Committing a good chunk of the pre-register allocation live interval splitting pass. It's handling simple cases and appear to do good things. Next: avoid splitting an interval multiple times; renumber registers when possible; record stack slot live intervals for coloring; rematerialize defs when possible.

llvm-svn: 58044
This commit is contained in:
Evan Cheng 2008-10-23 20:43:13 +00:00
parent e395d78657
commit d0d0317b9a
3 changed files with 612 additions and 13 deletions

View File

@ -219,6 +219,39 @@ namespace llvm {
return i2miMap_[index];
}
/// hasGapBeforeInstr - Return true if the previous instruction slot,
/// i.e. Index - InstrSlots::NUM, is not occupied.
bool hasGapBeforeInstr(unsigned Index) {
Index = getBaseIndex(Index - InstrSlots::NUM);
return getInstructionFromIndex(Index) == 0;
}
/// findGapBeforeInstr - Find an empty instruction slot before the
/// specified index. If "Furthest" is true, find one that's furthest
/// away from the index (but before any index that's occupied).
unsigned findGapBeforeInstr(unsigned Index, bool Furthest = false) {
Index = getBaseIndex(Index - InstrSlots::NUM);
if (getInstructionFromIndex(Index))
return 0; // No gap!
if (!Furthest)
return Index;
unsigned PrevIndex = getBaseIndex(Index - InstrSlots::NUM);
while (getInstructionFromIndex(Index)) {
Index = PrevIndex;
PrevIndex = getBaseIndex(Index - InstrSlots::NUM);
}
return Index;
}
/// InsertMachineInstrInMaps - Insert the specified machine instruction
/// into the instruction index map at the given index.
void InsertMachineInstrInMaps(MachineInstr *MI, unsigned Index) {
i2miMap_[Index / InstrSlots::NUM] = MI;
Mi2IndexMap::iterator it = mi2iMap_.find(MI);
assert(it == mi2iMap_.end() && "Already in map!");
mi2iMap_[MI] = Index;
}
/// conflictsWithPhysRegDef - Returns true if the specified register
/// is defined during the duration of the specified interval.
bool conflictsWithPhysRegDef(const LiveInterval &li, VirtRegMap &vrm,

View File

@ -16,29 +16,51 @@
#define DEBUG_TYPE "pre-alloc-split"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include <map>
using namespace llvm;
STATISTIC(NumSplit , "Number of intervals split");
namespace {
class VISIBILITY_HIDDEN PreAllocSplitting : public MachineFunctionPass {
// ProcessedBarriers - Register live interval barriers that have already
// been processed.
SmallPtrSet<MachineInstr*, 16> ProcessedBarriers;
MachineFunction *CurMF;
const TargetMachine *TM;
const TargetInstrInfo *TII;
MachineFrameInfo *MFI;
MachineRegisterInfo *MRI;
LiveIntervals *LIs;
// Barrier - Current barrier being processed.
MachineInstr *Barrier;
// BarrierMBB - Basic block where the barrier resides in.
MachineBasicBlock *BarrierMBB;
// Barrier - Current barrier index.
unsigned BarrierIdx;
// CurrLI - Current live interval being split.
LiveInterval *CurrLI;
// LIValNoSSMap - A map from live interval and val# pairs to spill slots.
// This records what live interval's val# has been split and what spill
// slot was used.
std::map<std::pair<unsigned, unsigned>, int> LIValNoSSMap;
// ActiveBarriers - Register live interval barriers that are currently
// being processed.
SmallSet<unsigned, 16> ActiveBarriers;
public:
static char ID;
PreAllocSplitting() : MachineFunctionPass(&ID) {}
@ -48,24 +70,60 @@ namespace {
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LiveIntervals>();
AU.addPreserved<LiveIntervals>();
AU.addPreserved<MachineLoopInfo>();
AU.addPreserved<RegisterCoalescer>();
if (StrongPHIElim)
AU.addPreservedID(StrongPHIEliminationID);
else
AU.addPreservedID(PHIEliminationID);
AU.addPreservedID(TwoAddressInstructionPassID);
MachineFunctionPass::getAnalysisUsage(AU);
}
virtual void releaseMemory() {
ProcessedBarriers.clear();
ActiveBarriers.clear();
LIValNoSSMap.clear();
}
virtual const char *getPassName() const {
return "Pre-Register Allocaton Live Interval Splitting";
}
/// print - Implement the dump method.
virtual void print(std::ostream &O, const Module* M = 0) const {
LIs->print(O, M);
}
void print(std::ostream *O, const Module* M = 0) const {
if (O) print(*O, M);
}
private:
MachineBasicBlock::iterator
findNextEmptySlot(MachineBasicBlock*, MachineInstr*,
unsigned&);
MachineBasicBlock::iterator
findSpillPoint(MachineBasicBlock*, MachineInstr*,
SmallPtrSet<MachineInstr*, 4>&, unsigned&);
MachineBasicBlock::iterator
findRestorePoint(MachineBasicBlock*, MachineInstr*,
SmallPtrSet<MachineInstr*, 4>&, unsigned&);
void RecordSplit(unsigned, unsigned, unsigned, int);
bool isAlreadySplit(unsigned, unsigned, int&);
void UpdateIntervalForSplit(VNInfo*, unsigned, unsigned);
bool ShrinkWrapToLastUse(MachineBasicBlock*,
std::vector<MachineOperand*>&);
void ShrinkWrapLiveInterval(VNInfo*, MachineBasicBlock*,
MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8>&,
DenseMap<unsigned, std::vector<MachineOperand*> >&);
bool SplitRegLiveInterval(LiveInterval*);
bool SplitRegLiveIntervals(const TargetRegisterClass **);
};
} // end anonymous namespace
@ -76,6 +134,507 @@ X("pre-alloc-splitting", "Pre-Register Allocation Live Interval Splitting");
const PassInfo *const llvm::PreAllocSplittingID = &X;
bool PreAllocSplitting::runOnMachineFunction(MachineFunction &MF) {
return false;
/// findNextEmptySlot - Find a gap after the given machine instruction in the
/// instruction index map. If there isn't one, return end().
MachineBasicBlock::iterator
PreAllocSplitting::findNextEmptySlot(MachineBasicBlock *MBB, MachineInstr *MI,
unsigned &SpotIndex) {
MachineBasicBlock::iterator MII = MI;
if (++MII != MBB->end()) {
unsigned Index = LIs->findGapBeforeInstr(LIs->getInstructionIndex(MII));
if (Index) {
SpotIndex = Index;
return MII;
}
}
return MBB->end();
}
/// findSpillPoint - Find a gap as far away from the given MI that's suitable
/// for spilling the current live interval. The index must be before any
/// defs and uses of the live interval register in the mbb. Return begin() if
/// none is found.
MachineBasicBlock::iterator
PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI,
SmallPtrSet<MachineInstr*, 4> &RefsInMBB,
unsigned &SpillIndex) {
MachineBasicBlock::iterator Pt = MBB->begin();
// Go top down if RefsInMBB is empty.
if (RefsInMBB.empty()) {
MachineBasicBlock::iterator MII = MBB->begin();
MachineBasicBlock::iterator EndPt = MI;
do {
++MII;
unsigned Index = LIs->getInstructionIndex(MII);
unsigned Gap = LIs->findGapBeforeInstr(Index);
if (Gap) {
Pt = MII;
SpillIndex = Gap;
break;
}
} while (MII != EndPt);
} else {
MachineBasicBlock::iterator MII = MI;
while (MII != MBB->begin() && !RefsInMBB.count(MII)) {
unsigned Index = LIs->getInstructionIndex(MII);
if (LIs->hasGapBeforeInstr(Index)) {
Pt = MII;
SpillIndex = LIs->findGapBeforeInstr(Index, true);
}
--MII;
}
}
return Pt;
}
/// findRestorePoint - Find a gap in the instruction index map that's suitable
/// for restoring the current live interval value. The index must be before any
/// uses of the live interval register in the mbb. Return end() if none is
/// found.
MachineBasicBlock::iterator
PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI,
SmallPtrSet<MachineInstr*, 4> &RefsInMBB,
unsigned &RestoreIndex) {
MachineBasicBlock::iterator Pt = MBB->end();
// Go bottom up if RefsInMBB is empty.
if (RefsInMBB.empty()) {
MachineBasicBlock::iterator MII = MBB->end();
MachineBasicBlock::iterator EndPt = MI;
do {
--MII;
unsigned Index = LIs->getInstructionIndex(MII);
unsigned Gap = LIs->hasGapBeforeInstr(Index);
if (Gap) {
Pt = MII;
RestoreIndex = Gap;
break;
}
} while (MII != EndPt);
} else {
MachineBasicBlock::iterator MII = MI;
MII = ++MII;
while (MII != MBB->end()) {
unsigned Index = LIs->getInstructionIndex(MII);
unsigned Gap = LIs->findGapBeforeInstr(Index);
if (Gap) {
Pt = MII;
RestoreIndex = Gap;
}
if (RefsInMBB.count(MII))
break;
++MII;
}
}
return Pt;
}
/// RecordSplit - Given a register live interval is split, remember the spill
/// slot where the val#s are in.
void PreAllocSplitting::RecordSplit(unsigned Reg, unsigned SpillIndex,
unsigned RestoreIndex, int SS) {
LiveInterval::iterator LR =
CurrLI->FindLiveRangeContaining(LIs->getUseIndex(SpillIndex));
LIValNoSSMap.insert(std::make_pair(std::make_pair(CurrLI->reg, LR->valno->id),
SS));
LR = CurrLI->FindLiveRangeContaining(LIs->getDefIndex(RestoreIndex));
LIValNoSSMap.insert(std::make_pair(std::make_pair(CurrLI->reg, LR->valno->id),
SS));
}
/// isAlreadySplit - Return if a given val# of a register live interval is already
/// split. Also return by reference the spill stock where the value is.
bool PreAllocSplitting::isAlreadySplit(unsigned Reg, unsigned ValNoId, int &SS){
std::map<std::pair<unsigned, unsigned>, int>::iterator I =
LIValNoSSMap.find(std::make_pair(Reg, ValNoId));
if (I == LIValNoSSMap.end())
return false;
SS = I->second;
return true;
}
/// UpdateIntervalForSplit - Given the specified val# of the current live
/// interval is being split, and the split and rejoin indices, update the live
/// interval accordingly.
void
PreAllocSplitting::UpdateIntervalForSplit(VNInfo *ValNo, unsigned SplitIndex,
unsigned JoinIndex) {
SmallVector<std::pair<unsigned,unsigned>, 4> Before;
SmallVector<std::pair<unsigned,unsigned>, 4> After;
SmallVector<unsigned, 4> BeforeKills;
SmallVector<unsigned, 4> AfterKills;
SmallPtrSet<const LiveRange*, 4> Processed;
// First, let's figure out which parts of the live interval is now defined
// by the restore, which are defined by the original definition.
const LiveRange *LR = CurrLI->getLiveRangeContaining(JoinIndex);
After.push_back(std::make_pair(JoinIndex, LR->end));
assert(LR->contains(SplitIndex));
Before.push_back(std::make_pair(LR->start, SplitIndex));
BeforeKills.push_back(SplitIndex);
Processed.insert(LR);
SmallVector<MachineBasicBlock*, 4> WorkList;
MachineBasicBlock *MBB = LIs->getMBBFromIndex(LR->end-1);
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI)
WorkList.push_back(*SI);
while (!WorkList.empty()) {
MBB = WorkList.back();
WorkList.pop_back();
unsigned Idx = LIs->getMBBStartIdx(MBB);
LR = CurrLI->getLiveRangeContaining(Idx);
if (LR && LR->valno == ValNo && !Processed.count(LR)) {
After.push_back(std::make_pair(LR->start, LR->end));
if (CurrLI->isKill(ValNo, LR->end))
AfterKills.push_back(LR->end);
Idx = LIs->getMBBEndIdx(MBB);
if (LR->end > Idx) {
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI)
WorkList.push_back(*SI);
if (LR->end > Idx+1) {
MBB = LIs->getMBBFromIndex(LR->end-1);
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI)
WorkList.push_back(*SI);
}
}
Processed.insert(LR);
}
}
for (LiveInterval::iterator I = CurrLI->begin(), E = CurrLI->end();
I != E; ++I) {
LiveRange *LR = I;
if (LR->valno == ValNo && !Processed.count(LR)) {
Before.push_back(std::make_pair(LR->start, LR->end));
if (CurrLI->isKill(ValNo, LR->end))
BeforeKills.push_back(LR->end);
}
}
// Now create new val#s to represent the live ranges defined by the old def
// those defined by the restore.
unsigned AfterDef = ValNo->def;
MachineInstr *AfterCopy = ValNo->copy;
bool HasPHIKill = ValNo->hasPHIKill;
CurrLI->removeValNo(ValNo);
VNInfo *BValNo = CurrLI->getNextValue(AfterDef, AfterCopy,
LIs->getVNInfoAllocator());
VNInfo *AValNo = CurrLI->getNextValue(JoinIndex,0, LIs->getVNInfoAllocator());
AValNo->hasPHIKill = HasPHIKill;
CurrLI->addKills(AValNo, AfterKills);
CurrLI->addKills(BValNo, BeforeKills);
for (unsigned i = 0, e = Before.size(); i != e; ++i) {
unsigned Start = Before[i].first;
unsigned End = Before[i].second;
CurrLI->addRange(LiveRange(Start, End, BValNo));
}
for (unsigned i = 0, e = After.size(); i != e; ++i) {
unsigned Start = After[i].first;
unsigned End = After[i].second;
CurrLI->addRange(LiveRange(Start, End, AValNo));
}
}
/// ShrinkWrapToLastUse - There are uses of the current live interval in the
/// given block, shrink wrap the live interval to the last use (i.e. remove
/// from last use to the end of the mbb). In case mbb is the where the barrier
/// is, remove from the last use to the barrier.
bool
PreAllocSplitting::ShrinkWrapToLastUse(MachineBasicBlock *MBB,
std::vector<MachineOperand*> &Uses) {
MachineOperand *LastMO = 0;
MachineInstr *LastMI = 0;
if (MBB != BarrierMBB && Uses.size() == 1) {
// Single use, no need to traverse the block. We can't assume this for the
// barrier bb though since the use is probably below the barrier.
LastMO = Uses[0];
LastMI = LastMO->getParent();
} else {
SmallPtrSet<MachineInstr*, 4> UseMIs;
for (unsigned i = 0, e = Uses.size(); i != e; ++i)
UseMIs.insert(Uses[i]->getParent());
MachineBasicBlock::iterator MII;
if (MBB == BarrierMBB) {
MII = Barrier;
--MII;
} else
MII = MBB->end();
for (MachineBasicBlock::iterator MEE = MBB->begin(); MII != MEE; --MII) {
MachineInstr *UseMI = &*MII;
if (!UseMIs.count(UseMI))
continue;
for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = UseMI->getOperand(i);
if (MO.isReg() && MO.getReg() == CurrLI->reg) {
LastMO = &MO;
break;
}
}
LastMI = UseMI;
break;
}
}
// Cut off live range from last use (or beginning of the mbb if there
// are no uses in it) to the end of the mbb.
unsigned RangeStart, RangeEnd = LIs->getMBBEndIdx(MBB)+1;
if (LastMI) {
RangeStart = LIs->getUseIndex(LIs->getInstructionIndex(LastMI))+1;
assert(!LastMO->isKill() && "Last use already terminates the interval?");
LastMO->setIsKill();
} else {
assert(MBB == BarrierMBB);
RangeStart = LIs->getMBBStartIdx(MBB);
}
if (MBB == BarrierMBB)
RangeEnd = LIs->getUseIndex(BarrierIdx);
CurrLI->removeRange(RangeStart, RangeEnd);
// Return true if the last use becomes a new kill.
return LastMI;
}
/// ShrinkWrapLiveInterval - Recursively traverse the predecessor
/// chain to find the new 'kills' and shrink wrap the live interval to the
/// new kill indices.
void
PreAllocSplitting::ShrinkWrapLiveInterval(VNInfo *ValNo,
MachineBasicBlock *MBB, MachineBasicBlock *DefMBB,
SmallPtrSet<MachineBasicBlock*, 8> &Visited,
DenseMap<unsigned, std::vector<MachineOperand*> > &Uses) {
if (!Visited.insert(MBB))
return;
DenseMap<unsigned, std::vector<MachineOperand*> >::iterator UMII =
Uses.find(MBB->getNumber());
if (UMII != Uses.end()) {
// At least one use in this mbb, lets look for the kill.
if (ShrinkWrapToLastUse(MBB, UMII->second))
// Found a kill, shrink wrapping of this path ends here.
return;
} else {
// Remove entire live range of the bb out of the live interval.
CurrLI->removeRange(LIs->getMBBStartIdx(MBB), LIs->getMBBEndIdx(MBB));
abort(); // FIXME
}
if (MBB == DefMBB)
// Reached the def mbb, stop traversing this path further.
return;
// Traverse the pathes up the predecessor chains further.
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
MachineBasicBlock *Pred = *PI;
if (Pred == MBB)
continue;
if (Pred == DefMBB && ValNo->hasPHIKill)
// Pred is the def bb and the def reaches other val#s, we must
// allow the value to be live out of the bb.
continue;
ShrinkWrapLiveInterval(ValNo, Pred, DefMBB, Visited, Uses);
}
return;
}
/// SplitRegLiveInterval - Split (spill and restore) the given live interval
/// so it would not cross the barrier that's being processed. Shrink wrap
/// (minimize) the live interval to the last uses.
bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
CurrLI = LI;
// Find live range where current interval cross the barrier.
LiveInterval::iterator LR =
CurrLI->FindLiveRangeContaining(LIs->getUseIndex(BarrierIdx));
VNInfo *ValNo = LR->valno;
if (ValNo->def == ~1U) {
// Defined by a dead def? How can this be?
assert(0 && "Val# is defined by a dead def?");
abort();
}
// Find all references in the barrier mbb.
SmallPtrSet<MachineInstr*, 4> RefsInMBB;
for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
E = MRI->reg_end(); I != E; ++I) {
MachineInstr *RefMI = &*I;
if (RefMI->getParent() == BarrierMBB)
RefsInMBB.insert(RefMI);
}
// Find a point to restore the value after the barrier.
unsigned RestoreIndex;
MachineBasicBlock::iterator RestorePt =
findRestorePoint(BarrierMBB, Barrier, RefsInMBB, RestoreIndex);
if (RestorePt == BarrierMBB->end())
return false;
// Add a spill either before the barrier or after the definition.
MachineBasicBlock *DefMBB = NULL;
const TargetRegisterClass *RC = MRI->getRegClass(CurrLI->reg);
int SS;
unsigned SpillIndex = 0;
if (isAlreadySplit(CurrLI->reg, ValNo->id, SS)) {
// If it's already split, just restore the value. There is no need to spill
// the def again.
abort(); // FIXME
} else if (ValNo->def == ~0U) {
// If it's defined by a phi, we must split just before the barrier.
MachineBasicBlock::iterator SpillPt =
findSpillPoint(BarrierMBB, Barrier, RefsInMBB, SpillIndex);
if (SpillPt == BarrierMBB->begin())
return false; // No gap to insert spill.
// Add spill.
SS = MFI->CreateStackObject(RC->getSize(), RC->getAlignment());
TII->storeRegToStackSlot(*BarrierMBB, SpillPt, CurrLI->reg, true, SS, RC);
MachineInstr *StoreMI = prior(SpillPt);
LIs->InsertMachineInstrInMaps(StoreMI, SpillIndex);
} else {
// Check if it's possible to insert a spill after the def MI.
MachineInstr *DefMI = LIs->getInstructionFromIndex(ValNo->def);
DefMBB = DefMI->getParent();
MachineBasicBlock::iterator SpillPt =
findNextEmptySlot(DefMBB, DefMI, SpillIndex);
if (SpillPt == DefMBB->end())
return false; // No gap to insert spill.
SS = MFI->CreateStackObject(RC->getSize(), RC->getAlignment());
// Add spill. The store instruction does *not* kill the register.
TII->storeRegToStackSlot(*DefMBB, SpillPt, CurrLI->reg, false, SS, RC);
MachineInstr *StoreMI = prior(SpillPt);
LIs->InsertMachineInstrInMaps(StoreMI, SpillIndex);
}
// Add restore.
// FIXME: Create live interval for stack slot.
TII->loadRegFromStackSlot(*BarrierMBB, RestorePt, CurrLI->reg, SS, RC);
MachineInstr *LoadMI = prior(RestorePt);
LIs->InsertMachineInstrInMaps(LoadMI, RestoreIndex);
// If live interval is spilled in the same block as the barrier, just
// create a hole in the interval.
if (!DefMBB ||
LIs->getInstructionFromIndex(SpillIndex)->getParent() == BarrierMBB) {
UpdateIntervalForSplit(ValNo, LIs->getUseIndex(SpillIndex)+1,
LIs->getDefIndex(RestoreIndex));
// Record val# values are in the specific spill slot.
RecordSplit(CurrLI->reg, SpillIndex, RestoreIndex, SS);
++NumSplit;
return true;
}
// Shrink wrap the live interval by walking up the CFG and find the
// new kills.
// Now let's find all the uses of the val#.
DenseMap<unsigned, std::vector<MachineOperand*> > Uses;
for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(CurrLI->reg),
UE = MRI->use_end(); UI != UE; ++UI) {
MachineOperand &UseMO = UI.getOperand();
MachineInstr *UseMI = UseMO.getParent();
unsigned UseIdx = LIs->getInstructionIndex(UseMI);
LiveInterval::iterator ULR = CurrLI->FindLiveRangeContaining(UseIdx);
if (ULR->valno != ValNo)
continue;
MachineBasicBlock *UseMBB = UseMI->getParent();
unsigned MBBId = UseMBB->getNumber();
DenseMap<unsigned, std::vector<MachineOperand*> >::iterator UMII =
Uses.find(MBBId);
if (UMII != Uses.end())
UMII->second.push_back(&UseMO);
else {
std::vector<MachineOperand*> Ops;
Ops.push_back(&UseMO);
Uses.insert(std::make_pair(MBBId, Ops));
}
}
// Walk up the predecessor chains.
SmallPtrSet<MachineBasicBlock*, 8> Visited;
ShrinkWrapLiveInterval(ValNo, BarrierMBB, DefMBB, Visited, Uses);
// Remove live range from barrier to the restore. FIXME: Find a better
// point to re-start the live interval.
UpdateIntervalForSplit(ValNo, LIs->getUseIndex(BarrierIdx)+1,
LIs->getDefIndex(RestoreIndex));
// Record val# values are in the specific spill slot.
RecordSplit(CurrLI->reg, BarrierIdx, RestoreIndex, SS);
++NumSplit;
return true;
}
/// SplitRegLiveIntervals - Split all register live intervals that cross the
/// barrier that's being processed.
bool
PreAllocSplitting::SplitRegLiveIntervals(const TargetRegisterClass **RCs) {
// First find all the virtual registers whose live intervals are intercepted
// by the current barrier.
SmallVector<LiveInterval*, 8> Intervals;
for (const TargetRegisterClass **RC = RCs; *RC; ++RC) {
std::vector<unsigned> &VRs = MRI->getRegClassVirtRegs(*RC);
for (unsigned i = 0, e = VRs.size(); i != e; ++i) {
unsigned Reg = VRs[i];
if (!LIs->hasInterval(Reg))
continue;
LiveInterval *LI = &LIs->getInterval(Reg);
if (LI->liveAt(BarrierIdx) && !Barrier->readsRegister(Reg))
// Virtual register live interval is intercepted by the barrier. We
// should split and shrink wrap its interval if possible.
Intervals.push_back(LI);
}
}
// Process the affected live intervals.
bool Change = false;
while (!Intervals.empty()) {
LiveInterval *LI = Intervals.back();
Intervals.pop_back();
Change |= SplitRegLiveInterval(LI);
}
return Change;
}
bool PreAllocSplitting::runOnMachineFunction(MachineFunction &MF) {
CurMF = &MF;
TM = &MF.getTarget();
TII = TM->getInstrInfo();
MFI = MF.getFrameInfo();
MRI = &MF.getRegInfo();
LIs = &getAnalysis<LiveIntervals>();
bool MadeChange = false;
// Make sure blocks are numbered in order.
MF.RenumberBlocks();
for (MachineFunction::reverse_iterator I = MF.rbegin(), E = MF.rend();
I != E; ++I) {
BarrierMBB = &*I;
for (MachineBasicBlock::reverse_iterator II = BarrierMBB->rbegin(),
EE = BarrierMBB->rend(); II != EE; ++II) {
Barrier = &*II;
const TargetRegisterClass **BarrierRCs =
Barrier->getDesc().getRegClassBarriers();
if (!BarrierRCs)
continue;
BarrierIdx = LIs->getInstructionIndex(Barrier);
MadeChange |= SplitRegLiveIntervals(BarrierRCs);
}
}
return MadeChange;
}

View File

@ -49,6 +49,11 @@ NewHeuristic("new-spilling-heuristic",
cl::desc("Use new spilling heuristic"),
cl::init(false), cl::Hidden);
static cl::opt<bool>
PreSplitIntervals("pre-alloc-split",
cl::desc("Pre-register allocation live interval splitting"),
cl::init(false), cl::Hidden);
static RegisterRegAlloc
linearscanRegAlloc("linearscan", "linear scan register allocator",
createLinearScanRegisterAllocator);
@ -113,6 +118,8 @@ namespace {
// Make sure PassManager knows which analyses to make available
// to coalescing and which analyses coalescing invalidates.
AU.addRequiredTransitive<RegisterCoalescer>();
if (PreSplitIntervals)
AU.addRequiredID(PreAllocSplittingID);
AU.addRequired<LiveStacks>();
AU.addPreserved<LiveStacks>();
AU.addRequired<MachineLoopInfo>();