
bool MachineSSAUpdater::CheckIfPHIMatches(MachineInstr *PHI) {
|
||||
BBMapTy *BBMap = getBBMap(BM);
|
||||
SmallVector<MachineInstr*, 20> WorkList;
|
||||
WorkList.push_back(PHI);
|
||||
|
||||
// Mark that the block containing this PHI has been visited.
|
||||
(*BBMap)[PHI->getParent()]->PHITag = PHI;
|
||||
|
||||
while (!WorkList.empty()) {
|
||||
PHI = WorkList.pop_back_val();
|
||||
|
||||
// Iterate through the PHI's incoming values.
|
||||
for (unsigned i = 1, e = PHI->getNumOperands(); i != e; i += 2) {
|
||||
unsigned IncomingVal = PHI->getOperand(i).getReg();
|
||||
BBInfo *PredInfo = (*BBMap)[PHI->getOperand(i+1).getMBB()];
|
||||
// Skip to the nearest preceding definition.
|
||||
if (PredInfo->DefBB != PredInfo)
|
||||
PredInfo = PredInfo->DefBB;
|
||||
|
||||
// Check if it matches the expected value.
|
||||
if (PredInfo->AvailableVal) {
|
||||
if (IncomingVal == PredInfo->AvailableVal)
|
||||
continue;
|
||||
return false;
|
||||
}
|
||||
|
||||
// Check if the value is a PHI in the correct block.
|
||||
MachineInstr *IncomingPHIVal = MRI->getVRegDef(IncomingVal);
|
||||
if (!IncomingPHIVal->isPHI() ||
|
||||
IncomingPHIVal->getParent() != PredInfo->BB)
|
||||
return false;
|
||||
|
||||
// If this block has already been visited, check if this PHI matches.
|
||||
if (PredInfo->PHITag) {
|
||||
if (IncomingPHIVal == PredInfo->PHITag)
|
||||
continue;
|
||||
return false;
|
||||
}
|
||||
PredInfo->PHITag = IncomingPHIVal;
|
||||
|
||||
WorkList.push_back(IncomingPHIVal);
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/// RecordMatchingPHI - For a PHI node that matches, record it and its input
|
||||
/// PHIs in both the BBMap and the AvailableVals mapping.
|
||||
void MachineSSAUpdater::RecordMatchingPHI(MachineInstr *PHI) {
|
||||
BBMapTy *BBMap = getBBMap(BM);
|
||||
AvailableValsTy &AvailableVals = getAvailableVals(AV);
|
||||
SmallVector<MachineInstr*, 20> WorkList;
|
||||
WorkList.push_back(PHI);
|
||||
|
||||
// Record this PHI.
|
||||
MachineBasicBlock *BB = PHI->getParent();
|
||||
AvailableVals[BB] = PHI->getOperand(0).getReg();
|
||||
(*BBMap)[BB]->AvailableVal = PHI->getOperand(0).getReg();
|
||||
|
||||
while (!WorkList.empty()) {
|
||||
PHI = WorkList.pop_back_val();
|
||||
|
||||
// Iterate through the PHI's incoming values.
|
||||
for (unsigned i = 1, e = PHI->getNumOperands(); i != e; i += 2) {
|
||||
unsigned IncomingVal = PHI->getOperand(i).getReg();
|
||||
MachineInstr *IncomingPHIVal = MRI->getVRegDef(IncomingVal);
|
||||
if (!IncomingPHIVal->isPHI()) continue;
|
||||
BB = IncomingPHIVal->getParent();
|
||||
BBInfo *Info = (*BBMap)[BB];
|
||||
if (!Info || Info->AvailableVal)
|
||||
continue;
|
||||
|
||||
// Record the PHI and add it to the worklist.
|
||||
AvailableVals[BB] = IncomingVal;
|
||||
Info->AvailableVal = IncomingVal;
|
||||
WorkList.push_back(IncomingPHIVal);
|
||||
}
|
||||
}
|
||||
SSAUpdaterImpl<MachineSSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
|
||||
return Impl.GetValue(BB);
|
||||
}
|
||||
|
|
|
@ -12,7 +12,6 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#define DEBUG_TYPE "ssaupdater"
|
||||
#include "llvm/Transforms/Utils/SSAUpdater.h"
|
||||
#include "llvm/Instructions.h"
|
||||
#include "llvm/ADT/DenseMap.h"
|
||||
#include "llvm/Support/AlignOf.h"
|
||||
|
@ -20,40 +19,17 @@
|
|||
#include "llvm/Support/CFG.h"
|
||||
#include "llvm/Support/Debug.h"
|
||||
#include "llvm/Support/raw_ostream.h"
|
||||
#include "llvm/Transforms/Utils/SSAUpdater.h"
|
||||
#include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
|
||||
using namespace llvm;
|
||||
|
||||
/// BBInfo - Per-basic block information used internally by SSAUpdater.
|
||||
/// The predecessors of each block are cached here since pred_iterator is
|
||||
/// slow and we need to iterate over the blocks at least a few times.
|
||||
class SSAUpdater::BBInfo {
|
||||
public:
|
||||
BasicBlock *BB; // Back-pointer to the corresponding block.
|
||||
Value *AvailableVal; // Value to use in this block.
|
||||
BBInfo *DefBB; // Block that defines the available value.
|
||||
int BlkNum; // Postorder number.
|
||||
BBInfo *IDom; // Immediate dominator.
|
||||
unsigned NumPreds; // Number of predecessor blocks.
|
||||
BBInfo **Preds; // Array[NumPreds] of predecessor blocks.
|
||||
PHINode *PHITag; // Marker for existing PHIs that match.
|
||||
|
||||
BBInfo(BasicBlock *ThisBB, Value *V)
|
||||
: BB(ThisBB), AvailableVal(V), DefBB(V ? this : 0), BlkNum(0), IDom(0),
|
||||
NumPreds(0), Preds(0), PHITag(0) { }
|
||||
};
|
||||
|
||||
typedef DenseMap<BasicBlock*, SSAUpdater::BBInfo*> BBMapTy;
|
||||
|
||||
typedef DenseMap<BasicBlock*, Value*> AvailableValsTy;
|
||||
static AvailableValsTy &getAvailableVals(void *AV) {
|
||||
return *static_cast<AvailableValsTy*>(AV);
|
||||
}
|
||||
|
||||
static BBMapTy *getBBMap(void *BM) {
|
||||
return static_cast<BBMapTy*>(BM);
|
||||
}
|
||||
|
||||
SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI)
|
||||
: AV(0), PrototypeValue(0), BM(0), InsertedPHIs(NewPHI) {}
|
||||
: AV(0), PrototypeValue(0), InsertedPHIs(NewPHI) {}
|
||||
|
||||
SSAUpdater::~SSAUpdater() {
|
||||
delete &getAvailableVals(AV);
|
||||
|
@ -105,9 +81,7 @@ static bool IsEquivalentPHI(PHINode *PHI,
|
|||
/// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
|
||||
/// live at the end of the specified block.
|
||||
Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
|
||||
assert(BM == 0 && "Unexpected Internal State");
|
||||
Value *Res = GetValueAtEndOfBlockInternal(BB);
|
||||
assert(BM == 0 && "Unexpected Internal State");
|
||||
return Res;
|
||||
}
|
||||
|
||||
|
@ -231,6 +205,117 @@ void SSAUpdater::RewriteUse(Use &U) {
|
|||
U.set(V);
|
||||
}
|
||||
|
||||
/// PHIiter - Iterator for PHI operands. This is used for the PHI_iterator
|
||||
/// in the SSAUpdaterImpl template.
|
||||
namespace {
|
||||
class PHIiter {
|
||||
private:
|
||||
PHINode *PHI;
|
||||
unsigned idx;
|
||||
|
||||
public:
|
||||
explicit PHIiter(PHINode *P) // begin iterator
|
||||
: PHI(P), idx(0) {}
|
||||
PHIiter(PHINode *P, bool) // end iterator
|
||||
: PHI(P), idx(PHI->getNumIncomingValues()) {}
|
||||
|
||||
PHIiter &operator++() { ++idx; return *this; }
|
||||
bool operator==(const PHIiter& x) const { return idx == x.idx; }
|
||||
bool operator!=(const PHIiter& x) const { return !operator==(x); }
|
||||
Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
|
||||
BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
|
||||
};
|
||||
}
|
||||
|
||||
/// SSAUpdaterTraits<SSAUpdater> - Traits for the SSAUpdaterImpl template,
|
||||
/// specialized for SSAUpdater.
|
||||
namespace llvm {
|
||||
template<>
|
||||
class SSAUpdaterTraits<SSAUpdater> {
|
||||
public:
|
||||
typedef BasicBlock BlkT;
|
||||
typedef Value *ValT;
|
||||
typedef PHINode PhiT;
|
||||
|
||||
typedef succ_iterator BlkSucc_iterator;
|
||||
static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
|
||||
static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
|
||||
|
||||
typedef PHIiter PHI_iterator;
|
||||
static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
|
||||
static inline PHI_iterator PHI_end(PhiT *PHI) {
|
||||
return PHI_iterator(PHI, true);
|
||||
}
|
||||
|
||||
/// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
|
||||
/// vector, set Info->NumPreds, and allocate space in Info->Preds.
|
||||
static void FindPredecessorBlocks(BasicBlock *BB,
|
||||
SmallVectorImpl<BasicBlock*> *Preds) {
|
||||
// We can get our predecessor info by walking the pred_iterator list,
|
||||
// but it is relatively slow. If we already have PHI nodes in this
|
||||
// block, walk one of them to get the predecessor list instead.
|
||||
if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
|
||||
for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI)
|
||||
Preds->push_back(SomePhi->getIncomingBlock(PI));
|
||||
} else {
|
||||
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
|
||||
Preds->push_back(*PI);
|
||||
}
|
||||
}
|
||||
|
||||
/// GetUndefVal - Get an undefined value of the same type as the value
|
||||
/// being handled.
|
||||
static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
|
||||
return UndefValue::get(Updater->PrototypeValue->getType());
|
||||
}
|
||||
|
||||
/// CreateEmptyPHI - Create a new PHI instruction in the specified block.
|
||||
/// Reserve space for the operands but do not fill them in yet.
|
||||
static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
|
||||
SSAUpdater *Updater) {
|
||||
PHINode *PHI = PHINode::Create(Updater->PrototypeValue->getType(),
|
||||
Updater->PrototypeValue->getName(),
|
||||
&BB->front());
|
||||
PHI->reserveOperandSpace(NumPreds);
|
||||
return PHI;
|
||||
}
|
||||
|
||||
/// AddPHIOperand - Add the specified value as an operand of the PHI for
|
||||
/// the specified predecessor block.
|
||||
static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
|
||||
PHI->addIncoming(Val, Pred);
|
||||
}
|
||||
|
||||
/// InstrIsPHI - Check if an instruction is a PHI.
|
||||
///
|
||||
static PHINode *InstrIsPHI(Instruction *I) {
|
||||
return dyn_cast<PHINode>(I);
|
||||
}
|
||||
|
||||
/// ValueIsPHI - Check if a value is a PHI.
|
||||
///
|
||||
static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
|
||||
return dyn_cast<PHINode>(Val);
|
||||
}
|
||||
|
||||
/// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
|
||||
/// operands, i.e., it was just added.
|
||||
static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
|
||||
PHINode *PHI = ValueIsPHI(Val, Updater);
|
||||
if (PHI && PHI->getNumIncomingValues() == 0)
|
||||
return PHI;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/// GetPHIValue - For the specified PHI instruction, return the value
|
||||
/// that it defines.
|
||||
static Value *GetPHIValue(PHINode *PHI) {
|
||||
return PHI;
|
||||
}
|
||||
};
|
||||
|
||||
} // End llvm namespace
|
||||
|
||||
/// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
|
||||
/// for the specified BB and if so, return it. If not, construct SSA form by
|
||||
/// first calculating the required placement of PHIs and then inserting new
|
||||
|
@ -240,418 +325,6 @@ Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
|
|||
if (Value *V = AvailableVals[BB])
|
||||
return V;
|
||||
|
||||
// Pool allocation used internally by GetValueAtEndOfBlock.
|
||||
BumpPtrAllocator Allocator;
|
||||
BBMapTy BBMapObj;
|
||||
BM = &BBMapObj;
|
||||
|
||||
SmallVector<BBInfo*, 100> BlockList;
|
||||
BuildBlockList(BB, &BlockList, &Allocator);
|
||||
|
||||
// Special case: bail out if BB is unreachable.
|
||||
if (BlockList.size() == 0) {
|
||||
BM = 0;
|
||||
return UndefValue::get(PrototypeValue->getType());
|
||||
}
|
||||
|
||||
FindDominators(&BlockList);
|
||||
FindPHIPlacement(&BlockList);
|
||||
FindAvailableVals(&BlockList);
|
||||
|
||||
BM = 0;
|
||||
return BBMapObj[BB]->DefBB->AvailableVal;
|
||||
}
|
||||
|
||||
/// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
|
||||
/// vector, set Info->NumPreds, and allocate space in Info->Preds.
|
||||
static void FindPredecessorBlocks(SSAUpdater::BBInfo *Info,
|
||||
SmallVectorImpl<BasicBlock*> *Preds,
|
||||
BumpPtrAllocator *Allocator) {
|
||||
// We can get our predecessor info by walking the pred_iterator list,
|
||||
// but it is relatively slow. If we already have PHI nodes in this
|
||||
// block, walk one of them to get the predecessor list instead.
|
||||
BasicBlock *BB = Info->BB;
|
||||
if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
|
||||
for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI)
|
||||
Preds->push_back(SomePhi->getIncomingBlock(PI));
|
||||
} else {
|
||||
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
|
||||
Preds->push_back(*PI);
|
||||
}
|
||||
|
||||
Info->NumPreds = Preds->size();
|
||||
Info->Preds = static_cast<SSAUpdater::BBInfo**>
|
||||
(Allocator->Allocate(Info->NumPreds * sizeof(SSAUpdater::BBInfo*),
|
||||
AlignOf<SSAUpdater::BBInfo*>::Alignment));
|
||||
}
|
||||
|
||||
/// BuildBlockList - Starting from the specified basic block, traverse back
|
||||
/// through its predecessors until reaching blocks with known values. Create
|
||||
/// BBInfo structures for the blocks and append them to the block list.
|
||||
void SSAUpdater::BuildBlockList(BasicBlock *BB, BlockListTy *BlockList,
|
||||
BumpPtrAllocator *Allocator) {
|
||||
AvailableValsTy &AvailableVals = getAvailableVals(AV);
|
||||
BBMapTy *BBMap = getBBMap(BM);
|
||||
SmallVector<BBInfo*, 10> RootList;
|
||||
SmallVector<BBInfo*, 64> WorkList;
|
||||
|
||||
BBInfo *Info = new (*Allocator) BBInfo(BB, 0);
|
||||
(*BBMap)[BB] = Info;
|
||||
WorkList.push_back(Info);
|
||||
|
||||
// Search backward from BB, creating BBInfos along the way and stopping when
|
||||
// reaching blocks that define the value. Record those defining blocks on
|
||||
// the RootList.
|
||||
SmallVector<BasicBlock*, 10> Preds;
|
||||
while (!WorkList.empty()) {
|
||||
Info = WorkList.pop_back_val();
|
||||
Preds.clear();
|
||||
FindPredecessorBlocks(Info, &Preds, Allocator);
|
||||
|
||||
// Treat an unreachable predecessor as a definition with 'undef'.
|
||||
if (Info->NumPreds == 0) {
|
||||
Info->AvailableVal = UndefValue::get(PrototypeValue->getType());
|
||||
Info->DefBB = Info;
|
||||
RootList.push_back(Info);
|
||||
continue;
|
||||
}
|
||||
|
||||
for (unsigned p = 0; p != Info->NumPreds; ++p) {
|
||||
BasicBlock *Pred = Preds[p];
|
||||
// Check if BBMap already has a BBInfo for the predecessor block.
|
||||
BBMapTy::value_type &BBMapBucket = BBMap->FindAndConstruct(Pred);
|
||||
if (BBMapBucket.second) {
|
||||
Info->Preds[p] = BBMapBucket.second;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Create a new BBInfo for the predecessor.
|
||||
Value *PredVal = AvailableVals.lookup(Pred);
|
||||
BBInfo *PredInfo = new (*Allocator) BBInfo(Pred, PredVal);
|
||||
BBMapBucket.second = PredInfo;
|
||||
Info->Preds[p] = PredInfo;
|
||||
|
||||
if (PredInfo->AvailableVal) {
|
||||
RootList.push_back(PredInfo);
|
||||
continue;
|
||||
}
|
||||
WorkList.push_back(PredInfo);
|
||||
}
|
||||
}
|
||||
|
||||
// Now that we know what blocks are backwards-reachable from the starting
|
||||
// block, do a forward depth-first traversal to assign postorder numbers
|
||||
// to those blocks.
|
||||
BBInfo *PseudoEntry = new (*Allocator) BBInfo(0, 0);
|
||||
unsigned BlkNum = 1;
|
||||
|
||||
// Initialize the worklist with the roots from the backward traversal.
|
||||
while (!RootList.empty()) {
|
||||
Info = RootList.pop_back_val();
|
||||
Info->IDom = PseudoEntry;
|
||||
Info->BlkNum = -1;
|
||||
WorkList.push_back(Info);
|
||||
}
|
||||
|
||||
while (!WorkList.empty()) {
|
||||
Info = WorkList.back();
|
||||
|
||||
if (Info->BlkNum == -2) {
|
||||
// All the successors have been handled; assign the postorder number.
|
||||
Info->BlkNum = BlkNum++;
|
||||
// If not a root, put it on the BlockList.
|
||||
if (!Info->AvailableVal)
|
||||
BlockList->push_back(Info);
|
||||
WorkList.pop_back();
|
||||
continue;
|
||||
}
|
||||
|
||||
// Leave this entry on the worklist, but set its BlkNum to mark that its
|
||||
// successors have been put on the worklist. When it returns to the top
|
||||
// the list, after handling its successors, it will be assigned a number.
|
||||
Info->BlkNum = -2;
|
||||
|
||||
// Add unvisited successors to the work list.
|
||||
for (succ_iterator SI = succ_begin(Info->BB), E = succ_end(Info->BB);
|
||||
SI != E; ++SI) {
|
||||
BBInfo *SuccInfo = (*BBMap)[*SI];
|
||||
if (!SuccInfo || SuccInfo->BlkNum)
|
||||
continue;
|
||||
SuccInfo->BlkNum = -1;
|
||||
WorkList.push_back(SuccInfo);
|
||||
}
|
||||
}
|
||||
PseudoEntry->BlkNum = BlkNum;
|
||||
}
|
||||
|
||||
/// IntersectDominators - This is the dataflow lattice "meet" operation for
|
||||
/// finding dominators. Given two basic blocks, it walks up the dominator
|
||||
/// tree until it finds a common dominator of both. It uses the postorder
|
||||
/// number of the blocks to determine how to do that.
|
||||
static SSAUpdater::BBInfo *IntersectDominators(SSAUpdater::BBInfo *Blk1,
|
||||
SSAUpdater::BBInfo *Blk2) {
|
||||
while (Blk1 != Blk2) {
|
||||
while (Blk1->BlkNum < Blk2->BlkNum) {
|
||||
Blk1 = Blk1->IDom;
|
||||
if (!Blk1)
|
||||
return Blk2;
|
||||
}
|
||||
while (Blk2->BlkNum < Blk1->BlkNum) {
|
||||
Blk2 = Blk2->IDom;
|
||||
if (!Blk2)
|
||||
return Blk1;
|
||||
}
|
||||
}
|
||||
return Blk1;
|
||||
}
|
||||
|
||||
/// FindDominators - Calculate the dominator tree for the subset of the CFG
|
||||
/// corresponding to the basic blocks on the BlockList. This uses the
|
||||
/// algorithm from: "A Simple, Fast Dominance Algorithm" by Cooper, Harvey and
|
||||
/// Kennedy, published in Software--Practice and Experience, 2001, 4:1-10.
|
||||
/// Because the CFG subset does not include any edges leading into blocks that
|
||||
/// define the value, the results are not the usual dominator tree. The CFG
|
||||
/// subset has a single pseudo-entry node with edges to a set of root nodes
|
||||
/// for blocks that define the value. The dominators for this subset CFG are
|
||||
/// not the standard dominators but they are adequate for placing PHIs within
|
||||
/// the subset CFG.
|
||||
void SSAUpdater::FindDominators(BlockListTy *BlockList) {
|
||||
bool Changed;
|
||||
do {
|
||||
Changed = false;
|
||||
// Iterate over the list in reverse order, i.e., forward on CFG edges.
|
||||
for (BlockListTy::reverse_iterator I = BlockList->rbegin(),
|
||||
E = BlockList->rend(); I != E; ++I) {
|
||||
BBInfo *Info = *I;
|
||||
|
||||
// Start with the first predecessor.
|
||||
assert(Info->NumPreds > 0 && "unreachable block");
|
||||
BBInfo *NewIDom = Info->Preds[0];
|
||||
|
||||
// Iterate through the block's other predecessors.
|
||||
for (unsigned p = 1; p != Info->NumPreds; ++p) {
|
||||
BBInfo *Pred = Info->Preds[p];
|
||||
NewIDom = IntersectDominators(NewIDom, Pred);
|
||||
}
|
||||
|
||||
// Check if the IDom value has changed.
|
||||
if (NewIDom != Info->IDom) {
|
||||
Info->IDom = NewIDom;
|
||||
Changed = true;
|
||||
}
|
||||
}
|
||||
} while (Changed);
|
||||
}
|
||||
|
||||
/// IsDefInDomFrontier - Search up the dominator tree from Pred to IDom for
|
||||
/// any blocks containing definitions of the value. If one is found, then the
|
||||
/// successor of Pred is in the dominance frontier for the definition, and
|
||||
/// this function returns true.
|
||||
static bool IsDefInDomFrontier(const SSAUpdater::BBInfo *Pred,
|
||||
const SSAUpdater::BBInfo *IDom) {
|
||||
for (; Pred != IDom; Pred = Pred->IDom) {
|
||||
if (Pred->DefBB == Pred)
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/// FindPHIPlacement - PHIs are needed in the iterated dominance frontiers of
|
||||
/// the known definitions. Iteratively add PHIs in the dom frontiers until
|
||||
/// nothing changes. Along the way, keep track of the nearest dominating
|
||||
/// definitions for non-PHI blocks.
|
||||
void SSAUpdater::FindPHIPlacement(BlockListTy *BlockList) {
|
||||
bool Changed;
|
||||
do {
|
||||
Changed = false;
|
||||
// Iterate over the list in reverse order, i.e., forward on CFG edges.
|
||||
for (BlockListTy::reverse_iterator I = BlockList->rbegin(),
|
||||
E = BlockList->rend(); I != E; ++I) {
|
||||
BBInfo *Info = *I;
|
||||
|
||||
// If this block already needs a PHI, there is nothing to do here.
|
||||
if (Info->DefBB == Info)
|
||||
continue;
|
||||
|
||||
// Default to use the same def as the immediate dominator.
|
||||
BBInfo *NewDefBB = Info->IDom->DefBB;
|
||||
for (unsigned p = 0; p != Info->NumPreds; ++p) {
|
||||
if (IsDefInDomFrontier(Info->Preds[p], Info->IDom)) {
|
||||
// Need a PHI here.
|
||||
NewDefBB = Info;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Check if anything changed.
|
||||
if (NewDefBB != Info->DefBB) {
|
||||
Info->DefBB = NewDefBB;
|
||||
Changed = true;
|
||||
}
|
||||
}
|
||||
} while (Changed);
|
||||
}
|
||||
|
||||
/// FindAvailableVal - If this block requires a PHI, first check if an existing
|
||||
/// PHI matches the PHI placement and reaching definitions computed earlier,
|
||||
/// and if not, create a new PHI. Visit all the block's predecessors to
|
||||
/// calculate the available value for each one and fill in the incoming values
|
||||
/// for a new PHI.
|
||||
void SSAUpdater::FindAvailableVals(BlockListTy *BlockList) {
|
||||
AvailableValsTy &AvailableVals = getAvailableVals(AV);
|
||||
|
||||
// Go through the worklist in forward order (i.e., backward through the CFG)
|
||||
// and check if existing PHIs can be used. If not, create empty PHIs where
|
||||
// they are needed.
|
||||
for (BlockListTy::iterator I = BlockList->begin(), E = BlockList->end();
|
||||
I != E; ++I) {
|
||||
BBInfo *Info = *I;
|
||||
// Check if there needs to be a PHI in BB.
|
||||
if (Info->DefBB != Info)
|
||||
continue;
|
||||
|
||||
// Look for an existing PHI.
|
||||
FindExistingPHI(Info->BB, BlockList);
|
||||
if (Info->AvailableVal)
|
||||
continue;
|
||||
|
||||
PHINode *PHI = PHINode::Create(PrototypeValue->getType(),
|
||||
PrototypeValue->getName(),
|
||||
&Info->BB->front());
|
||||
PHI->reserveOperandSpace(Info->NumPreds);
|
||||
Info->AvailableVal = PHI;
|
||||
AvailableVals[Info->BB] = PHI;
|
||||
}
|
||||
|
||||
// Now go back through the worklist in reverse order to fill in the arguments
|
||||
// for any new PHIs added in the forward traversal.
|
||||
for (BlockListTy::reverse_iterator I = BlockList->rbegin(),
|
||||
E = BlockList->rend(); I != E; ++I) {
|
||||
BBInfo *Info = *I;
|
||||
|
||||
if (Info->DefBB != Info) {
|
||||
// Record the available value at join nodes to speed up subsequent
|
||||
// uses of this SSAUpdater for the same value.
|
||||
if (Info->NumPreds > 1)
|
||||
AvailableVals[Info->BB] = Info->DefBB->AvailableVal;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Check if this block contains a newly added PHI.
|
||||
PHINode *PHI = dyn_cast<PHINode>(Info->AvailableVal);
|
||||
if (!PHI || PHI->getNumIncomingValues() == Info->NumPreds)
|
||||
continue;
|
||||
|
||||
// Iterate through the block's predecessors.
|
||||
for (unsigned p = 0; p != Info->NumPreds; ++p) {
|
||||
BBInfo *PredInfo = Info->Preds[p];
|
||||
BasicBlock *Pred = PredInfo->BB;
|
||||
// Skip to the nearest preceding definition.
|
||||
if (PredInfo->DefBB != PredInfo)
|
||||
PredInfo = PredInfo->DefBB;
|
||||
PHI->addIncoming(PredInfo->AvailableVal, Pred);
|
||||
}
|
||||
|
||||
DEBUG(dbgs() << " Inserted PHI: " << *PHI << "\n");
|
||||
|
||||
// If the client wants to know about all new instructions, tell it.
|
||||
if (InsertedPHIs) InsertedPHIs->push_back(PHI);
|
||||
}
|
||||
}
|
||||
|
||||
/// FindExistingPHI - Look through the PHI nodes in a block to see if any of
|
||||
/// them match what is needed.
|
||||
void SSAUpdater::FindExistingPHI(BasicBlock *BB, BlockListTy *BlockList) {
|
||||
PHINode *SomePHI;
|
||||
for (BasicBlock::iterator It = BB->begin();
|
||||
(SomePHI = dyn_cast<PHINode>(It)); ++It) {
|
||||
if (CheckIfPHIMatches(SomePHI)) {
|
||||
RecordMatchingPHI(SomePHI);
|
||||
break;
|
||||
}
|
||||
// Match failed: clear all the PHITag values.
|
||||
for (BlockListTy::iterator I = BlockList->begin(), E = BlockList->end();
|
||||
I != E; ++I)
|
||||
(*I)->PHITag = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/// CheckIfPHIMatches - Check if a PHI node matches the placement and values
|
||||
/// in the BBMap.
|
||||
bool SSAUpdater::CheckIfPHIMatches(PHINode *PHI) {
|
||||
BBMapTy *BBMap = getBBMap(BM);
|
||||
SmallVector<PHINode*, 20> WorkList;
|
||||
WorkList.push_back(PHI);
|
||||
|
||||
// Mark that the block containing this PHI has been visited.
|
||||
(*BBMap)[PHI->getParent()]->PHITag = PHI;
|
||||
|
||||
while (!WorkList.empty()) {
|
||||
PHI = WorkList.pop_back_val();
|
||||
|
||||
// Iterate through the PHI's incoming values.
|
||||
for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
|
||||
Value *IncomingVal = PHI->getIncomingValue(i);
|
||||
BBInfo *PredInfo = (*BBMap)[PHI->getIncomingBlock(i)];
|
||||
// Skip to the nearest preceding definition.
|
||||
if (PredInfo->DefBB != PredInfo)
|
||||
PredInfo = PredInfo->DefBB;
|
||||
|
||||
// Check if it matches the expected value.
|
||||
if (PredInfo->AvailableVal) {
|
||||
if (IncomingVal == PredInfo->AvailableVal)
|
||||
continue;
|
||||
return false;
|
||||
}
|
||||
|
||||
// Check if the value is a PHI in the correct block.
|
||||
PHINode *IncomingPHIVal = dyn_cast<PHINode>(IncomingVal);
|
||||
if (!IncomingPHIVal || IncomingPHIVal->getParent() != PredInfo->BB)
|
||||
return false;
|
||||
|
||||
// If this block has already been visited, check if this PHI matches.
|
||||
if (PredInfo->PHITag) {
|
||||
if (IncomingPHIVal == PredInfo->PHITag)
|
||||
continue;
|
||||
return false;
|
||||
}
|
||||
PredInfo->PHITag = IncomingPHIVal;
|
||||
|
||||
WorkList.push_back(IncomingPHIVal);
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/// RecordMatchingPHI - For a PHI node that matches, record it and its input
|
||||
/// PHIs in both the BBMap and the AvailableVals mapping.
|
||||
void SSAUpdater::RecordMatchingPHI(PHINode *PHI) {
|
||||
BBMapTy *BBMap = getBBMap(BM);
|
||||
AvailableValsTy &AvailableVals = getAvailableVals(AV);
|
||||
SmallVector<PHINode*, 20> WorkList;
|
||||
WorkList.push_back(PHI);
|
||||
|
||||
// Record this PHI.
|
||||
BasicBlock *BB = PHI->getParent();
|
||||
AvailableVals[BB] = PHI;
|
||||
(*BBMap)[BB]->AvailableVal = PHI;
|
||||
|
||||
while (!WorkList.empty()) {
|
||||
PHI = WorkList.pop_back_val();
|
||||
|
||||
// Iterate through the PHI's incoming values.
|
||||
for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
|
||||
PHINode *IncomingPHIVal = dyn_cast<PHINode>(PHI->getIncomingValue(i));
|
||||
if (!IncomingPHIVal) continue;
|
||||
BB = IncomingPHIVal->getParent();
|
||||
BBInfo *Info = (*BBMap)[BB];
|
||||
if (!Info || Info->AvailableVal)
|
||||
continue;
|
||||
|
||||
// Record the PHI and add it to the worklist.
|
||||
AvailableVals[BB] = IncomingPHIVal;
|
||||
Info->AvailableVal = IncomingPHIVal;
|
||||
WorkList.push_back(IncomingPHIVal);
|
||||
}
|
||||
}
|
||||
SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
|
||||
return Impl.GetValue(BB);
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue