[RS4GC] "Constant fold" the rs4gc-split-vector-values flag

This flag was part of a migration to a new means of handling vectors-of-points which was described in the llvm-dev thread "FYI: Relocating vector of pointers".  The old code path has been off by default for a while without complaints, so time to cleanup.

llvm-svn: 261569
This commit is contained in:
Philip Reames 2016-02-22 21:01:28 +00:00
parent d32f8e60bf
commit ce38c2ddf6
3 changed files with 1 additions and 324 deletions

View File

@ -75,13 +75,6 @@ static cl::opt<bool>
AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
cl::Hidden, cl::init(true));
/// Should we split vectors of pointers into their individual elements? This
/// is known to be buggy, but the alternate implementation isn't yet ready.
/// This is purely to provide a debugging and dianostic hook until the vector
/// split is replaced with vector relocations.
static cl::opt<bool> UseVectorSplit("rs4gc-split-vector-values", cl::Hidden,
cl::init(false));
namespace {
struct RewriteStatepointsForGC : public ModulePass {
static char ID; // Pass identification, replacement for typeid
@ -1819,139 +1812,6 @@ static void findLiveReferences(
}
}
/// Remove any vector of pointers from the live set by scalarizing them over the
/// statepoint instruction. Adds the scalarized pieces to the live set. It
/// would be preferable to include the vector in the statepoint itself, but
/// the lowering code currently does not handle that. Extending it would be
/// slightly non-trivial since it requires a format change. Given how rare
/// such cases are (for the moment?) scalarizing is an acceptable compromise.
static void splitVectorValues(Instruction *StatepointInst,
StatepointLiveSetTy &LiveSet,
DenseMap<Value *, Value *>& PointerToBase,
DominatorTree &DT) {
SmallVector<Value *, 16> ToSplit;
for (Value *V : LiveSet)
if (isa<VectorType>(V->getType()))
ToSplit.push_back(V);
if (ToSplit.empty())
return;
DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping;
Function &F = *(StatepointInst->getParent()->getParent());
DenseMap<Value *, AllocaInst *> AllocaMap;
// First is normal return, second is exceptional return (invoke only)
DenseMap<Value *, std::pair<Value *, Value *>> Replacements;
for (Value *V : ToSplit) {
AllocaInst *Alloca =
new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI());
AllocaMap[V] = Alloca;
VectorType *VT = cast<VectorType>(V->getType());
IRBuilder<> Builder(StatepointInst);
SmallVector<Value *, 16> Elements;
for (unsigned i = 0; i < VT->getNumElements(); i++)
Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i)));
ElementMapping[V] = Elements;
auto InsertVectorReform = [&](Instruction *IP) {
Builder.SetInsertPoint(IP);
Builder.SetCurrentDebugLocation(IP->getDebugLoc());
Value *ResultVec = UndefValue::get(VT);
for (unsigned i = 0; i < VT->getNumElements(); i++)
ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i],
Builder.getInt32(i));
return ResultVec;
};
if (isa<CallInst>(StatepointInst)) {
BasicBlock::iterator Next(StatepointInst);
Next++;
Instruction *IP = &*(Next);
Replacements[V].first = InsertVectorReform(IP);
Replacements[V].second = nullptr;
} else {
InvokeInst *Invoke = cast<InvokeInst>(StatepointInst);
// We've already normalized - check that we don't have shared destination
// blocks
BasicBlock *NormalDest = Invoke->getNormalDest();
assert(!isa<PHINode>(NormalDest->begin()));
BasicBlock *UnwindDest = Invoke->getUnwindDest();
assert(!isa<PHINode>(UnwindDest->begin()));
// Insert insert element sequences in both successors
Instruction *IP = &*(NormalDest->getFirstInsertionPt());
Replacements[V].first = InsertVectorReform(IP);
IP = &*(UnwindDest->getFirstInsertionPt());
Replacements[V].second = InsertVectorReform(IP);
}
}
for (Value *V : ToSplit) {
AllocaInst *Alloca = AllocaMap[V];
// Capture all users before we start mutating use lists
SmallVector<Instruction *, 16> Users;
for (User *U : V->users())
Users.push_back(cast<Instruction>(U));
for (Instruction *I : Users) {
if (auto Phi = dyn_cast<PHINode>(I)) {
for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++)
if (V == Phi->getIncomingValue(i)) {
LoadInst *Load = new LoadInst(
Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
Phi->setIncomingValue(i, Load);
}
} else {
LoadInst *Load = new LoadInst(Alloca, "", I);
I->replaceUsesOfWith(V, Load);
}
}
// Store the original value and the replacement value into the alloca
StoreInst *Store = new StoreInst(V, Alloca);
if (auto I = dyn_cast<Instruction>(V))
Store->insertAfter(I);
else
Store->insertAfter(Alloca);
// Normal return for invoke, or call return
Instruction *Replacement = cast<Instruction>(Replacements[V].first);
(new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
// Unwind return for invoke only
Replacement = cast_or_null<Instruction>(Replacements[V].second);
if (Replacement)
(new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
}
// apply mem2reg to promote alloca to SSA
SmallVector<AllocaInst *, 16> Allocas;
for (Value *V : ToSplit)
Allocas.push_back(AllocaMap[V]);
PromoteMemToReg(Allocas, DT);
// Update our tracking of live pointers and base mappings to account for the
// changes we just made.
for (Value *V : ToSplit) {
auto &Elements = ElementMapping[V];
LiveSet.erase(V);
LiveSet.insert(Elements.begin(), Elements.end());
// We need to update the base mapping as well.
assert(PointerToBase.count(V));
Value *OldBase = PointerToBase[V];
auto &BaseElements = ElementMapping[OldBase];
PointerToBase.erase(V);
assert(Elements.size() == BaseElements.size());
for (unsigned i = 0; i < Elements.size(); i++) {
Value *Elem = Elements[i];
PointerToBase[Elem] = BaseElements[i];
}
}
}
// Helper function for the "rematerializeLiveValues". It walks use chain
// starting from the "CurrentValue" until it meets "BaseValue". Only "simple"
// values are visited (currently it is GEP's and casts). Returns true if it
@ -2268,22 +2128,6 @@ static bool insertParsePoints(Function &F, DominatorTree &DT,
Holders.clear();
// Do a limited scalarization of any live at safepoint vector values which
// contain pointers. This enables this pass to run after vectorization at
// the cost of some possible performance loss. Note: This is known to not
// handle updating of the side tables correctly which can lead to relocation
// bugs when the same vector is live at multiple statepoints. We're in the
// process of implementing the alternate lowering - relocating the
// vector-of-pointers as first class item and updating the backend to
// understand that - but that's not yet complete.
if (UseVectorSplit)
for (size_t i = 0; i < Records.size(); i++) {
PartiallyConstructedSafepointRecord &Info = Records[i];
Instruction *Statepoint = ToUpdate[i].getInstruction();
splitVectorValues(cast<Instruction>(Statepoint), Info.LiveSet,
Info.PointerToBase, DT);
}
// In order to reduce live set of statepoint we might choose to rematerialize
// some values instead of relocating them. This is purely an optimization and
// does not influence correctness.

View File

@ -1,6 +1,6 @@
; Test that we can correctly handle vectors of pointers in statepoint
; rewriting.
; RUN: opt < %s -rewrite-statepoints-for-gc -rs4gc-split-vector-values=0 -S | FileCheck %s
; RUN: opt < %s -rewrite-statepoints-for-gc -S | FileCheck %s
; A non-vector relocation for comparison
define i64 addrspace(1)* @test(i64 addrspace(1)* %obj) gc "statepoint-example" {

View File

@ -1,167 +0,0 @@
; Test that we can correctly handle vectors of pointers in statepoint
; rewriting. Currently, we scalarize, but that's an implementation detail.
; RUN: opt < %s -rewrite-statepoints-for-gc -rs4gc-split-vector-values -S | FileCheck %s
; A non-vector relocation for comparison
define i64 addrspace(1)* @test(i64 addrspace(1)* %obj) gc "statepoint-example" {
; CHECK-LABEL: test
; CHECK: gc.statepoint
; CHECK-NEXT: gc.relocate
; CHECK-NEXT: bitcast
; CHECK-NEXT: ret i64 addrspace(1)* %obj.relocated.casted
; A base vector from a argument
entry:
call void @do_safepoint() [ "deopt"() ]
ret i64 addrspace(1)* %obj
}
define <2 x i64 addrspace(1)*> @test2(<2 x i64 addrspace(1)*> %obj) gc "statepoint-example" {
; CHECK-LABEL: test2
; CHECK: extractelement
; CHECK-NEXT: extractelement
; CHECK-NEXT: gc.statepoint
; CHECK-NEXT: gc.relocate
; CHECK-NEXT: bitcast
; CHECK-NEXT: gc.relocate
; CHECK-NEXT: bitcast
; CHECK-NEXT: insertelement
; CHECK-NEXT: insertelement
; CHECK-NEXT: ret <2 x i64 addrspace(1)*> %7
; A base vector from a load
entry:
call void @do_safepoint() [ "deopt"() ]
ret <2 x i64 addrspace(1)*> %obj
}
define <2 x i64 addrspace(1)*> @test3(<2 x i64 addrspace(1)*>* %ptr) gc "statepoint-example" {
; CHECK-LABEL: test3
; CHECK: load
; CHECK-NEXT: extractelement
; CHECK-NEXT: extractelement
; CHECK-NEXT: gc.statepoint
; CHECK-NEXT: gc.relocate
; CHECK-NEXT: bitcast
; CHECK-NEXT: gc.relocate
; CHECK-NEXT: bitcast
; CHECK-NEXT: insertelement
; CHECK-NEXT: insertelement
; CHECK-NEXT: ret <2 x i64 addrspace(1)*> %7
; When a statepoint is an invoke rather than a call
entry:
%obj = load <2 x i64 addrspace(1)*>, <2 x i64 addrspace(1)*>* %ptr
call void @do_safepoint() [ "deopt"() ]
ret <2 x i64 addrspace(1)*> %obj
}
declare i32 @fake_personality_function()
define <2 x i64 addrspace(1)*> @test4(<2 x i64 addrspace(1)*>* %ptr) gc "statepoint-example" personality i32 ()* @fake_personality_function {
; CHECK-LABEL: test4
; CHECK: load
; CHECK-NEXT: extractelement
; CHECK-NEXT: extractelement
; CHECK-NEXT: gc.statepoint
entry:
%obj = load <2 x i64 addrspace(1)*>, <2 x i64 addrspace(1)*>* %ptr
invoke void @do_safepoint() [ "deopt"() ]
to label %normal_return unwind label %exceptional_return
normal_return: ; preds = %entry
; CHECK-LABEL: normal_return:
; CHECK: gc.relocate
; CHECK-NEXT: bitcast
; CHECK-NEXT: gc.relocate
; CHECK-NEXT: bitcast
; CHECK-NEXT: insertelement
; CHECK-NEXT: insertelement
; CHECK-NEXT: ret <2 x i64 addrspace(1)*> %7
ret <2 x i64 addrspace(1)*> %obj
exceptional_return: ; preds = %entry
; CHECK-LABEL: exceptional_return:
; CHECK: gc.relocate
; CHECK-NEXT: bitcast
; CHECK-NEXT: gc.relocate
; CHECK-NEXT: bitcast
; CHECK-NEXT: insertelement
; CHECK-NEXT: insertelement
; CHECK-NEXT: ret <2 x i64 addrspace(1)*> %13
; Can we handle an insert element with a constant offset? This effectively
; tests both the equal and inequal case since we have to relocate both indices
; in the vector.
%landing_pad4 = landingpad token
cleanup
ret <2 x i64 addrspace(1)*> %obj
}
define <2 x i64 addrspace(1)*> @test5(i64 addrspace(1)* %p) gc "statepoint-example" {
; CHECK-LABEL: test5
; CHECK: insertelement
; CHECK-NEXT: insertelement
; CHECK-NEXT: extractelement
; CHECK-NEXT: extractelement
; CHECK-NEXT: extractelement
; CHECK-NEXT: extractelement
; CHECK-NEXT: gc.statepoint
; CHECK-NEXT: gc.relocate
; CHECK-NEXT: bitcast
; CHECK-NEXT: gc.relocate
; CHECK-NEXT: bitcast
; CHECK-NEXT: gc.relocate
; CHECK-NEXT: bitcast
; CHECK-NEXT: gc.relocate
; CHECK-NEXT: bitcast
; CHECK-NEXT: insertelement
; CHECK-NEXT: insertelement
; CHECK-NEXT: insertelement
; CHECK-NEXT: insertelement
; CHECK-NEXT: ret <2 x i64 addrspace(1)*>
; A base vector from a load
entry:
%vec = insertelement <2 x i64 addrspace(1)*> undef, i64 addrspace(1)* %p, i32 0
call void @do_safepoint() [ "deopt"() ]
ret <2 x i64 addrspace(1)*> %vec
}
define <2 x i64 addrspace(1)*> @test6(i1 %cnd, <2 x i64 addrspace(1)*>* %ptr) gc "statepoint-example" {
; CHECK-LABEL: test6
entry:
br i1 %cnd, label %taken, label %untaken
taken: ; preds = %entry
%obja = load <2 x i64 addrspace(1)*>, <2 x i64 addrspace(1)*>* %ptr
br label %merge
untaken: ; preds = %entry
%objb = load <2 x i64 addrspace(1)*>, <2 x i64 addrspace(1)*>* %ptr
br label %merge
merge: ; preds = %untaken, %taken
; CHECK-LABEL: merge:
; CHECK-NEXT: = phi
; CHECK-NEXT: = phi
; CHECK-NEXT: extractelement
; CHECK-NEXT: extractelement
; CHECK-NEXT: extractelement
; CHECK-NEXT: extractelement
; CHECK-NEXT: gc.statepoint
; CHECK-NEXT: gc.relocate
; CHECK-NEXT: bitcast
; CHECK-NEXT: gc.relocate
; CHECK-NEXT: bitcast
; CHECK-NEXT: gc.relocate
; CHECK-NEXT: bitcast
; CHECK-NEXT: gc.relocate
; CHECK-NEXT: bitcast
; CHECK-NEXT: insertelement
; CHECK-NEXT: insertelement
; CHECK-NEXT: insertelement
; CHECK-NEXT: insertelement
; CHECK-NEXT: ret <2 x i64 addrspace(1)*>
%obj = phi <2 x i64 addrspace(1)*> [ %obja, %taken ], [ %objb, %untaken ]
call void @do_safepoint() [ "deopt"() ]
ret <2 x i64 addrspace(1)*> %obj
}
declare void @do_safepoint()