Refactoring of the reordering algorithms

Summary:
The various reorder and clustering algorithms have been refactored
into separate classes, so that it is easier to add new algorithms and/or
change the logic of algorithm selection.

(cherry picked from FBD3473656)
This commit is contained in:
Theodoros Kasampalis 2016-06-16 18:47:57 -07:00 committed by Maksim Panchenko
parent f1192a7118
commit d09b00ebff
6 changed files with 683 additions and 380 deletions

View File

@ -85,9 +85,6 @@ class BinaryBasicBlock {
/// Each successor has a corresponding BranchInfo entry in the list.
std::vector<BinaryBranchInfo> BranchInfo;
typedef std::vector<BinaryBranchInfo>::iterator branch_info_iterator;
typedef std::vector<BinaryBranchInfo>::const_iterator
const_branch_info_iterator;
BinaryBasicBlock() {}
@ -252,6 +249,25 @@ public:
return iterator_range<const_lp_iterator>(lp_begin(), lp_end());
}
// BranchInfo iterators.
typedef std::vector<BinaryBranchInfo>::const_iterator
const_branch_info_iterator;
const_branch_info_iterator branch_info_begin() const
{ return BranchInfo.begin(); }
const_branch_info_iterator branch_info_end() const
{ return BranchInfo.end(); }
unsigned branch_info_size() const {
return (unsigned)BranchInfo.size();
}
bool branch_info_empty() const
{ return BranchInfo.empty(); }
inline iterator_range<const_branch_info_iterator> branch_info() const {
return iterator_range<const_branch_info_iterator>(
branch_info_begin(), branch_info_end());
}
/// Return symbol marking the start of this basic block.
MCSymbol *getLabel() const {
return Label;

View File

@ -12,6 +12,7 @@
#include "BinaryBasicBlock.h"
#include "BinaryFunction.h"
#include "ReorderAlgorithm.h"
#include "DataReader.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
@ -41,9 +42,6 @@ AgressiveSplitting("split-all-cold",
cl::desc("outline as many cold basic blocks as possible"),
cl::Optional);
static cl::opt<bool>
PrintClusters("print-clusters", cl::desc("print clusters"), cl::Optional);
static cl::opt<bool>
PrintDebugInfo("print-debug-info",
cl::desc("print debug info when printing functions"),
@ -1254,378 +1252,47 @@ void BinaryFunction::modifyLayout(LayoutType Type, bool Split) {
if (BasicBlocksLayout.empty() || Type == LT_NONE)
return;
if (Type == LT_REVERSE) {
BasicBlockOrderType ReverseOrder;
auto FirstBB = BasicBlocksLayout.front();
ReverseOrder.push_back(FirstBB);
for (auto RBBI = BasicBlocksLayout.rbegin(); *RBBI != FirstBB; ++RBBI)
ReverseOrder.push_back(*RBBI);
BasicBlocksLayout.swap(ReverseOrder);
if (Split)
splitFunction();
fixBranches();
return;
}
BasicBlockOrderType NewLayout;
std::unique_ptr<ReorderAlgorithm> Algo;
// Cannot do optimal layout without profile.
if (!hasValidProfile())
if (Type != LT_REVERSE && !hasValidProfile())
return;
// Work on optimal solution if problem is small enough
if (BasicBlocksLayout.size() <= FUNC_SIZE_THRESHOLD)
return solveOptimalLayout(Split);
if (Type == LT_REVERSE) {
Algo.reset(new ReverseReorderAlgorithm());
}
else if (BasicBlocksLayout.size() <= FUNC_SIZE_THRESHOLD) {
// Work on optimal solution if problem is small enough
DEBUG(dbgs() << "finding optimal block layout for " << getName() << "\n");
Algo.reset(new OptimalReorderAlgorithm());
}
else {
DEBUG(dbgs() << "running block layout heuristics on " << getName() << "\n");
DEBUG(dbgs() << "running block layout heuristics on " << getName() << "\n");
std::unique_ptr<ClusterAlgorithm> CAlgo(new GreedyClusterAlgorithm());
// Greedy heuristic implementation for the TSP, applied to BB layout. Try to
// maximize weight during a path traversing all BBs. In this way, we will
// convert the hottest branches into fall-throughs.
switch(Type) {
case LT_OPTIMIZE:
Algo.reset(new OptimizeReorderAlgorithm(std::move(CAlgo)));
break;
// Encode an edge between two basic blocks, source and destination
typedef std::pair<BinaryBasicBlock *, BinaryBasicBlock *> EdgeTy;
std::map<EdgeTy, uint64_t> Weight;
case LT_OPTIMIZE_BRANCH:
Algo.reset(new OptimizeBranchReorderAlgorithm(std::move(CAlgo)));
break;
// Define a comparison function to establish SWO between edges
auto Comp = [&] (EdgeTy A, EdgeTy B) {
// With equal weights, prioritize branches with lower index
// source/destination. This helps to keep original block order for blocks
// when optimal order cannot be deducted from a profile.
if (Weight[A] == Weight[B]) {
uint32_t ASrcBBIndex = getIndex(A.first);
uint32_t BSrcBBIndex = getIndex(B.first);
if (ASrcBBIndex != BSrcBBIndex)
return ASrcBBIndex > BSrcBBIndex;
return getIndex(A.second) > getIndex(B.second);
}
return Weight[A] < Weight[B];
};
std::priority_queue<EdgeTy, std::vector<EdgeTy>, decltype(Comp)> Queue(Comp);
case LT_OPTIMIZE_CACHE:
Algo.reset(new OptimizeCacheReorderAlgorithm(std::move(CAlgo)));
break;
typedef std::vector<BinaryBasicBlock *> ClusterTy;
typedef std::map<BinaryBasicBlock *, int> BBToClusterMapTy;
std::vector<ClusterTy> Clusters;
BBToClusterMapTy BBToClusterMap;
// Encode relative weights between two clusters
std::vector<std::map<uint32_t, uint64_t>> ClusterEdges;
ClusterEdges.resize(BasicBlocksLayout.size());
for (auto BB : BasicBlocksLayout) {
// Create a cluster for this BB
uint32_t I = Clusters.size();
Clusters.emplace_back();
auto &Cluster = Clusters.back();
Cluster.push_back(BB);
BBToClusterMap[BB] = I;
// Populate priority queue with edges
auto BI = BB->BranchInfo.begin();
for (auto &I : BB->successors()) {
if (BI->Count != BinaryBasicBlock::COUNT_FALLTHROUGH_EDGE)
Weight[std::make_pair(BB, I)] = BI->Count;
Queue.push(std::make_pair(BB, I));
++BI;
default:
llvm_unreachable("unexpected layout type");
}
}
// Grow clusters in a greedy fashion
while (!Queue.empty()) {
auto elmt = Queue.top();
Queue.pop();
BinaryBasicBlock *BBSrc = elmt.first;
BinaryBasicBlock *BBDst = elmt.second;
// Case 1: BBSrc and BBDst are the same. Ignore this edge
if (BBSrc == BBDst || BBDst == *BasicBlocksLayout.begin())
continue;
int I = BBToClusterMap[BBSrc];
int J = BBToClusterMap[BBDst];
// Case 2: If they are already allocated at the same cluster, just increase
// the weight of this cluster
if (I == J) {
ClusterEdges[I][I] += Weight[elmt];
continue;
}
auto &ClusterA = Clusters[I];
auto &ClusterB = Clusters[J];
if (ClusterA.back() == BBSrc && ClusterB.front() == BBDst) {
// Case 3: BBSrc is at the end of a cluster and BBDst is at the start,
// allowing us to merge two clusters
for (auto BB : ClusterB)
BBToClusterMap[BB] = I;
ClusterA.insert(ClusterA.end(), ClusterB.begin(), ClusterB.end());
ClusterB.clear();
// Iterate through all inter-cluster edges and transfer edges targeting
// cluster B to cluster A.
// It is bad to have to iterate though all edges when we could have a list
// of predecessors for cluster B. However, it's not clear if it is worth
// the added code complexity to create a data structure for clusters that
// maintains a list of predecessors. Maybe change this if it becomes a
// deal breaker.
for (uint32_t K = 0, E = ClusterEdges.size(); K != E; ++K)
ClusterEdges[K][I] += ClusterEdges[K][J];
} else {
// Case 4: Both BBSrc and BBDst are allocated in positions we cannot
// merge them. Annotate the weight of this edge in the weight between
// clusters to help us decide ordering between these clusters.
ClusterEdges[I][J] += Weight[elmt];
}
}
std::vector<uint32_t> Order; // Cluster layout order
// Here we have 3 conflicting goals as to how to layout clusters. If we want
// to minimize jump offsets, we should put clusters with heavy inter-cluster
// dependence as close as possible. If we want to maximize the probability
// that all inter-cluster edges are predicted as not-taken, we should enforce
// a topological order to make targets appear after sources, creating forward
// branches. If we want to separate hot from cold blocks to maximize the
// probability that unfrequently executed code doesn't pollute the cache, we
// should put clusters in descending order of hotness.
std::vector<double> AvgFreq;
AvgFreq.resize(Clusters.size(), 0.0);
for (uint32_t I = 0, E = Clusters.size(); I < E; ++I) {
double Freq = 0.0;
for (auto BB : Clusters[I]) {
if (!BB->empty() && BB->size() != BB->getNumPseudos())
Freq += ((double) BB->getExecutionCount()) /
(BB->size() - BB->getNumPseudos());
}
AvgFreq[I] = Freq;
}
if (opts::PrintClusters) {
for (uint32_t I = 0, E = Clusters.size(); I < E; ++I) {
errs() << "Cluster number " << I << " (frequency: " << AvgFreq[I]
<< ") : ";
auto Sep = "";
for (auto BB : Clusters[I]) {
errs() << Sep << BB->getName();
Sep = ", ";
}
errs() << "\n";
};
}
switch(Type) {
case LT_OPTIMIZE: {
for (uint32_t I = 0, E = Clusters.size(); I < E; ++I)
if (!Clusters[I].empty())
Order.push_back(I);
break;
}
case LT_OPTIMIZE_BRANCH: {
// Do a topological sort for clusters, prioritizing frequently-executed BBs
// during the traversal.
std::stack<uint32_t> Stack;
std::vector<uint32_t> Status;
std::vector<uint32_t> Parent;
Status.resize(Clusters.size(), 0);
Parent.resize(Clusters.size(), 0);
constexpr uint32_t STACKED = 1;
constexpr uint32_t VISITED = 2;
Status[0] = STACKED;
Stack.push(0);
while (!Stack.empty()) {
uint32_t I = Stack.top();
if (!(Status[I] & VISITED)) {
Status[I] |= VISITED;
// Order successors by weight
auto ClusterComp = [&ClusterEdges, I](uint32_t A, uint32_t B) {
return ClusterEdges[I][A] > ClusterEdges[I][B];
};
std::priority_queue<uint32_t, std::vector<uint32_t>,
decltype(ClusterComp)> SuccQueue(ClusterComp);
for (auto &Target: ClusterEdges[I]) {
if (Target.second > 0 && !(Status[Target.first] & STACKED) &&
!Clusters[Target.first].empty()) {
Parent[Target.first] = I;
Status[Target.first] = STACKED;
SuccQueue.push(Target.first);
}
}
while (!SuccQueue.empty()) {
Stack.push(SuccQueue.top());
SuccQueue.pop();
}
continue;
}
// Already visited this node
Stack.pop();
Order.push_back(I);
}
std::reverse(Order.begin(), Order.end());
// Put unreachable clusters at the end
for (uint32_t I = 0, E = Clusters.size(); I < E; ++I)
if (!(Status[I] & VISITED) && !Clusters[I].empty())
Order.push_back(I);
// Sort nodes with equal precedence
auto Beg = Order.begin();
// Don't reorder the first cluster, which contains the function entry point
++Beg;
std::stable_sort(Beg, Order.end(),
[&AvgFreq, &Parent](uint32_t A, uint32_t B) {
uint32_t P = Parent[A];
while (Parent[P] != 0) {
if (Parent[P] == B)
return false;
P = Parent[P];
}
P = Parent[B];
while (Parent[P] != 0) {
if (Parent[P] == A)
return true;
P = Parent[P];
}
return AvgFreq[A] > AvgFreq[B];
});
break;
}
case LT_OPTIMIZE_CACHE: {
// Order clusters based on average instruction execution frequency
for (uint32_t I = 0, E = Clusters.size(); I < E; ++I)
if (!Clusters[I].empty())
Order.push_back(I);
auto Beg = Order.begin();
// Don't reorder the first cluster, which contains the function entry point
++Beg;
std::stable_sort(Beg, Order.end(), [&AvgFreq](uint32_t A, uint32_t B) {
return AvgFreq[A] > AvgFreq[B];
});
break;
}
default:
llvm_unreachable("unexpected layout type");
}
if (opts::PrintClusters) {
errs() << "New cluster order: ";
auto Sep = "";
for (auto O : Order) {
errs() << Sep << O;
Sep = ", ";
}
errs() << '\n';
}
Algo->reorderBasicBlocks(*this, NewLayout);
BasicBlocksLayout.clear();
for (auto I : Order) {
auto &Cluster = Clusters[I];
BasicBlocksLayout.insert(BasicBlocksLayout.end(), Cluster.begin(),
Cluster.end());
}
if (Split)
splitFunction();
fixBranches();
}
void BinaryFunction::solveOptimalLayout(bool Split) {
std::vector<std::vector<uint64_t>> Weight;
std::map<BinaryBasicBlock *, int> BBToIndex;
std::vector<BinaryBasicBlock *> IndexToBB;
DEBUG(dbgs() << "finding optimal block layout for " << getName() << "\n");
unsigned N = BasicBlocksLayout.size();
// Populating weight map and index map
for (auto BB : BasicBlocksLayout) {
BBToIndex[BB] = IndexToBB.size();
IndexToBB.push_back(BB);
}
Weight.resize(N);
for (auto BB : BasicBlocksLayout) {
auto BI = BB->BranchInfo.begin();
Weight[BBToIndex[BB]].resize(N);
for (auto I : BB->successors()) {
if (BI->Count != BinaryBasicBlock::COUNT_FALLTHROUGH_EDGE)
Weight[BBToIndex[BB]][BBToIndex[I]] = BI->Count;
++BI;
}
}
std::vector<std::vector<int64_t>> DP;
DP.resize(1 << N);
for (auto &Elmt : DP) {
Elmt.resize(N, -1);
}
// Start with the entry basic block being allocated with cost zero
DP[1][0] = 0;
// Walk through TSP solutions using a bitmask to represent state (current set
// of BBs in the layout)
unsigned BestSet = 1;
unsigned BestLast = 0;
int64_t BestWeight = 0;
for (unsigned Set = 1; Set < (1U << N); ++Set) {
// Traverse each possibility of Last BB visited in this layout
for (unsigned Last = 0; Last < N; ++Last) {
// Case 1: There is no possible layout with this BB as Last
if (DP[Set][Last] == -1)
continue;
// Case 2: There is a layout with this Set and this Last, and we try
// to expand this set with New
for (unsigned New = 1; New < N; ++New) {
// Case 2a: BB "New" is already in this Set
if ((Set & (1 << New)) != 0)
continue;
// Case 2b: BB "New" is not in this set and we add it to this Set and
// record total weight of this layout with "New" as the last BB.
unsigned NewSet = (Set | (1 << New));
if (DP[NewSet][New] == -1)
DP[NewSet][New] = DP[Set][Last] + (int64_t)Weight[Last][New];
DP[NewSet][New] = std::max(DP[NewSet][New],
DP[Set][Last] + (int64_t)Weight[Last][New]);
if (DP[NewSet][New] > BestWeight) {
BestWeight = DP[NewSet][New];
BestSet = NewSet;
BestLast = New;
}
}
}
}
std::vector<BinaryBasicBlock *> PastLayout = BasicBlocksLayout;
// Define final function layout based on layout that maximizes weight
BasicBlocksLayout.clear();
unsigned Last = BestLast;
unsigned Set = BestSet;
std::vector<bool> Visited;
Visited.resize(N);
Visited[Last] = true;
BasicBlocksLayout.push_back(IndexToBB[Last]);
Set = Set & ~(1U << Last);
while (Set != 0) {
int64_t Best = -1;
for (unsigned I = 0; I < N; ++I) {
if (DP[Set][I] == -1)
continue;
if (DP[Set][I] > Best) {
Last = I;
Best = DP[Set][I];
}
}
Visited[Last] = true;
BasicBlocksLayout.push_back(IndexToBB[Last]);
Set = Set & ~(1U << Last);
}
std::reverse(BasicBlocksLayout.begin(), BasicBlocksLayout.end());
// Finalize layout with BBs that weren't assigned to the layout
for (auto BB : PastLayout) {
if (Visited[BBToIndex[BB]] == false)
BasicBlocksLayout.push_back(BB);
}
BasicBlocksLayout.swap(NewLayout);
if (Split)
splitFunction();

View File

@ -306,6 +306,9 @@ public:
typedef BasicBlockOrderType::iterator order_iterator;
typedef BasicBlockOrderType::const_iterator const_order_iterator;
typedef BasicBlockOrderType::reverse_iterator reverse_order_iterator;
typedef BasicBlockOrderType::const_reverse_iterator
const_reverse_order_iterator;
// CFG iterators.
iterator begin() { return BasicBlocks.begin(); }
@ -325,19 +328,39 @@ public:
const BinaryBasicBlock & back() const { return *BasicBlocks.back(); }
BinaryBasicBlock & back() { return *BasicBlocks.back(); }
unsigned layout_size() const {
return (unsigned)BasicBlocksLayout.size();
}
const_order_iterator layout_begin() const {
return BasicBlocksLayout.begin();
}
order_iterator layout_begin() { return BasicBlocksLayout.begin(); }
order_iterator layout_begin() { return BasicBlocksLayout.begin(); }
const_order_iterator layout_begin() const
{ return BasicBlocksLayout.begin(); }
order_iterator layout_end() { return BasicBlocksLayout.end(); }
const_order_iterator layout_end() const
{ return BasicBlocksLayout.end(); }
reverse_order_iterator layout_rbegin()
{ return BasicBlocksLayout.rbegin(); }
const_reverse_order_iterator layout_rbegin() const
{ return BasicBlocksLayout.rbegin(); }
reverse_order_iterator layout_rend()
{ return BasicBlocksLayout.rend(); }
const_reverse_order_iterator layout_rend() const
{ return BasicBlocksLayout.rend(); }
unsigned layout_size() const { return (unsigned)BasicBlocksLayout.size(); }
bool layout_empty() const { return BasicBlocksLayout.empty(); }
const BinaryBasicBlock *layout_front() const
{ return BasicBlocksLayout.front(); }
BinaryBasicBlock *layout_front() { return BasicBlocksLayout.front(); }
const BinaryBasicBlock *layout_back() const
{ return BasicBlocksLayout.back(); }
BinaryBasicBlock *layout_back() { return BasicBlocksLayout.back(); }
inline iterator_range<order_iterator> layout() {
return iterator_range<order_iterator>(BasicBlocksLayout.begin(),
BasicBlocksLayout.end());
}
inline iterator_range<const_order_iterator> layout() const {
return iterator_range<const_order_iterator>(BasicBlocksLayout.begin(),
BasicBlocksLayout.end());
}
cfi_iterator cie_begin() { return CIEFrameInstructions.begin(); }
const_cfi_iterator cie_begin() const { return CIEFrameInstructions.begin(); }
cfi_iterator cie_end() { return CIEFrameInstructions.end(); }
@ -368,14 +391,6 @@ public:
/// end of basic blocks.
void modifyLayout(LayoutType Type, bool Split);
/// Dynamic programming implementation for the TSP, applied to BB layout. Find
/// the optimal way to maximize weight during a path traversing all BBs. In
/// this way, we will convert the hottest branches into fall-throughs.
///
/// Uses exponential amount of memory on the number of basic blocks and should
/// only be used for small functions.
void solveOptimalLayout(bool Split);
/// View CFG in graphviz program
void viewGraph();

View File

@ -24,4 +24,5 @@ add_llvm_tool(llvm-bolt
DebugData.cpp
Exceptions.cpp
RewriteInstance.cpp
ReorderAlgorithm.cpp
)

436
bolt/ReorderAlgorithm.cpp Normal file
View File

@ -0,0 +1,436 @@
//===--- ReorderAlgorithm.cpp - Basic block reorderng algorithms ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implements different basic block reordering algorithms.
//
//===----------------------------------------------------------------------===//
#include "ReorderAlgorithm.h"
#include "BinaryBasicBlock.h"
#include "BinaryFunction.h"
#include "llvm/Support/CommandLine.h"
#include <queue>
using namespace llvm;
using namespace bolt;
namespace opts {
static cl::opt<bool>
PrintClusters("print-clusters", cl::desc("print clusters"), cl::Optional);
} // namespace opts
void ClusterAlgorithm::computeClusterAverageFrequency() {
AvgFreq.resize(Clusters.size(), 0.0);
for (uint32_t I = 0, E = Clusters.size(); I < E; ++I) {
double Freq = 0.0;
for (auto BB : Clusters[I]) {
if (!BB->empty() && BB->size() != BB->getNumPseudos())
Freq += ((double) BB->getExecutionCount()) /
(BB->size() - BB->getNumPseudos());
}
AvgFreq[I] = Freq;
}
}
void ClusterAlgorithm::printClusters() const {
for (uint32_t I = 0, E = Clusters.size(); I < E; ++I) {
errs() << "Cluster number " << I;
if (AvgFreq.size() == Clusters.size())
errs() << " (frequency: " << AvgFreq[I] << ")";
errs() << " : ";
auto Sep = "";
for (auto BB : Clusters[I]) {
errs() << Sep << BB->getName();
Sep = ", ";
}
errs() << "\n";
}
}
void ClusterAlgorithm::reset() {
Clusters.clear();
ClusterEdges.clear();
AvgFreq.clear();
}
void GreedyClusterAlgorithm::clusterBasicBlocks(const BinaryFunction &BF) {
reset();
// Greedy heuristic implementation for the TSP, applied to BB layout. Try to
// maximize weight during a path traversing all BBs. In this way, we will
// convert the hottest branches into fall-throughs.
// Encode an edge between two basic blocks, source and destination
typedef std::pair<BinaryBasicBlock *, BinaryBasicBlock *> EdgeTy;
std::map<EdgeTy, uint64_t> Weight;
// Define a comparison function to establish SWO between edges
auto Comp = [&] (EdgeTy A, EdgeTy B) {
// With equal weights, prioritize branches with lower index
// source/destination. This helps to keep original block order for blocks
// when optimal order cannot be deducted from a profile.
if (Weight[A] == Weight[B]) {
uint32_t ASrcBBIndex = BF.getIndex(A.first);
uint32_t BSrcBBIndex = BF.getIndex(B.first);
if (ASrcBBIndex != BSrcBBIndex)
return ASrcBBIndex > BSrcBBIndex;
return BF.getIndex(A.second) > BF.getIndex(B.second);
}
return Weight[A] < Weight[B];
};
std::priority_queue<EdgeTy, std::vector<EdgeTy>, decltype(Comp)> Queue(Comp);
typedef std::map<BinaryBasicBlock *, int> BBToClusterMapTy;
BBToClusterMapTy BBToClusterMap;
ClusterEdges.resize(BF.layout_size());
for (auto BB : BF.layout()) {
// Create a cluster for this BB
uint32_t I = Clusters.size();
Clusters.emplace_back();
auto &Cluster = Clusters.back();
Cluster.push_back(BB);
BBToClusterMap[BB] = I;
// Populate priority queue with edges
auto BI = BB->branch_info_begin();
for (auto &I : BB->successors()) {
if (BI->Count != BinaryBasicBlock::COUNT_FALLTHROUGH_EDGE)
Weight[std::make_pair(BB, I)] = BI->Count;
Queue.push(std::make_pair(BB, I));
++BI;
}
}
// Grow clusters in a greedy fashion
while (!Queue.empty()) {
auto elmt = Queue.top();
Queue.pop();
BinaryBasicBlock *BBSrc = elmt.first;
BinaryBasicBlock *BBDst = elmt.second;
// Case 1: BBSrc and BBDst are the same. Ignore this edge
if (BBSrc == BBDst || BBDst == *BF.layout_begin())
continue;
int I = BBToClusterMap[BBSrc];
int J = BBToClusterMap[BBDst];
// Case 2: If they are already allocated at the same cluster, just increase
// the weight of this cluster
if (I == J) {
ClusterEdges[I][I] += Weight[elmt];
continue;
}
auto &ClusterA = Clusters[I];
auto &ClusterB = Clusters[J];
if (ClusterA.back() == BBSrc && ClusterB.front() == BBDst) {
// Case 3: BBSrc is at the end of a cluster and BBDst is at the start,
// allowing us to merge two clusters
for (auto BB : ClusterB)
BBToClusterMap[BB] = I;
ClusterA.insert(ClusterA.end(), ClusterB.begin(), ClusterB.end());
ClusterB.clear();
// Iterate through all inter-cluster edges and transfer edges targeting
// cluster B to cluster A.
// It is bad to have to iterate though all edges when we could have a list
// of predecessors for cluster B. However, it's not clear if it is worth
// the added code complexity to create a data structure for clusters that
// maintains a list of predecessors. Maybe change this if it becomes a
// deal breaker.
for (uint32_t K = 0, E = ClusterEdges.size(); K != E; ++K)
ClusterEdges[K][I] += ClusterEdges[K][J];
} else {
// Case 4: Both BBSrc and BBDst are allocated in positions we cannot
// merge them. Annotate the weight of this edge in the weight between
// clusters to help us decide ordering between these clusters.
ClusterEdges[I][J] += Weight[elmt];
}
}
}
void OptimalReorderAlgorithm::reorderBasicBlocks(
const BinaryFunction &BF, BasicBlockOrder &Order) const {
std::vector<std::vector<uint64_t>> Weight;
std::map<BinaryBasicBlock *, int> BBToIndex;
std::vector<BinaryBasicBlock *> IndexToBB;
unsigned N = BF.layout_size();
// Populating weight map and index map
for (auto BB : BF.layout()) {
BBToIndex[BB] = IndexToBB.size();
IndexToBB.push_back(BB);
}
Weight.resize(N);
for (auto BB : BF.layout()) {
auto BI = BB->branch_info_begin();
Weight[BBToIndex[BB]].resize(N);
for (auto I : BB->successors()) {
if (BI->Count != BinaryBasicBlock::COUNT_FALLTHROUGH_EDGE)
Weight[BBToIndex[BB]][BBToIndex[I]] = BI->Count;
++BI;
}
}
std::vector<std::vector<int64_t>> DP;
DP.resize(1 << N);
for (auto &Elmt : DP) {
Elmt.resize(N, -1);
}
// Start with the entry basic block being allocated with cost zero
DP[1][0] = 0;
// Walk through TSP solutions using a bitmask to represent state (current set
// of BBs in the layout)
unsigned BestSet = 1;
unsigned BestLast = 0;
int64_t BestWeight = 0;
for (unsigned Set = 1; Set < (1U << N); ++Set) {
// Traverse each possibility of Last BB visited in this layout
for (unsigned Last = 0; Last < N; ++Last) {
// Case 1: There is no possible layout with this BB as Last
if (DP[Set][Last] == -1)
continue;
// Case 2: There is a layout with this Set and this Last, and we try
// to expand this set with New
for (unsigned New = 1; New < N; ++New) {
// Case 2a: BB "New" is already in this Set
if ((Set & (1 << New)) != 0)
continue;
// Case 2b: BB "New" is not in this set and we add it to this Set and
// record total weight of this layout with "New" as the last BB.
unsigned NewSet = (Set | (1 << New));
if (DP[NewSet][New] == -1)
DP[NewSet][New] = DP[Set][Last] + (int64_t)Weight[Last][New];
DP[NewSet][New] = std::max(DP[NewSet][New],
DP[Set][Last] + (int64_t)Weight[Last][New]);
if (DP[NewSet][New] > BestWeight) {
BestWeight = DP[NewSet][New];
BestSet = NewSet;
BestLast = New;
}
}
}
}
// Define final function layout based on layout that maximizes weight
unsigned Last = BestLast;
unsigned Set = BestSet;
std::vector<bool> Visited;
Visited.resize(N);
Visited[Last] = true;
Order.push_back(IndexToBB[Last]);
Set = Set & ~(1U << Last);
while (Set != 0) {
int64_t Best = -1;
for (unsigned I = 0; I < N; ++I) {
if (DP[Set][I] == -1)
continue;
if (DP[Set][I] > Best) {
Last = I;
Best = DP[Set][I];
}
}
Visited[Last] = true;
Order.push_back(IndexToBB[Last]);
Set = Set & ~(1U << Last);
}
std::reverse(Order.begin(), Order.end());
// Finalize layout with BBs that weren't assigned to the layout
for (auto BB : BF.layout()) {
if (Visited[BBToIndex[BB]] == false)
Order.push_back(BB);
}
}
void OptimizeReorderAlgorithm::reorderBasicBlocks(
const BinaryFunction &BF, BasicBlockOrder &Order) const {
if (BF.layout_empty())
return;
// Cluster basic blocks.
CAlgo->clusterBasicBlocks(BF);
if (opts::PrintClusters)
CAlgo->printClusters();
// Arrange basic blocks according to clusters.
for (ClusterAlgorithm::ClusterTy &Cluster : CAlgo->Clusters)
Order.insert(Order.end(), Cluster.begin(), Cluster.end());
}
void OptimizeBranchReorderAlgorithm::reorderBasicBlocks(
const BinaryFunction &BF, BasicBlockOrder &Order) const {
if (BF.layout_empty())
return;
// Cluster basic blocks.
CAlgo->clusterBasicBlocks(BF);
std::vector<ClusterAlgorithm::ClusterTy> &Clusters = CAlgo->Clusters;;
std::vector<std::map<uint32_t, uint64_t>> &ClusterEdges = CAlgo->ClusterEdges;
// Compute clusters' average frequencies.
CAlgo->computeClusterAverageFrequency();
std::vector<double> &AvgFreq = CAlgo->AvgFreq;;
if (opts::PrintClusters)
CAlgo->printClusters();
// Cluster layout order
std::vector<uint32_t> ClusterOrder;
// Do a topological sort for clusters, prioritizing frequently-executed BBs
// during the traversal.
std::stack<uint32_t> Stack;
std::vector<uint32_t> Status;
std::vector<uint32_t> Parent;
Status.resize(Clusters.size(), 0);
Parent.resize(Clusters.size(), 0);
constexpr uint32_t STACKED = 1;
constexpr uint32_t VISITED = 2;
Status[0] = STACKED;
Stack.push(0);
while (!Stack.empty()) {
uint32_t I = Stack.top();
if (!(Status[I] & VISITED)) {
Status[I] |= VISITED;
// Order successors by weight
auto ClusterComp = [&ClusterEdges, I](uint32_t A, uint32_t B) {
return ClusterEdges[I][A] > ClusterEdges[I][B];
};
std::priority_queue<uint32_t, std::vector<uint32_t>,
decltype(ClusterComp)> SuccQueue(ClusterComp);
for (auto &Target: ClusterEdges[I]) {
if (Target.second > 0 && !(Status[Target.first] & STACKED) &&
!Clusters[Target.first].empty()) {
Parent[Target.first] = I;
Status[Target.first] = STACKED;
SuccQueue.push(Target.first);
}
}
while (!SuccQueue.empty()) {
Stack.push(SuccQueue.top());
SuccQueue.pop();
}
continue;
}
// Already visited this node
Stack.pop();
ClusterOrder.push_back(I);
}
std::reverse(ClusterOrder.begin(), ClusterOrder.end());
// Put unreachable clusters at the end
for (uint32_t I = 0, E = Clusters.size(); I < E; ++I)
if (!(Status[I] & VISITED) && !Clusters[I].empty())
ClusterOrder.push_back(I);
// Sort nodes with equal precedence
auto Beg = ClusterOrder.begin();
// Don't reorder the first cluster, which contains the function entry point
++Beg;
std::stable_sort(Beg, ClusterOrder.end(),
[&AvgFreq, &Parent](uint32_t A, uint32_t B) {
uint32_t P = Parent[A];
while (Parent[P] != 0) {
if (Parent[P] == B)
return false;
P = Parent[P];
}
P = Parent[B];
while (Parent[P] != 0) {
if (Parent[P] == A)
return true;
P = Parent[P];
}
return AvgFreq[A] > AvgFreq[B];
});
if (opts::PrintClusters) {
errs() << "New cluster order: ";
auto Sep = "";
for (auto O : ClusterOrder) {
errs() << Sep << O;
Sep = ", ";
}
errs() << '\n';
}
// Arrange basic blocks according to cluster order.
for (uint32_t ClusterIndex : ClusterOrder) {
ClusterAlgorithm::ClusterTy &Cluster = Clusters[ClusterIndex];
Order.insert(Order.end(), Cluster.begin(), Cluster.end());
}
}
void OptimizeCacheReorderAlgorithm::reorderBasicBlocks(
const BinaryFunction &BF, BasicBlockOrder &Order) const {
if (BF.layout_empty())
return;
// Cluster basic blocks.
CAlgo->clusterBasicBlocks(BF);
std::vector<ClusterAlgorithm::ClusterTy> &Clusters = CAlgo->Clusters;;
// Compute clusters' average frequencies.
CAlgo->computeClusterAverageFrequency();
std::vector<double> &AvgFreq = CAlgo->AvgFreq;;
if (opts::PrintClusters)
CAlgo->printClusters();
// Cluster layout order
std::vector<uint32_t> ClusterOrder;
// Order clusters based on average instruction execution frequency
for (uint32_t I = 0, E = Clusters.size(); I < E; ++I)
if (!Clusters[I].empty())
ClusterOrder.push_back(I);
auto Beg = ClusterOrder.begin();
// Don't reorder the first cluster, which contains the function entry point
++Beg;
std::stable_sort(Beg, ClusterOrder.end(), [&AvgFreq](uint32_t A, uint32_t B) {
return AvgFreq[A] > AvgFreq[B];
});
if (opts::PrintClusters) {
errs() << "New cluster order: ";
auto Sep = "";
for (auto O : ClusterOrder) {
errs() << Sep << O;
Sep = ", ";
}
errs() << '\n';
}
// Arrange basic blocks according to cluster order.
for (uint32_t ClusterIndex : ClusterOrder) {
ClusterAlgorithm::ClusterTy &Cluster = Clusters[ClusterIndex];
Order.insert(Order.end(), Cluster.begin(), Cluster.end());
}
}
void ReverseReorderAlgorithm::reorderBasicBlocks(
const BinaryFunction &BF, BasicBlockOrder &Order) const {
if (BF.layout_empty())
return;
auto FirstBB = *BF.layout_begin();
Order.push_back(FirstBB);
for (auto RLI = BF.layout_rbegin(); *RLI != FirstBB; ++RLI)
Order.push_back(*RLI);
}

168
bolt/ReorderAlgorithm.h Normal file
View File

@ -0,0 +1,168 @@
//===- ReorderAlgorithm.h - Interface for basic block reorderng algorithms ===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Interface to different basic block reordering algorithms.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_LLVM_BOLT_REORDER_ALGORITHM_H
#define LLVM_TOOLS_LLVM_BOLT_REORDER_ALGORITHM_H
#include "llvm/Support/ErrorHandling.h"
#include <map>
#include <memory>
#include <vector>
namespace llvm {
namespace bolt {
class BinaryBasicBlock;
class BinaryFunction;
/// Objects of this class implement various basic block clustering algorithms.
/// Basic block clusters are chains of basic blocks that should be laid out
/// in this order to maximize performace. These algorithms group basic blocks
/// into clusters using execution profile data and various heuristics.
class ClusterAlgorithm {
public:
typedef std::vector<BinaryBasicBlock *> ClusterTy;
std::vector<ClusterTy> Clusters;
std::vector<std::map<uint32_t, uint64_t>> ClusterEdges;
std::vector<double> AvgFreq;
/// Group the basic blocks the given function into clusters stored in the
/// Clusters vector. Also encode relative weights between two clusters in
/// the ClusterEdges vector. This vector is indexed by the clusters indices
/// in the Clusters vector.
virtual void clusterBasicBlocks(const BinaryFunction &BF) =0;
/// Compute for each cluster its averagae execution frequency, that is
/// the sum of average frequencies of its blocks (execution count / # instrs).
/// The average frequencies are stored in the AvgFreq vector, index by the
/// cluster indices in the Clusters vector.
void computeClusterAverageFrequency();
/// Clear clusters and related info.
void reset();
void printClusters() const;
virtual ~ClusterAlgorithm() { }
};
/// This clustering algorithm is based on a greedy heuristic suggested by
/// Pettis (PLDI '90).
class GreedyClusterAlgorithm : public ClusterAlgorithm {
public:
void clusterBasicBlocks(const BinaryFunction &BF) override;
};
/// Objects of this class implement various basic block reordering alogrithms.
/// Most of these algorithms depend on a clustering alogrithm.
/// Here we have 3 conflicting goals as to how to layout clusters. If we want
/// to minimize jump offsets, we should put clusters with heavy inter-cluster
/// dependence as close as possible. If we want to maximize the probability
/// that all inter-cluster edges are predicted as not-taken, we should enforce
/// a topological order to make targets appear after sources, creating forward
/// branches. If we want to separate hot from cold blocks to maximize the
/// probability that unfrequently executed code doesn't pollute the cache, we
/// should put clusters in descending order of hotness.
class ReorderAlgorithm {
protected:
std::unique_ptr<ClusterAlgorithm> CAlgo;
public:
ReorderAlgorithm() { }
explicit ReorderAlgorithm(std::unique_ptr<ClusterAlgorithm> CAlgo) :
CAlgo(std::move(CAlgo)) { }
typedef std::vector<BinaryBasicBlock *> BasicBlockOrder;
/// Reorder the basic blocks of the given function and store the new order in
/// the new Clusters vector.
virtual void reorderBasicBlocks(
const BinaryFunction &BF, BasicBlockOrder &Order) const =0;
void setClusterAlgorithm(ClusterAlgorithm *CAlgo) {
this->CAlgo.reset(CAlgo);
}
virtual ~ReorderAlgorithm() { }
};
/// Dynamic programming implementation for the TSP, applied to BB layout. Find
/// the optimal way to maximize weight during a path traversing all BBs. In
/// this way, we will convert the hottest branches into fall-throughs.
///
/// Uses exponential amount of memory on the number of basic blocks and should
/// only be used for small functions.
class OptimalReorderAlgorithm : public ReorderAlgorithm {
public:
void reorderBasicBlocks(
const BinaryFunction &BF, BasicBlockOrder &Order) const override;
};
/// Simple algorithm that groups basic blocks into clusters and then
/// lays them out cluster after cluster.
class OptimizeReorderAlgorithm : public ReorderAlgorithm {
public:
explicit OptimizeReorderAlgorithm(std::unique_ptr<ClusterAlgorithm> CAlgo) :
ReorderAlgorithm(std::move(CAlgo)) { }
void reorderBasicBlocks(
const BinaryFunction &BF, BasicBlockOrder &Order) const override;
};
/// This reorder algorithm tries to ensure that all inter-cluster edges are
/// predicted as not-taken, by enforcing a topological order to make
/// targets appear after sources, creating forward branches.
class OptimizeBranchReorderAlgorithm : public ReorderAlgorithm {
public:
explicit OptimizeBranchReorderAlgorithm(
std::unique_ptr<ClusterAlgorithm> CAlgo) :
ReorderAlgorithm(std::move(CAlgo)) { }
void reorderBasicBlocks(
const BinaryFunction &BF, BasicBlockOrder &Order) const override;
};
/// This reorder tries to separate hot from cold blocks to maximize the
/// probability that unfrequently executed code doesn't pollute the cache, by
/// putting clusters in descending order of hotness.
class OptimizeCacheReorderAlgorithm : public ReorderAlgorithm {
public:
explicit OptimizeCacheReorderAlgorithm(
std::unique_ptr<ClusterAlgorithm> CAlgo) :
ReorderAlgorithm(std::move(CAlgo)) { }
void reorderBasicBlocks(
const BinaryFunction &BF, BasicBlockOrder &Order) const override;
};
/// Toy example that simply reverses the original basic block order.
class ReverseReorderAlgorithm : public ReorderAlgorithm {
public:
void reorderBasicBlocks(
const BinaryFunction &BF, BasicBlockOrder &Order) const override;
};
} // namespace bolt
} // namespace llvm
#endif