Implement review feedback for the ConstantBool->ConstantInt merge. Chris

recommended that getBoolValue be replaced with getZExtValue and that
get(bool) be replaced by get(const Type*, uint64_t). This implements
those changes.

llvm-svn: 33110
This commit is contained in:
Reid Spencer 2007-01-12 04:24:46 +00:00
parent e4c7fcd1bd
commit cddc9dfe97
26 changed files with 172 additions and 156 deletions

View File

@ -85,10 +85,6 @@ public:
return F = new ConstantInt(false);
}
/// @brief Static factory method for getting a ConstantInt instance which
/// stands for a bool value.
static ConstantInt *get(bool Value) { return Value ? getTrue() : getFalse();}
/// Return a ConstantInt with the specified value for the specified type. The
/// value V will be canonicalized to a uint64_t but accessing it with either
/// getSExtValue() or getZExtValue() (ConstantInt) will yield the correct
@ -96,22 +92,6 @@ public:
/// @brief Get a ConstantInt for a specific value.
static ConstantInt *get(const Type *Ty, int64_t V);
/// Returns the opposite value of this ConstantInt.
/// @brief Get inverse value.
inline ConstantInt *inverted() const {
static ConstantInt *CI = 0;
if (CI) return CI;
return CI = new ConstantInt(getType(),
Val ^ (getType() == Type::Int1Ty ? 1 : -1));
}
/// @returns the value of this ConstantInt only if it's a boolean type.
/// @brief return the boolean value of this constant.
inline bool getBoolValue() const {
assert(getType() == Type::Int1Ty && "Should be a boolean constant!");
return static_cast<bool>(getZExtValue());
}
/// This static method returns true if the type Ty is big enough to
/// represent the value V. This can be used to avoid having the get method
/// assert when V is larger than Ty can represent. Note that there are two
@ -136,8 +116,7 @@ public:
/// to true.
/// @returns true iff this constant's bits are all set to true.
/// @brief Determine if the value is all ones.
virtual bool isAllOnesValue() const {
if (getType() == Type::Int1Ty) return getBoolValue() == true;
bool isAllOnesValue() const {
return getSExtValue() == -1;
}
@ -146,8 +125,7 @@ public:
/// @returns true iff this is the largest value that may be represented
/// by this type.
/// @brief Determine if the value is maximal.
virtual bool isMaxValue(bool isSigned) const {
if (getType() == Type::Int1Ty) return getBoolValue() == true;
bool isMaxValue(bool isSigned) const {
if (isSigned) {
int64_t V = getSExtValue();
if (V < 0) return false; // Be careful about wrap-around on 'long's
@ -162,8 +140,7 @@ public:
/// @returns true if this is the smallest value that may be represented by
/// this type.
/// @brief Determine if the value is minimal.
virtual bool isMinValue(bool isSigned) const {
if (getType() == Type::Int1Ty) return getBoolValue() == false;
bool isMinValue(bool isSigned) const {
if (isSigned) {
int64_t V = getSExtValue();
if (V > 0) return false; // Be careful about wrap-around on 'long's

View File

@ -586,7 +586,7 @@ BasicAliasAnalysis::CheckGEPInstructions(
Constant *Compare = ConstantExpr::getICmp(ICmpInst::ICMP_SGT,
G1OC, G2OC);
if (ConstantInt *CV = dyn_cast<ConstantInt>(Compare)) {
if (CV->getBoolValue()) // If they are comparable and G2 > G1
if (CV->getZExtValue()) // If they are comparable and G2 > G1
std::swap(GEP1Ops, GEP2Ops); // Make GEP1 < GEP2
break;
}

View File

@ -64,7 +64,7 @@ static ConstantInt *getMinValue(const Type *Ty, bool isSigned = false) {
}
static ConstantInt *Next(ConstantInt *CI) {
if (CI->getType() == Type::Int1Ty)
return ConstantInt::get(!CI->getBoolValue());
return ConstantInt::get(Type::Int1Ty, !CI->getZExtValue());
Constant *Result = ConstantExpr::getAdd(CI,
ConstantInt::get(CI->getType(), 1));
@ -75,14 +75,14 @@ static bool LT(ConstantInt *A, ConstantInt *B, bool isSigned) {
Constant *C = ConstantExpr::getICmp(
(isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT), A, B);
assert(isa<ConstantInt>(C) && "Constant folding of integrals not impl??");
return cast<ConstantInt>(C)->getBoolValue();
return cast<ConstantInt>(C)->getZExtValue();
}
static bool LTE(ConstantInt *A, ConstantInt *B, bool isSigned) {
Constant *C = ConstantExpr::getICmp(
(isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE), A, B);
assert(isa<ConstantInt>(C) && "Constant folding of integrals not impl??");
return cast<ConstantInt>(C)->getBoolValue();
return cast<ConstantInt>(C)->getZExtValue();
}
static bool GT(ConstantInt *A, ConstantInt *B, bool isSigned) {

View File

@ -1722,7 +1722,7 @@ ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
// Evaluate the condition for this iteration.
Result = ConstantExpr::getICmp(predicate, Result, RHS);
if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
if (cast<ConstantInt>(Result)->getBoolValue() == false) {
if (cast<ConstantInt>(Result)->getZExtValue() == false) {
#if 0
cerr << "\n***\n*** Computed loop count " << *ItCst
<< "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
@ -1932,7 +1932,7 @@ ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
// Couldn't symbolically evaluate.
if (!CondVal || CondVal->getType() != Type::Int1Ty) return UnknownValue;
if (CondVal->getBoolValue() == ExitWhen) {
if (CondVal->getZExtValue() == ExitWhen) {
ConstantEvolutionLoopExitValue[PN] = PHIVal;
++NumBruteForceTripCountsComputed;
return SCEVConstant::get(ConstantInt::get(Type::Int32Ty, IterationNum));
@ -2204,7 +2204,7 @@ SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
if (ConstantInt *CB =
dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
R1->getValue(), R2->getValue()))) {
if (CB->getBoolValue() == false)
if (CB->getZExtValue() == false)
std::swap(R1, R2); // R1 is the minimum root now.
// We can only use this value if the chrec ends up with an exact zero
@ -2429,7 +2429,7 @@ SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
if (ConstantInt *CB =
dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
R1->getValue(), R2->getValue()))) {
if (CB->getBoolValue() == false)
if (CB->getZExtValue() == false)
std::swap(R1, R2); // R1 is the minimum root now.
// Make sure the root is not off by one. The returned iteration should

View File

@ -1403,7 +1403,7 @@ Value *BytecodeReader::ParseConstantPoolValue(unsigned TypeID) {
unsigned Val = read_vbr_uint();
if (Val != 0 && Val != 1)
error("Invalid boolean value read.");
Result = ConstantInt::get(Val == 1);
Result = ConstantInt::get(Type::Int1Ty, Val == 1);
if (Handler) Handler->handleConstantValue(Result);
break;
}

View File

@ -322,7 +322,7 @@ void BytecodeWriter::outputConstant(const Constant *CPV) {
switch (CPV->getType()->getTypeID()) {
case Type::Int1TyID: // Boolean Types
if (cast<ConstantInt>(CPV)->getBoolValue())
if (cast<ConstantInt>(CPV)->getZExtValue())
output_vbr(1U);
else
output_vbr(0U);

View File

@ -390,7 +390,7 @@ void AsmPrinter::EmitConstantValueOnly(const Constant *CV) {
O << "0";
else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
if (CI->getType() == Type::Int1Ty) {
assert(CI->getBoolValue());
assert(CI->getZExtValue());
O << "1";
} else O << CI->getSExtValue();
} else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {

View File

@ -211,7 +211,7 @@ public:
}
virtual void Apply(bool &Field) {
Constant *C = CI->getOperand(I++);
Field = cast<ConstantInt>(C)->getBoolValue();
Field = cast<ConstantInt>(C)->getZExtValue();
}
virtual void Apply(std::string &Field) {
Constant *C = CI->getOperand(I++);
@ -276,7 +276,7 @@ public:
Elements.push_back(ConstantInt::get(Type::Int64Ty, uint64_t(Field)));
}
virtual void Apply(bool &Field) {
Elements.push_back(ConstantInt::get(Field));
Elements.push_back(ConstantInt::get(Type::Int1Ty, Field));
}
virtual void Apply(std::string &Field) {
Elements.push_back(SR.getString(Field));

View File

@ -399,7 +399,7 @@ GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
switch (C->getType()->getTypeID()) {
#define GET_CONST_VAL(TY, CTY, CLASS, GETMETH) \
case Type::TY##TyID: Result.TY##Val = (CTY)cast<CLASS>(C)->GETMETH(); break
GET_CONST_VAL(Int1 , bool , ConstantInt, getBoolValue);
GET_CONST_VAL(Int1 , bool , ConstantInt, getZExtValue);
GET_CONST_VAL(Int8 , unsigned char , ConstantInt, getZExtValue);
GET_CONST_VAL(Int16 , unsigned short, ConstantInt, getZExtValue);
GET_CONST_VAL(Int32 , unsigned int , ConstantInt, getZExtValue);

View File

@ -191,7 +191,7 @@ GenericValue JIT::runFunction(Function *F,
const GenericValue &AV = ArgValues[i];
switch (ArgTy->getTypeID()) {
default: assert(0 && "Unknown argument type for function call!");
case Type::Int1TyID: C = ConstantInt::get(AV.Int1Val); break;
case Type::Int1TyID: C = ConstantInt::get(ArgTy, AV.Int1Val); break;
case Type::Int8TyID: C = ConstantInt::get(ArgTy, AV.Int8Val); break;
case Type::Int16TyID: C = ConstantInt::get(ArgTy, AV.Int16Val); break;
case Type::Int32TyID: C = ConstantInt::get(ArgTy, AV.Int32Val); break;

View File

@ -829,7 +829,7 @@ void CWriter::printConstant(Constant *CPV) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
const Type* Ty = CI->getType();
if (Ty == Type::Int1Ty)
Out << (CI->getBoolValue() ? '1' : '0') ;
Out << (CI->getZExtValue() ? '1' : '0') ;
else {
Out << "((";
printPrimitiveType(Out, Ty, false) << ')';

View File

@ -1161,7 +1161,7 @@ static void ShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
// Only do this if we weren't storing a loaded value.
Value *StoreVal;
if (StoringOther || SI->getOperand(0) == InitVal)
StoreVal = ConstantInt::get(StoringOther);
StoreVal = ConstantInt::get(Type::Int1Ty, StoringOther);
else {
// Otherwise, we are storing a previously loaded copy. To do this,
// change the copy from copying the original value to just copying the
@ -1803,7 +1803,7 @@ static bool EvaluateFunction(Function *F, Constant *&RetVal,
// Cannot determine.
if (!Cond || Cond->getType() != Type::Int1Ty)
return false;
NewBB = BI->getSuccessor(!Cond->getBoolValue());
NewBB = BI->getSuccessor(!Cond->getZExtValue());
}
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
ConstantInt *Val =

View File

@ -460,7 +460,7 @@ void ProfilerRS::ProcessBackEdge(BasicBlock* src, BasicBlock* dst, Function& F)
//b:
new BranchInst(cast<BasicBlock>(Translate(dst)), bbC);
new BranchInst(dst, cast<BasicBlock>(Translate(dst)),
ConstantInt::get(true), bbCp);
ConstantInt::get(Type::Int1Ty, true), bbCp);
//c:
{
TerminatorInst* iB = src->getTerminator();
@ -516,7 +516,7 @@ bool ProfilerRS::runOnFunction(Function& F) {
TerminatorInst* T = F.getEntryBlock().getTerminator();
ReplaceInstWithInst(T, new BranchInst(T->getSuccessor(0),
cast<BasicBlock>(Translate(T->getSuccessor(0))),
ConstantInt::get(true)));
ConstantInt::get(Type::Int1Ty, true)));
//do whatever is needed now that the function is duplicated
c->PrepFunction(&F);

View File

@ -139,7 +139,7 @@ void CondProp::SimplifyPredecessors(BranchInst *BI) {
// ultimate destination.
bool PHIGone = PN->getNumIncomingValues() == 2;
RevectorBlockTo(PN->getIncomingBlock(i-1),
BI->getSuccessor(CB->getBoolValue() == 0));
BI->getSuccessor(CB->getZExtValue() == 0));
++NumBrThread;
// If there were two predecessors before this simplification, the PHI node

View File

@ -472,7 +472,7 @@ bool CEE::ForwardCorrelatedEdgeDestination(TerminatorInst *TI, unsigned SuccNo,
} else if (CmpInst *CI = dyn_cast<CmpInst>(I)) {
Relation::KnownResult Res = getCmpResult(CI, NewRI);
if (Res == Relation::Unknown) return false;
PropagateEquality(CI, ConstantInt::get(Res), NewRI);
PropagateEquality(CI, ConstantInt::get(Type::Int1Ty, Res), NewRI);
} else {
assert(isa<BranchInst>(*I) && "Unexpected instruction type!");
}
@ -488,7 +488,7 @@ bool CEE::ForwardCorrelatedEdgeDestination(TerminatorInst *TI, unsigned SuccNo,
// Forward to the successor that corresponds to the branch we will take.
ForwardSuccessorTo(TI, SuccNo,
BI->getSuccessor(!CB->getBoolValue()), NewRI);
BI->getSuccessor(!CB->getZExtValue()), NewRI);
return true;
}
@ -841,7 +841,7 @@ void CEE::PropagateEquality(Value *Op0, Value *Op1, RegionInfo &RI) {
// is true, this means that both operands to the OR are known to be true
// as well.
//
if (CB->getBoolValue() && Inst->getOpcode() == Instruction::And) {
if (CB->getZExtValue() && Inst->getOpcode() == Instruction::And) {
PropagateEquality(Inst->getOperand(0), CB, RI);
PropagateEquality(Inst->getOperand(1), CB, RI);
}
@ -850,24 +850,26 @@ void CEE::PropagateEquality(Value *Op0, Value *Op1, RegionInfo &RI) {
// is false, this means that both operands to the OR are know to be false
// as well.
//
if (!CB->getBoolValue() && Inst->getOpcode() == Instruction::Or) {
if (!CB->getZExtValue() && Inst->getOpcode() == Instruction::Or) {
PropagateEquality(Inst->getOperand(0), CB, RI);
PropagateEquality(Inst->getOperand(1), CB, RI);
}
// If we know that this instruction is a NOT instruction, we know that the
// operand is known to be the inverse of whatever the current value is.
// If we know that this instruction is a NOT instruction, we know that
// the operand is known to be the inverse of whatever the current
// value is.
//
if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Inst))
if (BinaryOperator::isNot(BOp))
PropagateEquality(BinaryOperator::getNotArgument(BOp),
ConstantInt::get(!CB->getBoolValue()), RI);
ConstantInt::get(Type::Int1Ty,
!CB->getZExtValue()), RI);
// If we know the value of a FCmp instruction, propagate the information
// about the relation into this region as well.
//
if (FCmpInst *FCI = dyn_cast<FCmpInst>(Inst)) {
if (CB->getBoolValue()) { // If we know the condition is true...
if (CB->getZExtValue()) { // If we know the condition is true...
// Propagate info about the LHS to the RHS & RHS to LHS
PropagateRelation(FCI->getPredicate(), FCI->getOperand(0),
FCI->getOperand(1), RI);
@ -888,7 +890,7 @@ void CEE::PropagateEquality(Value *Op0, Value *Op1, RegionInfo &RI) {
// about the relation into this region as well.
//
if (ICmpInst *ICI = dyn_cast<ICmpInst>(Inst)) {
if (CB->getBoolValue()) { // If we know the condition is true...
if (CB->getZExtValue()) { // If we know the condition is true...
// Propagate info about the LHS to the RHS & RHS to LHS
PropagateRelation(ICI->getPredicate(), ICI->getOperand(0),
ICI->getOperand(1), RI);
@ -994,7 +996,7 @@ void CEE::IncorporateInstruction(Instruction *Inst, RegionInfo &RI) {
// See if we can figure out a result for this instruction...
Relation::KnownResult Result = getCmpResult(CI, RI);
if (Result != Relation::Unknown) {
PropagateEquality(CI, ConstantInt::get(Result != 0), RI);
PropagateEquality(CI, ConstantInt::get(Type::Int1Ty, Result != 0), RI);
}
}
}
@ -1068,7 +1070,7 @@ bool CEE::SimplifyBasicBlock(BasicBlock &BB, const RegionInfo &RI) {
DEBUG(cerr << "Replacing icmp with " << Result
<< " constant: " << *CI);
CI->replaceAllUsesWith(ConstantInt::get((bool)Result));
CI->replaceAllUsesWith(ConstantInt::get(Type::Int1Ty, (bool)Result));
// The instruction is now dead, remove it from the program.
CI->getParent()->getInstList().erase(CI);
++NumCmpRemoved;
@ -1122,7 +1124,7 @@ Relation::KnownResult CEE::getCmpResult(CmpInst *CI,
if (Constant *Result = ConstantFoldInstruction(CI)) {
// Wow, this is easy, directly eliminate the ICmpInst.
DEBUG(cerr << "Replacing cmp with constant fold: " << *CI);
return cast<ConstantInt>(Result)->getBoolValue()
return cast<ConstantInt>(Result)->getZExtValue()
? Relation::KnownTrue : Relation::KnownFalse;
}
} else {

View File

@ -2965,7 +2965,7 @@ Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
bool isSigned, bool Inside,
Instruction &IB) {
assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getBoolValue() &&
ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
"Lo is not <= Hi in range emission code!");
if (Inside) {
@ -3264,7 +3264,7 @@ Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
Constant *Cmp = ConstantExpr::getICmp(GT, LHSCst, RHSCst);
ICmpInst *LHS = cast<ICmpInst>(Op0);
if (cast<ConstantInt>(Cmp)->getBoolValue()) {
if (cast<ConstantInt>(Cmp)->getZExtValue()) {
std::swap(LHS, RHS);
std::swap(LHSCst, RHSCst);
std::swap(LHSCC, RHSCC);
@ -3723,7 +3723,7 @@ Instruction *InstCombiner::visitOr(BinaryOperator &I) {
ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
Constant *Cmp = ConstantExpr::getICmp(GT, LHSCst, RHSCst);
ICmpInst *LHS = cast<ICmpInst>(Op0);
if (cast<ConstantInt>(Cmp)->getBoolValue()) {
if (cast<ConstantInt>(Cmp)->getZExtValue()) {
std::swap(LHS, RHS);
std::swap(LHSCst, RHSCst);
std::swap(LHSCC, RHSCC);
@ -4152,7 +4152,8 @@ Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
EmitIt = false; // This is indexing into a zero sized array?
} else if (isa<ConstantInt>(C))
return ReplaceInstUsesWith(I, // No comparison is needed here.
ConstantInt::get(Cond == ICmpInst::ICMP_NE));
ConstantInt::get(Type::Int1Ty,
Cond == ICmpInst::ICMP_NE));
}
if (EmitIt) {
@ -4176,7 +4177,8 @@ Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
return InVal;
else
// No comparison is needed here, all indexes = 0
ReplaceInstUsesWith(I, ConstantInt::get(Cond == ICmpInst::ICMP_EQ));
ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
Cond == ICmpInst::ICMP_EQ));
}
// Only lower this if the icmp is the only user of the GEP or if we expect
@ -4253,7 +4255,8 @@ Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
if (NumDifferences == 0) // SAME GEP?
return ReplaceInstUsesWith(I, // No comparison is needed here.
ConstantInt::get(Cond == ICmpInst::ICMP_EQ));
ConstantInt::get(Type::Int1Ty,
Cond == ICmpInst::ICMP_EQ));
else if (NumDifferences == 1) {
Value *LHSV = GEPLHS->getOperand(DiffOperand);
Value *RHSV = GEPRHS->getOperand(DiffOperand);
@ -4281,7 +4284,8 @@ Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
// fcmp pred X, X
if (Op0 == Op1)
return ReplaceInstUsesWith(I, ConstantInt::get(isTrueWhenEqual(I)));
return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
isTrueWhenEqual(I)));
if (isa<UndefValue>(Op1)) // fcmp pred X, undef -> undef
return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
@ -4333,7 +4337,8 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
// icmp X, X
if (Op0 == Op1)
return ReplaceInstUsesWith(I, ConstantInt::get(isTrueWhenEqual(I)));
return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
isTrueWhenEqual(I)));
if (isa<UndefValue>(Op1)) // X icmp undef -> undef
return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
@ -4343,7 +4348,8 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
if (GlobalValue *GV0 = dyn_cast<GlobalValue>(Op0))
if (GlobalValue *GV1 = dyn_cast<GlobalValue>(Op1))
if (!GV0->hasExternalWeakLinkage() || !GV1->hasExternalWeakLinkage())
return ReplaceInstUsesWith(I, ConstantInt::get(!isTrueWhenEqual(I)));
return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
!isTrueWhenEqual(I)));
// icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
// addresses never equal each other! We already know that Op0 != Op1.
@ -4351,7 +4357,8 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
isa<ConstantPointerNull>(Op0)) &&
(isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
isa<ConstantPointerNull>(Op1)))
return ReplaceInstUsesWith(I, ConstantInt::get(!isTrueWhenEqual(I)));
return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
!isTrueWhenEqual(I)));
// icmp's with boolean values can always be turned into bitwise operations
if (Ty == Type::Int1Ty) {
@ -4691,7 +4698,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
ConstantExpr::getShl(ConstantExpr::getLShr(CI, ShAmt), ShAmt);
if (Comp != CI) {// Comparing against a bit that we know is zero.
bool IsICMP_NE = I.getPredicate() == ICmpInst::ICMP_NE;
Constant *Cst = ConstantInt::get(IsICMP_NE);
Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
return ReplaceInstUsesWith(I, Cst);
}
@ -4735,7 +4742,7 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
if (Comp != CI) {// Comparing against a bit that we know is zero.
bool IsICMP_NE = I.getPredicate() == ICmpInst::ICMP_NE;
Constant *Cst = ConstantInt::get(IsICMP_NE);
Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
return ReplaceInstUsesWith(I, Cst);
}
@ -4957,7 +4964,8 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
Constant *NotCI = ConstantExpr::getNot(CI);
if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
return ReplaceInstUsesWith(I, ConstantInt::get(isICMP_NE));
return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
isICMP_NE));
}
break;
@ -4967,7 +4975,8 @@ Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
// comparison can never succeed!
if (!ConstantExpr::getAnd(CI,
ConstantExpr::getNot(BOC))->isNullValue())
return ReplaceInstUsesWith(I, ConstantInt::get(isICMP_NE));
return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
isICMP_NE));
// If we have ((X & C) == C), turn it into ((X & C) != 0).
if (CI == BOC && isOneBitSet(CI))
@ -6182,7 +6191,7 @@ Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
if (Op1CV && (Op1CV != (KnownZero^TypeMask))) {
// (X&4) == 2 --> false
// (X&4) != 2 --> true
Constant *Res = ConstantInt::get(isNE);
Constant *Res = ConstantInt::get(Type::Int1Ty, isNE);
Res = ConstantExpr::getZExt(Res, CI.getType());
return ReplaceInstUsesWith(CI, Res);
}
@ -6553,7 +6562,7 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
// select true, X, Y -> X
// select false, X, Y -> Y
if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
return ReplaceInstUsesWith(SI, C->getBoolValue() ? TrueVal : FalseVal);
return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
// select C, X, X -> X
if (TrueVal == FalseVal)
@ -6574,7 +6583,7 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
ConstantInt *C;
if ((C = dyn_cast<ConstantInt>(TrueVal)) &&
C->getType() == Type::Int1Ty) {
if (C->getBoolValue()) {
if (C->getZExtValue()) {
// Change: A = select B, true, C --> A = or B, C
return BinaryOperator::createOr(CondVal, FalseVal);
} else {
@ -6586,7 +6595,7 @@ Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
}
} else if ((C = dyn_cast<ConstantInt>(FalseVal)) &&
C->getType() == Type::Int1Ty) {
if (C->getBoolValue() == false) {
if (C->getZExtValue() == false) {
// Change: A = select B, C, false --> A = and B, C
return BinaryOperator::createAnd(CondVal, TrueVal);
} else {
@ -9049,7 +9058,7 @@ static void AddReachableCodeToWorklist(BasicBlock *BB,
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
if (BI->isConditional() && isa<ConstantInt>(BI->getCondition()) &&
BI->getCondition()->getType() == Type::Int1Ty) {
bool CondVal = cast<ConstantInt>(BI->getCondition())->getBoolValue();
bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
AddReachableCodeToWorklist(BI->getSuccessor(!CondVal), Visited, WorkList,
TD);
return;

View File

@ -924,7 +924,8 @@ void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
if (IsEqual)
Replacement = Val;
else
Replacement = ConstantInt::get(!cast<ConstantInt>(Val)->getBoolValue());
Replacement = ConstantInt::get(Type::Int1Ty,
!cast<ConstantInt>(Val)->getZExtValue());
for (unsigned i = 0, e = Users.size(); i != e; ++i)
if (Instruction *U = cast<Instruction>(Users[i])) {
@ -1026,7 +1027,7 @@ void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist) {
switch (I->getOpcode()) {
case Instruction::Select:
if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(0))) {
ReplaceUsesOfWith(I, I->getOperand(!CB->getBoolValue()+1), Worklist);
ReplaceUsesOfWith(I, I->getOperand(!CB->getZExtValue()+1), Worklist);
continue;
}
break;
@ -1036,7 +1037,7 @@ void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist) {
cast<BinaryOperator>(I)->swapOperands();
if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
if (CB->getType() == Type::Int1Ty) {
if (CB->getBoolValue()) // X & 1 -> X
if (CB->getZExtValue()) // X & 1 -> X
ReplaceUsesOfWith(I, I->getOperand(0), Worklist);
else // X & 0 -> 0
ReplaceUsesOfWith(I, I->getOperand(1), Worklist);
@ -1049,7 +1050,7 @@ void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist) {
cast<BinaryOperator>(I)->swapOperands();
if (ConstantInt *CB = dyn_cast<ConstantInt>(I->getOperand(1)))
if (CB->getType() == Type::Int1Ty) {
if (CB->getBoolValue()) // X | 1 -> 1
if (CB->getZExtValue()) // X | 1 -> 1
ReplaceUsesOfWith(I, I->getOperand(1), Worklist);
else // X | 0 -> X
ReplaceUsesOfWith(I, I->getOperand(0), Worklist);
@ -1094,8 +1095,8 @@ void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist) {
break; // FIXME: Enable.
DOUT << "Folded branch: " << *BI;
BasicBlock *DeadSucc = BI->getSuccessor(CB->getBoolValue());
BasicBlock *LiveSucc = BI->getSuccessor(!CB->getBoolValue());
BasicBlock *DeadSucc = BI->getSuccessor(CB->getZExtValue());
BasicBlock *LiveSucc = BI->getSuccessor(!CB->getZExtValue());
DeadSucc->removePredecessor(BI->getParent(), true);
Worklist.push_back(new BranchInst(LiveSucc, BI));
BI->eraseFromParent();

View File

@ -416,8 +416,7 @@ void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
} else {
LatticeVal &BCValue = getValueState(BI->getCondition());
if (BCValue.isOverdefined() ||
(BCValue.isConstant() &&
BCValue.getConstant()->getType() != Type::Int1Ty)) {
(BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) {
// Overdefined condition variables, and branches on unfoldable constant
// conditions, mean the branch could go either way.
Succs[0] = Succs[1] = true;
@ -647,10 +646,9 @@ void SCCPSolver::visitSelectInst(SelectInst &I) {
LatticeVal &CondValue = getValueState(I.getCondition());
if (CondValue.isUndefined())
return;
if (CondValue.isConstant() &&
CondValue.getConstant()->getType() == Type::Int1Ty) {
if (CondValue.isConstant()) {
if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){
mergeInValue(&I, getValueState(CondCB->getBoolValue() ? I.getTrueValue()
mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue()
: I.getFalseValue()));
return;
}

View File

@ -233,7 +233,7 @@ void PruningFunctionCloner::CloneBlock(const BasicBlock *BB) {
// Constant fold to uncond branch!
if (Cond) {
BasicBlock *Dest = BI->getSuccessor(!Cond->getBoolValue());
BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
ValueMap[OldTI] = new BranchInst(Dest, NewBB);
CloneBlock(Dest);
TerminatorDone = true;

View File

@ -470,7 +470,7 @@ emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer,
case 0:
case 1: break; // No value needed.
case 2: // Conditional branch, return a bool
brVal = ConstantInt::get(!SuccNum);
brVal = ConstantInt::get(Type::Int1Ty, !SuccNum);
break;
default:
brVal = ConstantInt::get(Type::Int16Ty, SuccNum);

View File

@ -176,8 +176,8 @@ bool llvm::ConstantFoldTerminator(BasicBlock *BB) {
if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
// Are we branching on constant?
// YES. Change to unconditional branch...
BasicBlock *Destination = Cond->getBoolValue() ? Dest1 : Dest2;
BasicBlock *OldDest = Cond->getBoolValue() ? Dest2 : Dest1;
BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1;
//cerr << "Function: " << T->getParent()->getParent()
// << "\nRemoving branch from " << T->getParent()

View File

@ -975,7 +975,7 @@ static bool FoldCondBranchOnPHI(BranchInst *BI) {
// Okay, we now know that all edges from PredBB should be revectored to
// branch to RealDest.
BasicBlock *PredBB = PN->getIncomingBlock(i);
BasicBlock *RealDest = BI->getSuccessor(!CB->getBoolValue());
BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
if (RealDest == BB) continue; // Skip self loops.
@ -1500,8 +1500,8 @@ bool llvm::SimplifyCFG(BasicBlock *BB) {
if (PBI != BI && PBI->isConditional()) {
// If this block ends with a branch instruction, and if there is a
// predecessor that ends on a branch of the same condition, make this
// conditional branch redundant.
// predecessor that ends on a branch of the same condition, make
// this conditional branch redundant.
if (PBI->getCondition() == BI->getCondition() &&
PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
// Okay, the outcome of this conditional branch is statically
@ -1509,23 +1509,24 @@ bool llvm::SimplifyCFG(BasicBlock *BB) {
if (BB->getSinglePredecessor()) {
// Turn this into a branch on constant.
bool CondIsTrue = PBI->getSuccessor(0) == BB;
BI->setCondition(ConstantInt::get(CondIsTrue));
BI->setCondition(ConstantInt::get(Type::Int1Ty, CondIsTrue));
return SimplifyCFG(BB); // Nuke the branch on constant.
}
// Otherwise, if there are multiple predecessors, insert a PHI that
// merges in the constant and simplify the block result.
// Otherwise, if there are multiple predecessors, insert a PHI
// that merges in the constant and simplify the block result.
if (BlockIsSimpleEnoughToThreadThrough(BB)) {
PHINode *NewPN = new PHINode(Type::Int1Ty,
BI->getCondition()->getName()+".pr",
BB->begin());
BI->getCondition()->getName()+".pr",
BB->begin());
for (PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
if ((PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) &&
PBI != BI && PBI->isConditional() &&
PBI->getCondition() == BI->getCondition() &&
PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
bool CondIsTrue = PBI->getSuccessor(0) == BB;
NewPN->addIncoming(ConstantInt::get(CondIsTrue), *PI);
NewPN->addIncoming(ConstantInt::get(Type::Int1Ty,
CondIsTrue), *PI);
} else {
NewPN->addIncoming(BI->getCondition(), *PI);
}

View File

@ -440,8 +440,9 @@ static void WriteConstantInt(std::ostream &Out, const Constant *CV,
static std::string Indent = "\n";
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
if (CI->getType() == Type::Int1Ty)
Out << (CI->getBoolValue() ? "true" : "false");
else Out << CI->getSExtValue();
Out << (CI->getZExtValue() ? "true" : "false");
else
Out << CI->getSExtValue();
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
// We would like to output the FP constant value in exponential notation,
// but we cannot do this if doing so will lose precision. Check here to

View File

@ -317,8 +317,7 @@ Constant *llvm::ConstantFoldSelectInstruction(const Constant *Cond,
const Constant *V1,
const Constant *V2) {
if (const ConstantInt *CB = dyn_cast<ConstantInt>(Cond))
if (CB->getType() == Type::Int1Ty)
return const_cast<Constant*>(CB->getBoolValue() ? V1 : V2);
return const_cast<Constant*>(CB->getZExtValue() ? V1 : V2);
if (isa<UndefValue>(V1)) return const_cast<Constant*>(V2);
if (isa<UndefValue>(V2)) return const_cast<Constant*>(V1);
@ -560,11 +559,14 @@ Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
default:
break;
case Instruction::And:
return ConstantInt::get(CI1->getBoolValue() & CI2->getBoolValue());
return ConstantInt::get(Type::Int1Ty,
CI1->getZExtValue() & CI2->getZExtValue());
case Instruction::Or:
return ConstantInt::get(CI1->getBoolValue() | CI2->getBoolValue());
return ConstantInt::get(Type::Int1Ty,
CI1->getZExtValue() | CI2->getZExtValue());
case Instruction::Xor:
return ConstantInt::get(CI1->getBoolValue() ^ CI2->getBoolValue());
return ConstantInt::get(Type::Int1Ty,
CI1->getZExtValue() ^ CI2->getZExtValue());
}
} else {
uint64_t C1Val = CI1->getZExtValue();
@ -765,15 +767,15 @@ static FCmpInst::Predicate evaluateFCmpRelation(const Constant *V1,
Constant *C2 = const_cast<Constant*>(V2);
R = dyn_cast<ConstantInt>(
ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, C1, C2));
if (R && R->getBoolValue())
if (R && R->getZExtValue())
return FCmpInst::FCMP_OEQ;
R = dyn_cast<ConstantInt>(
ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, C1, C2));
if (R && R->getBoolValue())
if (R && R->getZExtValue())
return FCmpInst::FCMP_OLT;
R = dyn_cast<ConstantInt>(
ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, C1, C2));
if (R && R->getBoolValue())
if (R && R->getZExtValue())
return FCmpInst::FCMP_OGT;
// Nothing more we can do
@ -832,15 +834,15 @@ static ICmpInst::Predicate evaluateICmpRelation(const Constant *V1,
Constant *C2 = const_cast<Constant*>(V2);
ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
if (R && R->getBoolValue())
if (R && R->getZExtValue())
return pred;
pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
if (R && R->getBoolValue())
if (R && R->getZExtValue())
return pred;
pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, C1, C2));
if (R && R->getBoolValue())
if (R && R->getZExtValue())
return pred;
// If we couldn't figure it out, bail.
@ -1059,20 +1061,30 @@ Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2) &&
C1->getType() == Type::Int1Ty && C2->getType() == Type::Int1Ty) {
bool C1Val = cast<ConstantInt>(C1)->getBoolValue();
bool C2Val = cast<ConstantInt>(C2)->getBoolValue();
bool C1Val = cast<ConstantInt>(C1)->getZExtValue();
bool C2Val = cast<ConstantInt>(C2)->getZExtValue();
switch (pred) {
default: assert(0 && "Invalid ICmp Predicate"); return 0;
case ICmpInst::ICMP_EQ: return ConstantInt::get(C1Val == C2Val);
case ICmpInst::ICMP_NE: return ConstantInt::get(C1Val != C2Val);
case ICmpInst::ICMP_ULT:return ConstantInt::get(C1Val < C2Val);
case ICmpInst::ICMP_UGT:return ConstantInt::get(C1Val > C2Val);
case ICmpInst::ICMP_ULE:return ConstantInt::get(C1Val <= C2Val);
case ICmpInst::ICMP_UGE:return ConstantInt::get(C1Val >= C2Val);
case ICmpInst::ICMP_SLT:return ConstantInt::get(C1Val < C2Val);
case ICmpInst::ICMP_SGT:return ConstantInt::get(C1Val > C2Val);
case ICmpInst::ICMP_SLE:return ConstantInt::get(C1Val <= C2Val);
case ICmpInst::ICMP_SGE:return ConstantInt::get(C1Val >= C2Val);
case ICmpInst::ICMP_EQ:
return ConstantInt::get(Type::Int1Ty, C1Val == C2Val);
case ICmpInst::ICMP_NE:
return ConstantInt::get(Type::Int1Ty, C1Val != C2Val);
case ICmpInst::ICMP_ULT:
return ConstantInt::get(Type::Int1Ty, C1Val < C2Val);
case ICmpInst::ICMP_UGT:
return ConstantInt::get(Type::Int1Ty, C1Val > C2Val);
case ICmpInst::ICMP_ULE:
return ConstantInt::get(Type::Int1Ty, C1Val <= C2Val);
case ICmpInst::ICMP_UGE:
return ConstantInt::get(Type::Int1Ty, C1Val >= C2Val);
case ICmpInst::ICMP_SLT:
return ConstantInt::get(Type::Int1Ty, C1Val < C2Val);
case ICmpInst::ICMP_SGT:
return ConstantInt::get(Type::Int1Ty, C1Val > C2Val);
case ICmpInst::ICMP_SLE:
return ConstantInt::get(Type::Int1Ty, C1Val <= C2Val);
case ICmpInst::ICMP_SGE:
return ConstantInt::get(Type::Int1Ty, C1Val >= C2Val);
}
} else if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
if (ICmpInst::isSignedPredicate(ICmpInst::Predicate(pred))) {
@ -1080,22 +1092,22 @@ Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
int64_t V2 = cast<ConstantInt>(C2)->getSExtValue();
switch (pred) {
default: assert(0 && "Invalid ICmp Predicate"); return 0;
case ICmpInst::ICMP_SLT:return ConstantInt::get(V1 < V2);
case ICmpInst::ICMP_SGT:return ConstantInt::get(V1 > V2);
case ICmpInst::ICMP_SLE:return ConstantInt::get(V1 <= V2);
case ICmpInst::ICMP_SGE:return ConstantInt::get(V1 >= V2);
case ICmpInst::ICMP_SLT:return ConstantInt::get(Type::Int1Ty, V1 < V2);
case ICmpInst::ICMP_SGT:return ConstantInt::get(Type::Int1Ty, V1 > V2);
case ICmpInst::ICMP_SLE:return ConstantInt::get(Type::Int1Ty, V1 <= V2);
case ICmpInst::ICMP_SGE:return ConstantInt::get(Type::Int1Ty, V1 >= V2);
}
} else {
uint64_t V1 = cast<ConstantInt>(C1)->getZExtValue();
uint64_t V2 = cast<ConstantInt>(C2)->getZExtValue();
switch (pred) {
default: assert(0 && "Invalid ICmp Predicate"); return 0;
case ICmpInst::ICMP_EQ: return ConstantInt::get(V1 == V2);
case ICmpInst::ICMP_NE: return ConstantInt::get(V1 != V2);
case ICmpInst::ICMP_ULT:return ConstantInt::get(V1 < V2);
case ICmpInst::ICMP_UGT:return ConstantInt::get(V1 > V2);
case ICmpInst::ICMP_ULE:return ConstantInt::get(V1 <= V2);
case ICmpInst::ICMP_UGE:return ConstantInt::get(V1 >= V2);
case ICmpInst::ICMP_EQ: return ConstantInt::get(Type::Int1Ty, V1 == V2);
case ICmpInst::ICMP_NE: return ConstantInt::get(Type::Int1Ty, V1 != V2);
case ICmpInst::ICMP_ULT:return ConstantInt::get(Type::Int1Ty, V1 < V2);
case ICmpInst::ICMP_UGT:return ConstantInt::get(Type::Int1Ty, V1 > V2);
case ICmpInst::ICMP_ULE:return ConstantInt::get(Type::Int1Ty, V1 <= V2);
case ICmpInst::ICMP_UGE:return ConstantInt::get(Type::Int1Ty, V1 >= V2);
}
}
} else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
@ -1106,39 +1118,45 @@ Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
case FCmpInst::FCMP_FALSE: return ConstantInt::getFalse();
case FCmpInst::FCMP_TRUE: return ConstantInt::getTrue();
case FCmpInst::FCMP_UNO:
return ConstantInt::get(C1Val != C1Val || C2Val != C2Val);
return ConstantInt::get(Type::Int1Ty, C1Val != C1Val || C2Val != C2Val);
case FCmpInst::FCMP_ORD:
return ConstantInt::get(C1Val == C1Val && C2Val == C2Val);
return ConstantInt::get(Type::Int1Ty, C1Val == C1Val && C2Val == C2Val);
case FCmpInst::FCMP_UEQ:
if (C1Val != C1Val || C2Val != C2Val)
return ConstantInt::getTrue();
/* FALL THROUGH */
case FCmpInst::FCMP_OEQ: return ConstantInt::get(C1Val == C2Val);
case FCmpInst::FCMP_OEQ:
return ConstantInt::get(Type::Int1Ty, C1Val == C2Val);
case FCmpInst::FCMP_UNE:
if (C1Val != C1Val || C2Val != C2Val)
return ConstantInt::getTrue();
/* FALL THROUGH */
case FCmpInst::FCMP_ONE: return ConstantInt::get(C1Val != C2Val);
case FCmpInst::FCMP_ONE:
return ConstantInt::get(Type::Int1Ty, C1Val != C2Val);
case FCmpInst::FCMP_ULT:
if (C1Val != C1Val || C2Val != C2Val)
return ConstantInt::getTrue();
/* FALL THROUGH */
case FCmpInst::FCMP_OLT: return ConstantInt::get(C1Val < C2Val);
case FCmpInst::FCMP_OLT:
return ConstantInt::get(Type::Int1Ty, C1Val < C2Val);
case FCmpInst::FCMP_UGT:
if (C1Val != C1Val || C2Val != C2Val)
return ConstantInt::getTrue();
/* FALL THROUGH */
case FCmpInst::FCMP_OGT: return ConstantInt::get(C1Val > C2Val);
case FCmpInst::FCMP_OGT:
return ConstantInt::get(Type::Int1Ty, C1Val > C2Val);
case FCmpInst::FCMP_ULE:
if (C1Val != C1Val || C2Val != C2Val)
return ConstantInt::getTrue();
/* FALL THROUGH */
case FCmpInst::FCMP_OLE: return ConstantInt::get(C1Val <= C2Val);
case FCmpInst::FCMP_OLE:
return ConstantInt::get(Type::Int1Ty, C1Val <= C2Val);
case FCmpInst::FCMP_UGE:
if (C1Val != C1Val || C2Val != C2Val)
return ConstantInt::getTrue();
/* FALL THROUGH */
case FCmpInst::FCMP_OGE: return ConstantInt::get(C1Val >= C2Val);
case FCmpInst::FCMP_OGE:
return ConstantInt::get(Type::Int1Ty, C1Val >= C2Val);
}
} else if (const ConstantPacked *CP1 = dyn_cast<ConstantPacked>(C1)) {
if (const ConstantPacked *CP2 = dyn_cast<ConstantPacked>(C2)) {
@ -1182,17 +1200,17 @@ Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
case FCmpInst::BAD_FCMP_PREDICATE:
break; // Couldn't determine anything about these constants.
case FCmpInst::FCMP_OEQ: // We know that C1 == C2
return ConstantInt::get(
return ConstantInt::get(Type::Int1Ty,
pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
case FCmpInst::FCMP_OLT: // We know that C1 < C2
return ConstantInt::get(
return ConstantInt::get(Type::Int1Ty,
pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
case FCmpInst::FCMP_OGT: // We know that C1 > C2
return ConstantInt::get(
return ConstantInt::get(Type::Int1Ty,
pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
@ -1227,7 +1245,8 @@ Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
case ICmpInst::ICMP_EQ: // We know the constants are equal!
// If we know the constants are equal, we can decide the result of this
// computation precisely.
return ConstantInt::get(pred == ICmpInst::ICMP_EQ ||
return ConstantInt::get(Type::Int1Ty,
pred == ICmpInst::ICMP_EQ ||
pred == ICmpInst::ICMP_ULE ||
pred == ICmpInst::ICMP_SLE ||
pred == ICmpInst::ICMP_UGE ||
@ -1235,25 +1254,29 @@ Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
case ICmpInst::ICMP_ULT:
// If we know that C1 < C2, we can decide the result of this computation
// precisely.
return ConstantInt::get(pred == ICmpInst::ICMP_ULT ||
return ConstantInt::get(Type::Int1Ty,
pred == ICmpInst::ICMP_ULT ||
pred == ICmpInst::ICMP_NE ||
pred == ICmpInst::ICMP_ULE);
case ICmpInst::ICMP_SLT:
// If we know that C1 < C2, we can decide the result of this computation
// precisely.
return ConstantInt::get(pred == ICmpInst::ICMP_SLT ||
return ConstantInt::get(Type::Int1Ty,
pred == ICmpInst::ICMP_SLT ||
pred == ICmpInst::ICMP_NE ||
pred == ICmpInst::ICMP_SLE);
case ICmpInst::ICMP_UGT:
// If we know that C1 > C2, we can decide the result of this computation
// precisely.
return ConstantInt::get(pred == ICmpInst::ICMP_UGT ||
return ConstantInt::get(Type::Int1Ty,
pred == ICmpInst::ICMP_UGT ||
pred == ICmpInst::ICMP_NE ||
pred == ICmpInst::ICMP_UGE);
case ICmpInst::ICMP_SGT:
// If we know that C1 > C2, we can decide the result of this computation
// precisely.
return ConstantInt::get(pred == ICmpInst::ICMP_SGT ||
return ConstantInt::get(Type::Int1Ty,
pred == ICmpInst::ICMP_SGT ||
pred == ICmpInst::ICMP_NE ||
pred == ICmpInst::ICMP_SGE);
case ICmpInst::ICMP_ULE:

View File

@ -93,7 +93,7 @@ bool Constant::canTrap() const {
Constant *Constant::getNullValue(const Type *Ty) {
switch (Ty->getTypeID()) {
case Type::Int1TyID: {
static Constant *NullBool = ConstantInt::get(false);
static Constant *NullBool = ConstantInt::get(Type::Int1Ty, false);
return NullBool;
}
case Type::Int8TyID: {
@ -838,7 +838,11 @@ static ManagedStatic<ValueMap<uint64_t, Type, ConstantInt> > IntConstants;
// just return the stored value while getSExtValue has to convert back to sign
// extended. getZExtValue is more common in LLVM than getSExtValue().
ConstantInt *ConstantInt::get(const Type *Ty, int64_t V) {
if (Ty == Type::Int1Ty) return ConstantInt::get(V&1);
if (Ty == Type::Int1Ty)
if (V & 1)
return getTrue();
else
return getFalse();
return IntConstants->getOrCreate(Ty, V & Ty->getIntegralTypeMask());
}

View File

@ -671,7 +671,7 @@ void CppWriter::printConstant(const Constant *CV) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
if (CI->getType() == Type::Int1Ty)
Out << "ConstantInt* " << constName << " = ConstantInt::get("
<< (CI->getBoolValue() ? "true" : "false") << ");";
<< (CI->getZExtValue() ? "true" : "false") << ");";
else
Out << "ConstantInt* " << constName << " = ConstantInt::get("
<< typeName << ", " << CI->getZExtValue() << ");";