AMDGPU: Add a pass to rewrite certain undef in PHI

For the pattern of IR (%if terminates with a divergent branch.),
divergence analysis will report %phi as uniform to help optimal code
generation.
```
  %if
  | \
  | %then
  | /
  %endif: %phi = phi [ %uniform, %if ], [ %undef, %then ]
```
In the backend, %phi and %uniform will be assigned a scalar register.
But the %undef from %then will make the scalar register dead in %then.
This will likely cause the register being over-written in %then. To fix
the issue, we will rewrite %undef as %uniform. For details, please refer
the comment in AMDGPURewriteUndefForPHI.cpp. Currently there is no test
changes shown, but this is mandatory for later changes.

Reviewed by: sameerds

Differential Revision: https://reviews.llvm.org/D133840
This commit is contained in:
Ruiling Song 2022-09-13 14:56:09 +08:00
parent 7a8b9307ca
commit cf14c7caac
7 changed files with 361 additions and 0 deletions

View File

@ -290,6 +290,10 @@ extern char &AMDGPUCodeGenPrepareID;
void initializeAMDGPULateCodeGenPreparePass(PassRegistry &);
extern char &AMDGPULateCodeGenPrepareID;
FunctionPass *createAMDGPURewriteUndefForPHIPass();
void initializeAMDGPURewriteUndefForPHIPass(PassRegistry &);
extern char &AMDGPURewriteUndefForPHIPassID;
void initializeSIAnnotateControlFlowPass(PassRegistry&);
extern char &SIAnnotateControlFlowPassID;

View File

@ -0,0 +1,181 @@
//===- AMDGPURewriteUndefForPHI.cpp ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file implements the idea to rewrite undef incoming operand for certain
// PHIs in structurized CFG. This pass only works on IR that has gone through
// StructurizedCFG pass, and this pass has some additional limitation that make
// it can only run after SIAnnotateControlFlow.
//
// To achieve optimal code generation for AMDGPU, we assume that divergence
// analysis reports the PHI in join block of divergent branch as uniform if
// it has one unique uniform value plus additional undefined/poisoned incoming
// value. That is to say the later compiler pipeline will ensure such PHI always
// return uniform value and ensure it work correctly. Let's take a look at two
// typical patterns in structured CFG that need to be taken care: (In both
// patterns, block %if terminate with divergent branch.)
//
// Pattern A: Block with undefined incoming value dominates defined predecessor
// %if
// | \
// | %then
// | /
// %endif: %phi = phi [%undef, %if], [%uniform, %then]
//
// Pattern B: Block with defined incoming value dominates undefined predecessor
// %if
// | \
// | %then
// | /
// %endif: %phi = phi [%uniform, %if], [%undef, %then]
//
// For pattern A, by reporting %phi as uniform, the later pipeline need to make
// sure it be handled correctly. The backend usually allocates a scalar register
// and if any thread in a wave takes %then path, the scalar register will get
// the %uniform value.
//
// For pattern B, we will replace the undef operand with the other defined value
// in this pass. So the scalar register allocated for such PHI will get correct
// liveness. Without this transformation, the scalar register may be overwritten
// in the %then block.
//
// Limitation note:
// If the join block of divergent threads is a loop header, the pass cannot
// handle it correctly right now. For below case, the undef in %phi should also
// be rewritten. Currently we depend on SIAnnotateControlFlow to split %header
// block to get a separate join block, then we can rewrite the undef correctly.
// %if
// | \
// | %then
// | /
// -> %header: %phi = phi [%uniform, %if], [%undef, %then], [%uniform2, %header]
// | |
// \---
#include "AMDGPU.h"
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/InitializePasses.h"
using namespace llvm;
#define DEBUG_TYPE "amdgpu-rewrite-undef-for-phi"
namespace {
class AMDGPURewriteUndefForPHI : public FunctionPass {
public:
static char ID;
AMDGPURewriteUndefForPHI() : FunctionPass(ID) {
initializeAMDGPURewriteUndefForPHIPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F);
StringRef getPassName() const override {
return "AMDGPU Rewrite Undef for PHI";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<LegacyDivergenceAnalysis>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<LegacyDivergenceAnalysis>();
AU.setPreservesCFG();
}
};
} // end anonymous namespace
char AMDGPURewriteUndefForPHI::ID = 0;
INITIALIZE_PASS_BEGIN(AMDGPURewriteUndefForPHI, DEBUG_TYPE,
"Rewrite undef for PHI", false, false)
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(AMDGPURewriteUndefForPHI, DEBUG_TYPE,
"Rewrite undef for PHI", false, false)
bool rewritePHIs(Function &F, LegacyDivergenceAnalysis *DA, DominatorTree *DT) {
bool Changed = false;
SmallVector<PHINode *> ToBeDeleted;
for (auto &BB : F) {
for (auto &PHI : BB.phis()) {
if (DA->isDivergent(&PHI))
continue;
// The unique incoming value except undef/poison for the PHI node.
Value *UniqueDefinedIncoming = nullptr;
// The divergent block with defined incoming value that dominates all
// other block with the same incoming value.
BasicBlock *DominateBB = nullptr;
// Predecessors with undefined incoming value (excluding loop backedge).
SmallVector<BasicBlock *> Undefs;
for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
Value *Incoming = PHI.getIncomingValue(i);
BasicBlock *IncomingBB = PHI.getIncomingBlock(i);
if (Incoming == &PHI)
continue;
if (isa<UndefValue>(Incoming)) {
// Undef from loop backedge will not be replaced.
if (!DT->dominates(&BB, IncomingBB))
Undefs.push_back(IncomingBB);
continue;
}
if (!UniqueDefinedIncoming) {
UniqueDefinedIncoming = Incoming;
DominateBB = IncomingBB;
} else if (Incoming == UniqueDefinedIncoming) {
// Update DominateBB if necessary.
if (DT->dominates(IncomingBB, DominateBB))
DominateBB = IncomingBB;
} else {
UniqueDefinedIncoming = nullptr;
break;
}
}
// We only need to replace the undef for the PHI which is merging
// defined/undefined values from divergent threads.
// TODO: We should still be able to replace undef value if the unique
// value is a Constant.
if (!UniqueDefinedIncoming || Undefs.empty() ||
!DA->isDivergent(DominateBB->getTerminator()))
continue;
// We only replace the undef when DominateBB truly dominates all the
// other predecessors with undefined incoming value. Make sure DominateBB
// dominates BB so that UniqueDefinedIncoming is available in BB and
// afterwards.
if (DT->dominates(DominateBB, &BB) && all_of(Undefs, [&](BasicBlock *UD) {
return DT->dominates(DominateBB, UD);
})) {
PHI.replaceAllUsesWith(UniqueDefinedIncoming);
ToBeDeleted.push_back(&PHI);
Changed = true;
}
}
}
for (auto *PHI : ToBeDeleted)
PHI->eraseFromParent();
return Changed;
}
bool AMDGPURewriteUndefForPHI::runOnFunction(Function &F) {
LegacyDivergenceAnalysis *DA = &getAnalysis<LegacyDivergenceAnalysis>();
DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
return rewritePHIs(F, DA, DT);
}
FunctionPass *llvm::createAMDGPURewriteUndefForPHIPass() {
return new AMDGPURewriteUndefForPHI();
}

View File

@ -380,6 +380,7 @@ extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() {
initializeAMDGPUReplaceLDSUseWithPointerPass(*PR);
initializeAMDGPULowerModuleLDSPass(*PR);
initializeAMDGPURewriteOutArgumentsPass(*PR);
initializeAMDGPURewriteUndefForPHIPass(*PR);
initializeAMDGPUUnifyMetadataPass(*PR);
initializeSIAnnotateControlFlowPass(*PR);
initializeAMDGPUReleaseVGPRsPass(*PR);
@ -1198,6 +1199,10 @@ bool GCNPassConfig::addPreISel() {
addPass(createAMDGPUAnnotateUniformValues());
if (!LateCFGStructurize) {
addPass(createSIAnnotateControlFlowPass());
// TODO: Move this right after structurizeCFG to avoid extra divergence
// analysis. This depends on stopping SIAnnotateControlFlow from making
// control flow modifications.
addPass(createAMDGPURewriteUndefForPHIPass());
}
addPass(createLCSSAPass());

View File

@ -92,6 +92,7 @@ add_llvm_target(AMDGPUCodeGen
AMDGPUReplaceLDSUseWithPointer.cpp
AMDGPUResourceUsageAnalysis.cpp
AMDGPURewriteOutArguments.cpp
AMDGPURewriteUndefForPHI.cpp
AMDGPUSetWavePriority.cpp
AMDGPUSubtarget.cpp
AMDGPUTargetMachine.cpp

View File

@ -83,6 +83,9 @@
; GCN-O0-NEXT: Memory SSA
; GCN-O0-NEXT: AMDGPU Annotate Uniform Values
; GCN-O0-NEXT: SI annotate control flow
; GCN-O0-NEXT: Post-Dominator Tree Construction
; GCN-O0-NEXT: Legacy Divergence Analysis
; GCN-O0-NEXT: AMDGPU Rewrite Undef for PHI
; GCN-O0-NEXT: LCSSA Verifier
; GCN-O0-NEXT: Loop-Closed SSA Form Pass
; GCN-O0-NEXT: DummyCGSCCPass
@ -264,6 +267,9 @@
; GCN-O1-NEXT: Memory SSA
; GCN-O1-NEXT: AMDGPU Annotate Uniform Values
; GCN-O1-NEXT: SI annotate control flow
; GCN-O1-NEXT: Post-Dominator Tree Construction
; GCN-O1-NEXT: Legacy Divergence Analysis
; GCN-O1-NEXT: AMDGPU Rewrite Undef for PHI
; GCN-O1-NEXT: LCSSA Verifier
; GCN-O1-NEXT: Loop-Closed SSA Form Pass
; GCN-O1-NEXT: DummyCGSCCPass
@ -548,6 +554,9 @@
; GCN-O1-OPTS-NEXT: Memory SSA
; GCN-O1-OPTS-NEXT: AMDGPU Annotate Uniform Values
; GCN-O1-OPTS-NEXT: SI annotate control flow
; GCN-O1-OPTS-NEXT: Post-Dominator Tree Construction
; GCN-O1-OPTS-NEXT: Legacy Divergence Analysis
; GCN-O1-OPTS-NEXT: AMDGPU Rewrite Undef for PHI
; GCN-O1-OPTS-NEXT: LCSSA Verifier
; GCN-O1-OPTS-NEXT: Loop-Closed SSA Form Pass
; GCN-O1-OPTS-NEXT: DummyCGSCCPass
@ -840,6 +849,9 @@
; GCN-O2-NEXT: Memory SSA
; GCN-O2-NEXT: AMDGPU Annotate Uniform Values
; GCN-O2-NEXT: SI annotate control flow
; GCN-O2-NEXT: Post-Dominator Tree Construction
; GCN-O2-NEXT: Legacy Divergence Analysis
; GCN-O2-NEXT: AMDGPU Rewrite Undef for PHI
; GCN-O2-NEXT: LCSSA Verifier
; GCN-O2-NEXT: Loop-Closed SSA Form Pass
; GCN-O2-NEXT: Analysis if a function is memory bound
@ -1147,6 +1159,9 @@
; GCN-O3-NEXT: Memory SSA
; GCN-O3-NEXT: AMDGPU Annotate Uniform Values
; GCN-O3-NEXT: SI annotate control flow
; GCN-O3-NEXT: Post-Dominator Tree Construction
; GCN-O3-NEXT: Legacy Divergence Analysis
; GCN-O3-NEXT: AMDGPU Rewrite Undef for PHI
; GCN-O3-NEXT: LCSSA Verifier
; GCN-O3-NEXT: Loop-Closed SSA Form Pass
; GCN-O3-NEXT: Analysis if a function is memory bound

View File

@ -0,0 +1,103 @@
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt -mtriple=amdgcn-- -S -amdgpu-rewrite-undef-for-phi %s | FileCheck -check-prefix=OPT %s
define amdgpu_ps float @basic(float inreg %c, i32 %x) #0 {
; OPT-LABEL: @basic(
; OPT-NEXT: entry:
; OPT-NEXT: [[CC:%.*]] = icmp slt i32 [[X:%.*]], 0
; OPT-NEXT: br i1 [[CC]], label [[IF:%.*]], label [[END:%.*]]
; OPT: if:
; OPT-NEXT: br label [[END]]
; OPT: end:
; OPT-NEXT: ret float [[C:%.*]]
;
entry:
%cc = icmp slt i32 %x, 0
br i1 %cc, label %if, label %end
if:
br label %end
end:
%c2 = phi float [ undef, %if ], [ %c, %entry ]
ret float %c2
}
define amdgpu_ps float @with_uniform_region_inside(float inreg %c, i32 inreg %d, i32 %x) #0 {
; OPT-LABEL: @with_uniform_region_inside(
; OPT-NEXT: entry:
; OPT-NEXT: [[CC:%.*]] = icmp slt i32 [[X:%.*]], 0
; OPT-NEXT: br i1 [[CC]], label [[IF:%.*]], label [[END:%.*]]
; OPT: if:
; OPT-NEXT: [[CC2:%.*]] = icmp slt i32 [[D:%.*]], 0
; OPT-NEXT: br i1 [[CC2]], label [[BB2:%.*]], label [[BB3:%.*]]
; OPT: bb2:
; OPT-NEXT: br label [[END]]
; OPT: bb3:
; OPT-NEXT: [[CC3:%.*]] = icmp slt i32 [[D]], 2
; OPT-NEXT: br i1 [[CC3]], label [[BB4:%.*]], label [[END]]
; OPT: bb4:
; OPT-NEXT: br label [[END]]
; OPT: end:
; OPT-NEXT: ret float [[C:%.*]]
;
entry:
%cc = icmp slt i32 %x, 0
br i1 %cc, label %if, label %end
if:
%cc2 = icmp slt i32 %d, 0
br i1 %cc2, label %bb2, label %bb3
bb2:
br label %end
bb3:
%cc3 = icmp slt i32 %d, 2
br i1 %cc3, label %bb4, label %end
bb4:
br label %end
end:
%c2 = phi float [ undef, %bb2 ], [ %c, %bb3 ], [ undef, %bb4 ], [ %c, %entry ]
ret float %c2
}
define amdgpu_ps float @exclude_backedge(float inreg %c, i32 %x) #0 {
; OPT-LABEL: @exclude_backedge(
; OPT-NEXT: entry:
; OPT-NEXT: [[CC:%.*]] = icmp slt i32 [[X:%.*]], 0
; OPT-NEXT: br i1 [[CC]], label [[END:%.*]], label [[LOOP:%.*]]
; OPT: loop:
; OPT-NEXT: [[IND:%.*]] = phi i32 [ 0, [[ENTRY:%.*]] ], [ [[INC:%.*]], [[LOOP]] ]
; OPT-NEXT: [[C2:%.*]] = phi float [ [[C:%.*]], [[ENTRY]] ], [ undef, [[LOOP]] ]
; OPT-NEXT: [[INC]] = add i32 [[IND]], 1
; OPT-NEXT: [[LOOP_CC:%.*]] = icmp slt i32 [[INC]], 5
; OPT-NEXT: br i1 [[LOOP_CC]], label [[LOOP]], label [[LOOP_END:%.*]]
; OPT: loop_end:
; OPT-NEXT: br label [[END]]
; OPT: end:
; OPT-NEXT: [[R:%.*]] = phi float [ [[C2]], [[LOOP_END]] ], [ [[C]], [[ENTRY]] ]
; OPT-NEXT: ret float [[R]]
;
entry:
%cc = icmp slt i32 %x, 0
br i1 %cc, label %end, label %loop
loop:
%ind = phi i32 [ 0, %entry ], [ %inc, %loop ]
%c2 = phi float [ %c, %entry ], [ undef, %loop ]
%inc = add i32 %ind, 1
%loop_cc = icmp slt i32 %inc, 5
br i1 %loop_cc, label %loop, label %loop_end
loop_end:
br label %end
end:
%r = phi float [ %c2, %loop_end ], [ %c, %entry ]
ret float %r
}
attributes #0 = { nounwind noinline }

View File

@ -0,0 +1,52 @@
; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc -march=amdgcn -mcpu=gfx1010 -verify-machineinstrs -o - %s | FileCheck --check-prefix=GCN %s
;
; This test shows a typical case that a PHI(%c2) in join block was treated as uniform
; as it has one unique uniform incoming value plus one additional undef incoming
; value. This case might suffer from correctness issue if %c2 was assigned a scalar
; register but meanwhile dead in %if. The problem is solved by replacing the %undef
; with %c (thus replacing %c2 with %c in this example).
define amdgpu_ps float @uniform_phi_with_undef(float inreg %c, float %v, i32 %x, i32 %y) #0 {
; GCN-LABEL: uniform_phi_with_undef:
; GCN: ; %bb.0: ; %entry
; GCN-NEXT: v_cmp_lt_i32_e64 s2, v2, v1
; GCN-NEXT: s_mov_b32 s1, exec_lo
; GCN-NEXT: s_and_b32 s2, s1, s2
; GCN-NEXT: s_mov_b32 exec_lo, s2
; GCN-NEXT: s_cbranch_execz .LBB0_2
; GCN-NEXT: ; %bb.1: ; %if
; GCN-NEXT: s_mov_b32 s2, 2.0
; GCN-NEXT: v_div_scale_f32 v1, s3, s2, s2, v0
; GCN-NEXT: v_rcp_f32_e64 v2, v1
; GCN-NEXT: s_mov_b32 s3, 1.0
; GCN-NEXT: v_fma_f32 v3, -v1, v2, s3
; GCN-NEXT: v_fmac_f32_e64 v2, v3, v2
; GCN-NEXT: v_div_scale_f32 v3, vcc_lo, v0, s2, v0
; GCN-NEXT: v_mul_f32_e64 v4, v3, v2
; GCN-NEXT: v_fma_f32 v5, -v1, v4, v3
; GCN-NEXT: v_fmac_f32_e64 v4, v5, v2
; GCN-NEXT: v_fma_f32 v1, -v1, v4, v3
; GCN-NEXT: v_div_fmas_f32 v1, v1, v2, v4
; GCN-NEXT: v_div_fixup_f32 v0, v1, s2, v0
; GCN-NEXT: .LBB0_2: ; %end
; GCN-NEXT: s_or_b32 exec_lo, exec_lo, s1
; GCN-NEXT: v_add_f32_e64 v0, v0, s0
; GCN-NEXT: ; return to shader part epilog
entry:
%cc = icmp slt i32 %y, %x
br i1 %cc, label %if, label %end
if:
%v.if = fdiv float %v, 2.0
br label %end
end:
%v2 = phi float [ %v.if, %if ], [ %v, %entry ]
%c2 = phi float [ undef, %if ], [ %c, %entry ]
%r = fadd float %v2, %c2
ret float %r
}
attributes #0 = { nounwind optnone noinline }