[Fixed Point Arithmetic] Fixed Point Comparisons

This patch implements fixed point comparisons with other fixed point types and
integers. This also provides constant expression evaluation for them.

Differential Revision: https://reviews.llvm.org/D57219

llvm-svn: 354621
This commit is contained in:
Leonard Chan 2019-02-21 20:50:09 +00:00
parent c2650178a1
commit ce1d4f1bec
3 changed files with 429 additions and 13 deletions

View File

@ -9144,6 +9144,22 @@ EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E,
return Success(CCR::Equal, E);
}
if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) {
APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy));
APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy));
bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info);
if (!LHSOK && !Info.noteFailure())
return false;
if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK)
return false;
if (LHSFX < RHSFX)
return Success(CCR::Less, E);
if (LHSFX > RHSFX)
return Success(CCR::Greater, E);
return Success(CCR::Equal, E);
}
if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
ComplexValue LHS, RHS;
bool LHSOK;

View File

@ -125,11 +125,19 @@ struct BinOpInfo {
return true;
}
/// Check if either operand is a fixed point type, in which case, this
/// Check if either operand is a fixed point type or integer type, with at
/// least one being a fixed point type. In any case, this
/// operation did not follow usual arithmetic conversion and both operands may
/// not be the same.
bool isFixedPointBinOp() const {
return isa<BinaryOperator>(E) && Ty->isFixedPointType();
// We cannot simply check the result type since comparison operations return
// an int.
if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) {
QualType LHSType = BinOp->getLHS()->getType();
QualType RHSType = BinOp->getRHS()->getType();
return LHSType->isFixedPointType() || RHSType->isFixedPointType();
}
return false;
}
};
@ -3372,8 +3380,6 @@ Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
using llvm::ConstantInt;
const auto *BinOp = cast<BinaryOperator>(op.E);
assert((BinOp->getOpcode() == BO_Add || BinOp->getOpcode() == BO_Sub) &&
"Expected operation to be addition or subtraction");
// The result is a fixed point type and at least one of the operands is fixed
// point while the other is either fixed point or an int. This resulting type
@ -3421,17 +3427,30 @@ Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) {
}
break;
}
case BO_LT:
return CommonFixedSema.isSigned() ? Builder.CreateICmpSLT(FullLHS, FullRHS)
: Builder.CreateICmpULT(FullLHS, FullRHS);
case BO_GT:
return CommonFixedSema.isSigned() ? Builder.CreateICmpSGT(FullLHS, FullRHS)
: Builder.CreateICmpUGT(FullLHS, FullRHS);
case BO_LE:
return CommonFixedSema.isSigned() ? Builder.CreateICmpSLE(FullLHS, FullRHS)
: Builder.CreateICmpULE(FullLHS, FullRHS);
case BO_GE:
return CommonFixedSema.isSigned() ? Builder.CreateICmpSGE(FullLHS, FullRHS)
: Builder.CreateICmpUGE(FullLHS, FullRHS);
case BO_EQ:
// For equality operations, we assume any padding bits on unsigned types are
// zero'd out. They could be overwritten through non-saturating operations
// that cause overflow, but this leads to undefined behavior.
return Builder.CreateICmpEQ(FullLHS, FullRHS);
case BO_NE:
return Builder.CreateICmpNE(FullLHS, FullRHS);
case BO_Mul:
case BO_Div:
case BO_Shl:
case BO_Shr:
case BO_Cmp:
case BO_LT:
case BO_GT:
case BO_LE:
case BO_GE:
case BO_EQ:
case BO_NE:
case BO_LAnd:
case BO_LOr:
case BO_MulAssign:
@ -3714,8 +3733,9 @@ Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
} else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
Value *LHS = Visit(E->getLHS());
Value *RHS = Visit(E->getRHS());
BinOpInfo BOInfo = EmitBinOps(E);
Value *LHS = BOInfo.LHS;
Value *RHS = BOInfo.RHS;
// If AltiVec, the comparison results in a numeric type, so we use
// intrinsics comparing vectors and giving 0 or 1 as a result
@ -3793,7 +3813,9 @@ Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
E->getExprLoc());
}
if (LHS->getType()->isFPOrFPVectorTy()) {
if (BOInfo.isFixedPointBinOp()) {
Result = EmitFixedPointBinOp(BOInfo);
} else if (LHS->getType()->isFPOrFPVectorTy()) {
Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
} else if (LHSTy->hasSignedIntegerRepresentation()) {
Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");

View File

@ -0,0 +1,378 @@
// RUN: %clang_cc1 -ffixed-point -triple x86_64-unknown-linux-gnu -S -emit-llvm %s -o - | FileCheck %s --check-prefixes=CHECK,UNPADDED
// RUN: %clang_cc1 -ffixed-point -triple x86_64-unknown-linux-gnu -fpadding-on-unsigned-fixed-point -S -emit-llvm %s -o - | FileCheck %s --check-prefixes=CHECK,PADDED
// Fixed point against other fixed point
_Bool b_eq_true = 2.5hk == 2.5uhk; // CHECK-DAG: @b_eq_true = {{.*}}global i8 1, align 1
_Bool b_eq_false = 2.5hk == 2.4uhk; // CHECK-DAG: @b_eq_false = {{.*}}global i8 0, align 1
_Bool b_ne_true = 2.5hk != 2.4uhk; // CHECK-DAG: @b_ne_true = {{.*}}global i8 1, align 1
_Bool b_ne_false = 2.5hk != 2.5uhk; // CHECK-DAG: @b_ne_false = {{.*}}global i8 0, align 1
_Bool b_lt_true = 2.5hk < 2.75uhk; // CHECK-DAG: @b_lt_true = {{.*}}global i8 1, align 1
_Bool b_lt_false = 2.5hk < 2.5uhk; // CHECK-DAG: @b_lt_false = {{.*}}global i8 0, align 1
_Bool b_le_true = 2.5hk <= 2.75uhk; // CHECK-DAG: @b_le_true = {{.*}}global i8 1, align 1
_Bool b_le_true2 = 2.5hk <= 2.5uhk; // CHECK-DAG: @b_le_true2 = {{.*}}global i8 1, align 1
_Bool b_le_false = 2.5hk <= 2.4uhk; // CHECK-DAG: @b_le_false = {{.*}}global i8 0, align 1
_Bool b_gt_true = 2.75hk > 2.5uhk; // CHECK-DAG: @b_gt_true = {{.*}}global i8 1, align 1
_Bool b_gt_false = 2.75hk > 2.75uhk; // CHECK-DAG: @b_gt_false = {{.*}}global i8 0, align 1
_Bool b_ge_true = 2.75hk >= 2.5uhk; // CHECK-DAG: @b_ge_true = {{.*}}global i8 1, align 1
_Bool b_ge_true2 = 2.75hk >= 2.75uhk; // CHECK-DAG: @b_ge_true2 = {{.*}}global i8 1, align 1
_Bool b_ge_false = 2.5hk >= 2.75uhk; // CHECK-DAG: @b_ge_false = {{.*}}global i8 0, align 1
// Fixed point against int
_Bool b_ieq_true = 2.0hk == 2; // CHECK-DAG: @b_ieq_true = {{.*}}global i8 1, align 1
_Bool b_ieq_false = 2.0hk == 3; // CHECK-DAG: @b_ieq_false = {{.*}}global i8 0, align 1
_Bool b_ine_true = 2.0hk != 3; // CHECK-DAG: @b_ine_true = {{.*}}global i8 1, align 1
_Bool b_ine_false = 2.0hk != 2; // CHECK-DAG: @b_ine_false = {{.*}}global i8 0, align 1
_Bool b_ilt_true = 2.0hk < 3; // CHECK-DAG: @b_ilt_true = {{.*}}global i8 1, align 1
_Bool b_ilt_false = 2.0hk < 2; // CHECK-DAG: @b_ilt_false = {{.*}}global i8 0, align 1
_Bool b_ile_true = 2.0hk <= 3; // CHECK-DAG: @b_ile_true = {{.*}}global i8 1, align 1
_Bool b_ile_true2 = 2.0hk <= 2; // CHECK-DAG: @b_ile_true2 = {{.*}}global i8 1, align 1
_Bool b_ile_false = 2.0hk <= 1; // CHECK-DAG: @b_ile_false = {{.*}}global i8 0, align 1
_Bool b_igt_true = 2.0hk > 1; // CHECK-DAG: @b_igt_true = {{.*}}global i8 1, align 1
_Bool b_igt_false = 2.0hk > 2; // CHECK-DAG: @b_igt_false = {{.*}}global i8 0, align 1
_Bool b_ige_true = 2.0hk >= 1; // CHECK-DAG: @b_ige_true = {{.*}}global i8 1, align 1
_Bool b_ige_true2 = 2.0hk >= 2; // CHECK-DAG: @b_ige_true2 = {{.*}}global i8 1, align 1
_Bool b_ige_false = 2.0hk >= 3; // CHECK-DAG: @b_ige_false = {{.*}}global i8 0, align 1
// Different signage
// Since we can have different precisions, non powers of 2 fractions may have
// different actual values when being compared.
_Bool b_sne_true = 2.6hk != 2.6uhk;
// UNPADDED-DAG: @b_sne_true = {{.*}}global i8 1, align 1
// PADDED-DAG: @b_sne_true = {{.*}}global i8 0, align 1
_Bool b_seq_true = 2.0hk == 2u; // CHECK-DAG: @b_seq_true = {{.*}}global i8 1, align 1
_Bool b_seq_true2 = 2.0uhk == 2; // CHECK-DAG: @b_seq_true2 = {{.*}}global i8 1, align 1
void TestComparisons() {
short _Accum sa;
_Accum a;
unsigned short _Accum usa;
unsigned _Accum ua;
// Each of these should be a fixed point conversion followed by the actual
// comparison operation.
sa == a;
// CHECK: [[A:%[0-9]+]] = load i16, i16* %sa, align 2
// CHECK-NEXT: [[A2:%[0-9]+]] = load i32, i32* %a, align 4
// CHECK-NEXT: [[RESIZE_A:%[a-z0-9]+]] = sext i16 [[A]] to i32
// CHECK-NEXT: [[UPSCALE_A:%[a-z0-9]+]] = shl i32 [[RESIZE_A]], 8
// CHECK-NEXT: {{.*}} = icmp eq i32 [[UPSCALE_A]], [[A2]]
sa != a;
// CHECK: [[A:%[0-9]+]] = load i16, i16* %sa, align 2
// CHECK-NEXT: [[A2:%[0-9]+]] = load i32, i32* %a, align 4
// CHECK-NEXT: [[RESIZE_A:%[a-z0-9]+]] = sext i16 [[A]] to i32
// CHECK-NEXT: [[UPSCALE_A:%[a-z0-9]+]] = shl i32 [[RESIZE_A]], 8
// CHECK-NEXT: {{.*}} = icmp ne i32 [[UPSCALE_A]], [[A2]]
sa > a;
// CHECK: [[A:%[0-9]+]] = load i16, i16* %sa, align 2
// CHECK-NEXT: [[A2:%[0-9]+]] = load i32, i32* %a, align 4
// CHECK-NEXT: [[RESIZE_A:%[a-z0-9]+]] = sext i16 [[A]] to i32
// CHECK-NEXT: [[UPSCALE_A:%[a-z0-9]+]] = shl i32 [[RESIZE_A]], 8
// CHECK-NEXT: {{.*}} = icmp sgt i32 [[UPSCALE_A]], [[A2]]
sa >= a;
// CHECK: [[A:%[0-9]+]] = load i16, i16* %sa, align 2
// CHECK-NEXT: [[A2:%[0-9]+]] = load i32, i32* %a, align 4
// CHECK-NEXT: [[RESIZE_A:%[a-z0-9]+]] = sext i16 [[A]] to i32
// CHECK-NEXT: [[UPSCALE_A:%[a-z0-9]+]] = shl i32 [[RESIZE_A]], 8
// CHECK-NEXT: {{.*}} = icmp sge i32 [[UPSCALE_A]], [[A2]]
sa < a;
// CHECK: [[A:%[0-9]+]] = load i16, i16* %sa, align 2
// CHECK-NEXT: [[A2:%[0-9]+]] = load i32, i32* %a, align 4
// CHECK-NEXT: [[RESIZE_A:%[a-z0-9]+]] = sext i16 [[A]] to i32
// CHECK-NEXT: [[UPSCALE_A:%[a-z0-9]+]] = shl i32 [[RESIZE_A]], 8
// CHECK-NEXT: {{.*}} = icmp slt i32 [[UPSCALE_A]], [[A2]]
sa <= a;
// CHECK: [[A:%[0-9]+]] = load i16, i16* %sa, align 2
// CHECK-NEXT: [[A2:%[0-9]+]] = load i32, i32* %a, align 4
// CHECK-NEXT: [[RESIZE_A:%[a-z0-9]+]] = sext i16 [[A]] to i32
// CHECK-NEXT: [[UPSCALE_A:%[a-z0-9]+]] = shl i32 [[RESIZE_A]], 8
// CHECK-NEXT: {{.*}} = icmp sle i32 [[UPSCALE_A]], [[A2]]
usa > ua;
// CHECK: [[A:%[0-9]+]] = load i16, i16* %usa, align 2
// CHECK-NEXT: [[A2:%[0-9]+]] = load i32, i32* %ua, align 4
// CHECK-NEXT: [[RESIZE_A:%[a-z0-9]+]] = zext i16 [[A]] to i32
// CHECK-NEXT: [[UPSCALE_A:%[a-z0-9]+]] = shl i32 [[RESIZE_A]], 8
// CHECK-NEXT: {{.*}} = icmp ugt i32 [[UPSCALE_A]], [[A2]]
usa >= ua;
// CHECK: [[A:%[0-9]+]] = load i16, i16* %usa, align 2
// CHECK-NEXT: [[A2:%[0-9]+]] = load i32, i32* %ua, align 4
// CHECK-NEXT: [[RESIZE_A:%[a-z0-9]+]] = zext i16 [[A]] to i32
// CHECK-NEXT: [[UPSCALE_A:%[a-z0-9]+]] = shl i32 [[RESIZE_A]], 8
// CHECK-NEXT: {{.*}} = icmp uge i32 [[UPSCALE_A]], [[A2]]
usa < ua;
// CHECK: [[A:%[0-9]+]] = load i16, i16* %usa, align 2
// CHECK-NEXT: [[A2:%[0-9]+]] = load i32, i32* %ua, align 4
// CHECK-NEXT: [[RESIZE_A:%[a-z0-9]+]] = zext i16 [[A]] to i32
// CHECK-NEXT: [[UPSCALE_A:%[a-z0-9]+]] = shl i32 [[RESIZE_A]], 8
// CHECK-NEXT: {{.*}} = icmp ult i32 [[UPSCALE_A]], [[A2]]
usa <= ua;
// CHECK: [[A:%[0-9]+]] = load i16, i16* %usa, align 2
// CHECK-NEXT: [[A2:%[0-9]+]] = load i32, i32* %ua, align 4
// CHECK-NEXT: [[RESIZE_A:%[a-z0-9]+]] = zext i16 [[A]] to i32
// CHECK-NEXT: [[UPSCALE_A:%[a-z0-9]+]] = shl i32 [[RESIZE_A]], 8
// CHECK-NEXT: {{.*}} = icmp ule i32 [[UPSCALE_A]], [[A2]]
}
void TestIntComparisons() {
short _Accum sa;
unsigned short _Accum usa;
int i;
unsigned int ui;
_Bool b;
char c;
short s;
enum E {
A = 2
} e;
// These comparisons shouldn't be that different from comparing against fixed
// point types with other fixed point types.
sa == i;
// CHECK: [[A:%[0-9]+]] = load i16, i16* %sa, align 2
// CHECK-NEXT: [[I:%[0-9]+]] = load i32, i32* %i, align 4
// CHECK-NEXT: [[RESIZE_A:%[a-z0-9]+]] = sext i16 [[A]] to i39
// CHECK-NEXT: [[RESIZE_I:%[a-z0-9]+]] = sext i32 [[I]] to i39
// CHECK-NEXT: [[UPSCALE_I:%[a-z0-9]+]] = shl i39 [[RESIZE_I]], 7
// CHECK-NEXT: {{.*}} = icmp eq i39 [[RESIZE_A]], [[UPSCALE_I]]
sa != i;
// CHECK: [[A:%[0-9]+]] = load i16, i16* %sa, align 2
// CHECK-NEXT: [[I:%[0-9]+]] = load i32, i32* %i, align 4
// CHECK-NEXT: [[RESIZE_A:%[a-z0-9]+]] = sext i16 [[A]] to i39
// CHECK-NEXT: [[RESIZE_I:%[a-z0-9]+]] = sext i32 [[I]] to i39
// CHECK-NEXT: [[UPSCALE_I:%[a-z0-9]+]] = shl i39 [[RESIZE_I]], 7
// CHECK-NEXT: {{.*}} = icmp ne i39 [[RESIZE_A]], [[UPSCALE_I]]
sa > i;
// CHECK: [[A:%[0-9]+]] = load i16, i16* %sa, align 2
// CHECK-NEXT: [[I:%[0-9]+]] = load i32, i32* %i, align 4
// CHECK-NEXT: [[RESIZE_A:%[a-z0-9]+]] = sext i16 [[A]] to i39
// CHECK-NEXT: [[RESIZE_I:%[a-z0-9]+]] = sext i32 [[I]] to i39
// CHECK-NEXT: [[UPSCALE_I:%[a-z0-9]+]] = shl i39 [[RESIZE_I]], 7
// CHECK-NEXT: {{.*}} = icmp sgt i39 [[RESIZE_A]], [[UPSCALE_I]]
sa >= i;
// CHECK: [[A:%[0-9]+]] = load i16, i16* %sa, align 2
// CHECK-NEXT: [[I:%[0-9]+]] = load i32, i32* %i, align 4
// CHECK-NEXT: [[RESIZE_A:%[a-z0-9]+]] = sext i16 [[A]] to i39
// CHECK-NEXT: [[RESIZE_I:%[a-z0-9]+]] = sext i32 [[I]] to i39
// CHECK-NEXT: [[UPSCALE_I:%[a-z0-9]+]] = shl i39 [[RESIZE_I]], 7
// CHECK-NEXT: {{.*}} = icmp sge i39 [[RESIZE_A]], [[UPSCALE_I]]
sa < i;
// CHECK: [[A:%[0-9]+]] = load i16, i16* %sa, align 2
// CHECK-NEXT: [[I:%[0-9]+]] = load i32, i32* %i, align 4
// CHECK-NEXT: [[RESIZE_A:%[a-z0-9]+]] = sext i16 [[A]] to i39
// CHECK-NEXT: [[RESIZE_I:%[a-z0-9]+]] = sext i32 [[I]] to i39
// CHECK-NEXT: [[UPSCALE_I:%[a-z0-9]+]] = shl i39 [[RESIZE_I]], 7
// CHECK-NEXT: {{.*}} = icmp slt i39 [[RESIZE_A]], [[UPSCALE_I]]
sa <= i;
// CHECK: [[A:%[0-9]+]] = load i16, i16* %sa, align 2
// CHECK-NEXT: [[I:%[0-9]+]] = load i32, i32* %i, align 4
// CHECK-NEXT: [[RESIZE_A:%[a-z0-9]+]] = sext i16 [[A]] to i39
// CHECK-NEXT: [[RESIZE_I:%[a-z0-9]+]] = sext i32 [[I]] to i39
// CHECK-NEXT: [[UPSCALE_I:%[a-z0-9]+]] = shl i39 [[RESIZE_I]], 7
// CHECK-NEXT: {{.*}} = icmp sle i39 [[RESIZE_A]], [[UPSCALE_I]]
usa > ui;
// CHECK: [[A:%[0-9]+]] = load i16, i16* %usa, align 2
// CHECK-NEXT: [[I:%[0-9]+]] = load i32, i32* %ui, align 4
// UNPADDED-NEXT: [[RESIZE_A:%[a-z0-9]+]] = zext i16 [[A]] to i40
// UNPADDED-NEXT: [[RESIZE_I:%[a-z0-9]+]] = zext i32 [[I]] to i40
// UNPADDED-NEXT: [[UPSCALE_I:%[a-z0-9]+]] = shl i40 [[RESIZE_I]], 8
// UNPADDED-NEXT: {{.*}} = icmp ugt i40 [[RESIZE_A]], [[UPSCALE_I]]
// PADDED-NEXT: [[RESIZE_A:%[a-z0-9]+]] = zext i16 [[A]] to i39
// PADDED-NEXT: [[RESIZE_I:%[a-z0-9]+]] = zext i32 [[I]] to i39
// PADDED-NEXT: [[UPSCALE_I:%[a-z0-9]+]] = shl i39 [[RESIZE_I]], 7
// PADDED-NEXT: {{.*}} = icmp ugt i39 [[RESIZE_A]], [[UPSCALE_I]]
usa >= ui;
// CHECK: [[A:%[0-9]+]] = load i16, i16* %usa, align 2
// CHECK-NEXT: [[I:%[0-9]+]] = load i32, i32* %ui, align 4
// UNPADDED-NEXT: [[RESIZE_A:%[a-z0-9]+]] = zext i16 [[A]] to i40
// UNPADDED-NEXT: [[RESIZE_I:%[a-z0-9]+]] = zext i32 [[I]] to i40
// UNPADDED-NEXT: [[UPSCALE_I:%[a-z0-9]+]] = shl i40 [[RESIZE_I]], 8
// UNPADDED-NEXT: {{.*}} = icmp uge i40 [[RESIZE_A]], [[UPSCALE_I]]
// PADDED-NEXT: [[RESIZE_A:%[a-z0-9]+]] = zext i16 [[A]] to i39
// PADDED-NEXT: [[RESIZE_I:%[a-z0-9]+]] = zext i32 [[I]] to i39
// PADDED-NEXT: [[UPSCALE_I:%[a-z0-9]+]] = shl i39 [[RESIZE_I]], 7
// PADDED-NEXT: {{.*}} = icmp uge i39 [[RESIZE_A]], [[UPSCALE_I]]
usa < ui;
// CHECK: [[A:%[0-9]+]] = load i16, i16* %usa, align 2
// CHECK-NEXT: [[I:%[0-9]+]] = load i32, i32* %ui, align 4
// UNPADDED-NEXT: [[RESIZE_A:%[a-z0-9]+]] = zext i16 [[A]] to i40
// UNPADDED-NEXT: [[RESIZE_I:%[a-z0-9]+]] = zext i32 [[I]] to i40
// UNPADDED-NEXT: [[UPSCALE_I:%[a-z0-9]+]] = shl i40 [[RESIZE_I]], 8
// UNPADDED-NEXT: {{.*}} = icmp ult i40 [[RESIZE_A]], [[UPSCALE_I]]
// PADDED-NEXT: [[RESIZE_A:%[a-z0-9]+]] = zext i16 [[A]] to i39
// PADDED-NEXT: [[RESIZE_I:%[a-z0-9]+]] = zext i32 [[I]] to i39
// PADDED-NEXT: [[UPSCALE_I:%[a-z0-9]+]] = shl i39 [[RESIZE_I]], 7
// PADDED-NEXT: {{.*}} = icmp ult i39 [[RESIZE_A]], [[UPSCALE_I]]
usa <= ui;
// CHECK: [[A:%[0-9]+]] = load i16, i16* %usa, align 2
// CHECK-NEXT: [[I:%[0-9]+]] = load i32, i32* %ui, align 4
// UNPADDED-NEXT: [[RESIZE_A:%[a-z0-9]+]] = zext i16 [[A]] to i40
// UNPADDED-NEXT: [[RESIZE_I:%[a-z0-9]+]] = zext i32 [[I]] to i40
// UNPADDED-NEXT: [[UPSCALE_I:%[a-z0-9]+]] = shl i40 [[RESIZE_I]], 8
// UNPADDED-NEXT: {{.*}} = icmp ule i40 [[RESIZE_A]], [[UPSCALE_I]]
// PADDED-NEXT: [[RESIZE_A:%[a-z0-9]+]] = zext i16 [[A]] to i39
// PADDED-NEXT: [[RESIZE_I:%[a-z0-9]+]] = zext i32 [[I]] to i39
// PADDED-NEXT: [[UPSCALE_I:%[a-z0-9]+]] = shl i39 [[RESIZE_I]], 7
// PADDED-NEXT: {{.*}} = icmp ule i39 [[RESIZE_A]], [[UPSCALE_I]]
// Allow for comparisons with other int like types. These are no different
// from comparing to an int other than varying sizes. The integer types are
// still converted to ints or unsigned ints from UsualUnaryConversions().
sa == b;
// CHECK: [[A:%[0-9]+]] = load i16, i16* %sa, align 2
// CHECK-NEXT: [[B:%[0-9]+]] = load i8, i8* %b, align 1
// CHECK-NEXT: %tobool = trunc i8 [[B]] to i1
// CHECK-NEXT: [[CONV_B:%[a-z0-9]+]] = zext i1 %tobool to i32
// CHECK-NEXT: [[RESIZE_A:%[a-z0-9]+]] = sext i16 [[A]] to i39
// CHECK-NEXT: [[RESIZE_B:%[a-z0-9]+]] = sext i32 [[CONV_B]] to i39
// CHECK-NEXT: [[UPSCALE_B:%[a-z0-9]+]] = shl i39 [[RESIZE_B]], 7
// CHECK-NEXT: {{.*}} = icmp eq i39 [[RESIZE_A]], [[UPSCALE_B]]
sa == c;
// CHECK: [[A:%[0-9]+]] = load i16, i16* %sa, align 2
// CHECK-NEXT: [[C:%[0-9]+]] = load i8, i8* %c, align 1
// CHECK-NEXT: [[CONV_C:%[a-z0-9]+]] = sext i8 [[C]] to i32
// CHECK-NEXT: [[RESIZE_A:%[a-z0-9]+]] = sext i16 [[A]] to i39
// CHECK-NEXT: [[RESIZE_C:%[a-z0-9]+]] = sext i32 [[CONV_C]] to i39
// CHECK-NEXT: [[UPSCALE_C:%[a-z0-9]+]] = shl i39 [[RESIZE_C]], 7
// CHECK-NEXT: {{.*}} = icmp eq i39 [[RESIZE_A]], [[UPSCALE_C]]
sa == s;
// CHECK: [[A:%[0-9]+]] = load i16, i16* %sa, align 2
// CHECK-NEXT: [[S:%[0-9]+]] = load i16, i16* %s, align 2
// CHECK-NEXT: [[CONV_S:%[a-z0-9]+]] = sext i16 [[S]] to i32
// CHECK-NEXT: [[RESIZE_A:%[a-z0-9]+]] = sext i16 [[A]] to i39
// CHECK-NEXT: [[RESIZE_S:%[a-z0-9]+]] = sext i32 [[CONV_S]] to i39
// CHECK-NEXT: [[UPSCALE_S:%[a-z0-9]+]] = shl i39 [[RESIZE_S]], 7
// CHECK-NEXT: {{.*}} = icmp eq i39 [[RESIZE_A]], [[UPSCALE_S]]
// An enum value is IntegralCast to an unsigned int.
usa == e;
// CHECK: [[A:%[0-9]+]] = load i16, i16* %usa, align 2
// CHECK-NEXT: [[I:%[0-9]+]] = load i32, i32* %e, align 4
// UNPADDED-NEXT: [[RESIZE_A:%[a-z0-9]+]] = zext i16 [[A]] to i40
// UNPADDED-NEXT: [[RESIZE_I:%[a-z0-9]+]] = zext i32 [[I]] to i40
// UNPADDED-NEXT: [[UPSCALE_I:%[a-z0-9]+]] = shl i40 [[RESIZE_I]], 8
// UNPADDED-NEXT: {{.*}} = icmp eq i40 [[RESIZE_A]], [[UPSCALE_I]]
// PADDED-NEXT: [[RESIZE_A:%[a-z0-9]+]] = zext i16 [[A]] to i39
// PADDED-NEXT: [[RESIZE_I:%[a-z0-9]+]] = zext i32 [[I]] to i39
// PADDED-NEXT: [[UPSCALE_I:%[a-z0-9]+]] = shl i39 [[RESIZE_I]], 7
// PADDED-NEXT: {{.*}} = icmp eq i39 [[RESIZE_A]], [[UPSCALE_I]]
}
void TestComparisonSignage() {
short _Accum sa;
unsigned short _Accum usa;
int i;
unsigned int ui;
// Signed vs unsigned fixed point comparison
sa == usa;
// CHECK: [[A:%[0-9]+]] = load i16, i16* %sa, align 2
// CHECK-NEXT: [[A2:%[0-9]+]] = load i16, i16* %usa, align 2
// UNPADDED-NEXT: [[RESIZE_A:%[a-z0-9]+]] = sext i16 [[A]] to i17
// UNPADDED-NEXT: [[UPSCALE_A:%[a-z0-9]+]] = shl i17 [[RESIZE_A]], 1
// UNPADDED-NEXT: [[RESIZE_A2:%[a-z0-9]+]] = zext i16 [[A2]] to i17
// UNPADDED-NEXT: {{.*}} = icmp eq i17 [[UPSCALE_A]], [[RESIZE_A2]]
// PADDED-NEXT: {{.*}} = icmp eq i16 [[A]], [[A2]]
// Signed int vs unsigned fixed point
sa == ui;
// CHECK: [[A:%[0-9]+]] = load i16, i16* %sa, align 2
// CHECK-NEXT: [[I:%[0-9]+]] = load i32, i32* %ui, align 4
// CHECK-NEXT: [[RESIZE_A:%[a-z0-9]+]] = sext i16 [[A]] to i40
// CHECK-NEXT: [[RESIZE_I:%[a-z0-9]+]] = zext i32 [[I]] to i40
// CHECK-NEXT: [[UPSCALE_I:%[a-z0-9]+]] = shl i40 [[RESIZE_I]], 7
// CHECK-NEXT: {{.*}} = icmp eq i40 [[RESIZE_A]], [[UPSCALE_I]]
// Signed fixed point vs unsigned int
usa == i;
// CHECK: [[A:%[0-9]+]] = load i16, i16* %usa, align 2
// CHECK-NEXT: [[I:%[0-9]+]] = load i32, i32* %i, align 4
// UNPADDED-NEXT: [[RESIZE_A:%[a-z0-9]+]] = zext i16 [[A]] to i40
// UNPADDED-NEXT: [[RESIZE_I:%[a-z0-9]+]] = sext i32 [[I]] to i40
// UNPADDED-NEXT: [[UPSCALE_I:%[a-z0-9]+]] = shl i40 [[RESIZE_I]], 8
// UNPADDED-NEXT: {{.*}} = icmp eq i40 [[RESIZE_A]], [[UPSCALE_I]]
// PADDED-NEXT: [[RESIZE_A:%[a-z0-9]+]] = zext i16 [[A]] to i39
// PADDED-NEXT: [[RESIZE_I:%[a-z0-9]+]] = sext i32 [[I]] to i39
// PADDED-NEXT: [[UPSCALE_I:%[a-z0-9]+]] = shl i39 [[RESIZE_I]], 7
// PADDED-NEXT: {{.*}} = icmp eq i39 [[RESIZE_A]], [[UPSCALE_I]]
}
void TestSaturationComparisons() {
short _Accum sa;
_Accum a;
_Sat short _Accum sat_sa;
_Sat _Accum sat_a;
_Sat unsigned short _Accum sat_usa;
// These are effectively the same as conversions with their non-saturating
// counterparts since when comparing, we convert both operands to a common
// type that should be able to hold both values.
sat_sa == sat_a;
// CHECK: [[A:%[0-9]+]] = load i16, i16* %sat_sa, align 2
// CHECK-NEXT: [[A2:%[0-9]+]] = load i32, i32* %sat_a, align 4
// CHECK-NEXT: [[RESIZE_A:%[a-z0-9]+]] = sext i16 [[A]] to i32
// CHECK-NEXT: [[UPSCALE_A:%[a-z0-9]+]] = shl i32 [[RESIZE_A]], 8
// CHECK-NEXT: {{.*}} = icmp eq i32 [[UPSCALE_A]], [[A2]]
sat_sa == a;
// CHECK: [[A:%[0-9]+]] = load i16, i16* %sat_sa, align 2
// CHECK-NEXT: [[A2:%[0-9]+]] = load i32, i32* %a, align 4
// CHECK-NEXT: [[RESIZE_A:%[a-z0-9]+]] = sext i16 [[A]] to i32
// CHECK-NEXT: [[UPSCALE_A:%[a-z0-9]+]] = shl i32 [[RESIZE_A]], 8
// CHECK-NEXT: {{.*}} = icmp eq i32 [[UPSCALE_A]], [[A2]]
sat_sa == sat_usa;
// CHECK: [[A:%[0-9]+]] = load i16, i16* %sat_sa, align 2
// CHECK-NEXT: [[A2:%[0-9]+]] = load i16, i16* %sat_usa, align 2
// UNPADDED-NEXT: [[RESIZE_A:%[a-z0-9]+]] = sext i16 [[A]] to i17
// UNPADDED-NEXT: [[UPSCALE_A:%[a-z0-9]+]] = shl i17 [[RESIZE_A]], 1
// UNPADDED-NEXT: [[RESIZE_A2:%[a-z0-9]+]] = zext i16 [[A2]] to i17
// UNPADDED-NEXT: {{.*}} = icmp eq i17 [[UPSCALE_A]], [[RESIZE_A2]]
// PADDED-NEXT: {{.*}} = icmp eq i16 [[A]], [[A2]]
}
void StoreBooleanResult() {
short _Accum sa;
_Accum a;
int res;
// Check that the result can properly be stored as an int.
res = sa == a;
// CHECK: [[A:%[0-9]+]] = load i16, i16* %sa, align 2
// CHECK-NEXT: [[A2:%[0-9]+]] = load i32, i32* %a, align 4
// CHECK-NEXT: [[RESIZE_A:%[a-z0-9]+]] = sext i16 [[A]] to i32
// CHECK-NEXT: [[UPSCALE_A:%[a-z0-9]+]] = shl i32 [[RESIZE_A]], 8
// CHECK-NEXT: [[RES:%[0-9]+]] = icmp eq i32 [[UPSCALE_A]], [[A2]]
// CHECK-NEXT: %conv = zext i1 [[RES]] to i32
// CHECK-NEXT: store i32 %conv, i32* %res, align 4
}