Revert "[analyzer] Refactor conditional expression evaluating code"

This reverts commit r189090.

The original patch introduced regressions (see the added live-variables.* tests). The patch depends on the correctness of live variable analyses, which are not computed correctly. I've opened PR18159 to track the proper resolution to this problem.

The patch was a stepping block to r189746. This is why part of the patch reverts temporary destructor tests that started crashing. The temporary destructors feature is disabled by default.

llvm-svn: 196593
This commit is contained in:
Anna Zaks 2013-12-06 18:56:29 +00:00
parent ba0aea16e1
commit cf8d2165ff
6 changed files with 128 additions and 101 deletions

View File

@ -211,8 +211,6 @@ class TransferFunctions : public StmtVisitor<TransferFunctions> {
LiveVariables::LivenessValues &val;
LiveVariables::Observer *observer;
const CFGBlock *currentBlock;
void markLogicalExprLeaves(const Expr *E);
public:
TransferFunctions(LiveVariablesImpl &im,
LiveVariables::LivenessValues &Val,
@ -369,25 +367,9 @@ void TransferFunctions::VisitBinaryOperator(BinaryOperator *B) {
if (observer)
observer->observerKill(DR);
}
} else if (B->isLogicalOp()) {
// Leaf expressions in the logical operator tree are live until we reach the
// outermost logical operator. Static analyzer relies on this behaviour.
markLogicalExprLeaves(B->getLHS()->IgnoreParens());
markLogicalExprLeaves(B->getRHS()->IgnoreParens());
}
}
void TransferFunctions::markLogicalExprLeaves(const Expr *E) {
const BinaryOperator *B = dyn_cast<BinaryOperator>(E);
if (!B || !B->isLogicalOp()) {
val.liveStmts = LV.SSetFact.add(val.liveStmts, E);
return;
}
markLogicalExprLeaves(B->getLHS()->IgnoreParens());
markLogicalExprLeaves(B->getRHS()->IgnoreParens());
}
void TransferFunctions::VisitBlockExpr(BlockExpr *BE) {
AnalysisDeclContext::referenced_decls_iterator I, E;
llvm::tie(I, E) =

View File

@ -1385,27 +1385,11 @@ void ExprEngine::processBranch(const Stmt *Condition, const Stmt *Term,
return;
}
SValBuilder &SVB = Pred->getState()->getStateManager().getSValBuilder();
SVal TrueVal = SVB.makeTruthVal(true);
SVal FalseVal = SVB.makeTruthVal(false);
if (const Expr *Ex = dyn_cast<Expr>(Condition))
Condition = Ex->IgnoreParens();
// If the value is already available, we don't need to do anything.
if (Pred->getState()->getSVal(Condition, LCtx).isUnknownOrUndef()) {
// Resolve the condition in the presence of nested '||' and '&&'.
Condition = ResolveCondition(Condition, BldCtx.getBlock());
}
// Cast truth values to the correct type.
if (const Expr *Ex = dyn_cast<Expr>(Condition)) {
TrueVal = SVB.evalCast(TrueVal, Ex->getType(),
getContext().getLogicalOperationType());
FalseVal = SVB.evalCast(FalseVal, Ex->getType(),
getContext().getLogicalOperationType());
}
Condition = ResolveCondition(Condition, BldCtx.getBlock());
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
Condition->getLocStart(),
"Error evaluating branch");
@ -1448,37 +1432,31 @@ void ExprEngine::processBranch(const Stmt *Condition, const Stmt *Term,
}
}
ProgramStateRef StTrue, StFalse;
// If the condition is still unknown, give up.
if (X.isUnknownOrUndef()) {
StTrue = PrevState->BindExpr(Condition, BldCtx.LC, TrueVal);
StFalse = PrevState->BindExpr(Condition, BldCtx.LC, FalseVal);
builder.generateNode(StTrue, true, PredI);
builder.generateNode(StFalse, false, PredI);
builder.generateNode(PrevState, true, PredI);
builder.generateNode(PrevState, false, PredI);
continue;
}
DefinedSVal V = X.castAs<DefinedSVal>();
ProgramStateRef StTrue, StFalse;
tie(StTrue, StFalse) = PrevState->assume(V);
// Process the true branch.
if (builder.isFeasible(true)) {
if (StTrue) {
StTrue = StTrue->BindExpr(Condition, BldCtx.LC, TrueVal);
if (StTrue)
builder.generateNode(StTrue, true, PredI);
} else
else
builder.markInfeasible(true);
}
// Process the false branch.
if (builder.isFeasible(false)) {
if (StFalse) {
StFalse = StFalse->BindExpr(Condition, BldCtx.LC, FalseVal);
if (StFalse)
builder.generateNode(StFalse, false, PredI);
} else
else
builder.markInfeasible(false);
}
}

View File

@ -505,33 +505,6 @@ void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this);
}
static ProgramStateRef evaluateLogicalExpression(const Expr *E,
const LocationContext *LC,
ProgramStateRef State) {
SVal X = State->getSVal(E, LC);
if (! X.isUnknown())
return State;
const BinaryOperator *B = dyn_cast<BinaryOperator>(E->IgnoreParens());
if (!B || (B->getOpcode() != BO_LAnd && B->getOpcode() != BO_LOr))
return State;
State = evaluateLogicalExpression(B->getLHS(), LC, State);
X = State->getSVal(B->getLHS(), LC);
QualType XType = B->getLHS()->getType();
assert(X.isConstant());
if (!X.isZeroConstant() == (B->getOpcode() == BO_LAnd)) {
// LHS not sufficient, we need to check RHS as well
State = evaluateLogicalExpression(B->getRHS(), LC, State);
X = State->getSVal(B->getRHS(), LC);
XType = B->getRHS()->getType();
}
SValBuilder &SVB = State->getStateManager().getSValBuilder();
return State->BindExpr(E, LC, SVB.evalCast(X, B->getType(), XType));
}
void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
ExplodedNodeSet &Dst) {
assert(B->getOpcode() == BO_LAnd ||
@ -540,25 +513,64 @@ void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
ProgramStateRef state = Pred->getState();
state = evaluateLogicalExpression(B, Pred->getLocationContext(), state);
SVal X = state->getSVal(B, Pred->getLocationContext());
ExplodedNode *N = Pred;
while (!N->getLocation().getAs<BlockEntrance>()) {
ProgramPoint P = N->getLocation();
assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>());
(void) P;
assert(N->pred_size() == 1);
N = *N->pred_begin();
}
assert(N->pred_size() == 1);
N = *N->pred_begin();
BlockEdge BE = N->getLocation().castAs<BlockEdge>();
SVal X;
if (!X.isUndef()) {
DefinedOrUnknownSVal DefinedRHS = X.castAs<DefinedOrUnknownSVal>();
ProgramStateRef StTrue, StFalse;
llvm::tie(StTrue, StFalse) = state->assume(DefinedRHS);
if (StTrue) {
if (!StFalse) {
// The value is known to be true.
X = getSValBuilder().makeIntVal(1, B->getType());
} // else The truth value of X is unknown, just leave it as it is.
// Determine the value of the expression by introspecting how we
// got this location in the CFG. This requires looking at the previous
// block we were in and what kind of control-flow transfer was involved.
const CFGBlock *SrcBlock = BE.getSrc();
// The only terminator (if there is one) that makes sense is a logical op.
CFGTerminator T = SrcBlock->getTerminator();
if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
(void) Term;
assert(Term->isLogicalOp());
assert(SrcBlock->succ_size() == 2);
// Did we take the true or false branch?
unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
X = svalBuilder.makeIntVal(constant, B->getType());
}
else {
// If there is no terminator, by construction the last statement
// in SrcBlock is the value of the enclosing expression.
// However, we still need to constrain that value to be 0 or 1.
assert(!SrcBlock->empty());
CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>();
const Expr *RHS = cast<Expr>(Elem.getStmt());
SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
if (RHSVal.isUndef()) {
X = RHSVal;
} else {
// The value is known to be false.
assert(StFalse && "Infeasible path!");
X = getSValBuilder().makeIntVal(0, B->getType());
DefinedOrUnknownSVal DefinedRHS = RHSVal.castAs<DefinedOrUnknownSVal>();
ProgramStateRef StTrue, StFalse;
llvm::tie(StTrue, StFalse) = N->getState()->assume(DefinedRHS);
if (StTrue) {
if (StFalse) {
// We can't constrain the value to 0 or 1.
// The best we can do is a cast.
X = getSValBuilder().evalCast(RHSVal, B->getType(), RHS->getType());
} else {
// The value is known to be true.
X = getSValBuilder().makeIntVal(1, B->getType());
}
} else {
// The value is known to be false.
assert(StFalse && "Infeasible path!");
X = getSValBuilder().makeIntVal(0, B->getType());
}
}
}
Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
}

View File

@ -0,0 +1,23 @@
// RUN: %clang_cc1 -analyze -analyzer-checker=core -verify %s
// expected-no-diagnostics
class B {
public:
bool m;
~B() {} // The destructor ensures that the binary logical operator below is wrapped in the ExprWithCleanups.
};
B foo();
int getBool();
int *getPtr();
int test() {
int r = 0;
for (int x = 0; x< 10; x++) {
int *p = getPtr();
// Liveness info is not computed correctly due to the following expression.
// This happens due to CFG being special cased for short circuit operators.
// PR18159
if (p != 0 && getBool() && foo().m && getBool()) {
r = *p; // no warning
}
}
return r;
}

View File

@ -0,0 +1,24 @@
// RUN: %clang_cc1 -analyze -analyzer-checker=core -fobjc-arc -verify %s
// expected-no-diagnostics
@interface NSObject
@end
@interface NSString : NSObject
- (id)lastPathComponent;
@end
int getBool();
int *getPtr();
int foo() {
int r = 0;
NSString *filename = @"filename";
for (int x = 0; x< 10; x++) {
int *p = getPtr();
// Liveness info is not computed correctly due to the following expression.
// This happens due to CFG being special cased for short circuit operators.
// Note, due to ObjC method call, the outermost logical operator is wrapped in ExprWithCleanups.
// PR18159
if ((p != 0) && (getBool()) && ([filename lastPathComponent]) && (getBool())) {
r = *p; // no-warning
}
}
return r;
}

View File

@ -1,6 +1,6 @@
// RUN: %clang_cc1 -analyze -analyzer-checker=core,debug.ExprInspection -verify -w -std=c++03 %s
// RUN: %clang_cc1 -analyze -analyzer-checker=core,debug.ExprInspection -verify -w -std=c++11 %s
// RUN: %clang_cc1 -analyze -analyzer-checker=core,debug.ExprInspection -verify -w -analyzer-config cfg-temporary-dtors=true %s -DTEMPORARY_DTORS
// RUN: %clang_cc1 -analyze -analyzer-checker=core,debug.ExprInspection -DTEMPORARY_DTORS -verify -w -analyzer-config cfg-temporary-dtors=true %s
extern bool clang_analyzer_eval(bool);
@ -111,17 +111,20 @@ namespace compound_literals {
}
namespace destructors {
void testPR16664Crash() {
void testPR16664andPR18159Crash() {
struct Dtor {
~Dtor();
};
extern bool coin();
extern bool check(const Dtor &);
// Don't crash here.
#ifndef TEMPORARY_DTORS
// FIXME: Don't crash here when tmp dtros are enabled.
// PR16664 and PR18159
if (coin() && (coin() || coin() || check(Dtor()))) {
Dtor();
}
#endif
}
#ifdef TEMPORARY_DTORS
@ -147,9 +150,6 @@ namespace destructors {
extern bool check(const NoReturnDtor &);
void testConsistencyIf(int i) {
if (i == 5 && (i == 4 || i == 5 || check(NoReturnDtor())))
clang_analyzer_eval(true); // expected-warning{{TRUE}}
if (i != 5)
return;
if (i == 5 && (i == 4 || check(NoReturnDtor()) || i == 5)) {
@ -170,11 +170,18 @@ namespace destructors {
clang_analyzer_eval(true); // no warning, unreachable code
}
/*
// PR16664 and PR18159
FIXME: Don't crash here.
void testConsistencyNested(int i) {
extern bool compute(bool);
if (i == 5 && (i == 4 || i == 5 || check(NoReturnDtor())))
clang_analyzer_eval(true); // expected-warning{{TRUE}}
clang_analyzer_eval(true); // expected TRUE
if (i == 5 && (i == 4 || i == 5 || check(NoReturnDtor())))
clang_analyzer_eval(true); // expected TRUE
if (i != 5)
return;
@ -183,7 +190,7 @@ namespace destructors {
(i == 4 || compute(true) ||
compute(i == 5 && (i == 4 || check(NoReturnDtor()))))) ||
i != 4) {
clang_analyzer_eval(true); // expected-warning{{TRUE}}
clang_analyzer_eval(true); // expected TRUE
}
if (compute(i == 5 &&
@ -192,7 +199,8 @@ namespace destructors {
i != 4) {
clang_analyzer_eval(true); // no warning, unreachable code
}
}
}*/
#endif // TEMPORARY_DTORS
}