forked from OSchip/llvm-project
[llvm-exegesis] Clustering: don't enqueue a point multiple times
Summary: SetVector uses both DenseSet and vector, which is time/memory inefficient. The points are represented as natural numbers so we can replace the DenseSet part by indexing into a vector<char> instead. Don't cargo cult the pseudocode on the wikipedia DBSCAN page. This is a standard BFS style algorithm (the similar loops have been used several times in other LLVM components): every point is processed at most once, thus the queue has at most NumPoints elements. We represent it with a vector and allocate it outside of the loop to avoid allocation in the loop body. We check `Processed[P]` to avoid enqueueing a point more than once, which also nicely saves us a `ClusterIdForPoint_[Q].isUndef()` check. Many people hate the oneshot abstraction but some favor it, therefore we make a compromise, use a lambda to abstract away the neighbor adding process. Delete the comment `assert(Neighbors.capacity() == (Points_.size() - 1));` as it is wrong. llvm-svn: 350035
This commit is contained in:
parent
93f1074677
commit
cd93d7ef43
|
@ -8,7 +8,6 @@
|
|||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "Clustering.h"
|
||||
#include "llvm/ADT/SetVector.h"
|
||||
#include "llvm/ADT/SmallVector.h"
|
||||
#include <string>
|
||||
|
||||
|
@ -92,8 +91,14 @@ llvm::Error InstructionBenchmarkClustering::validateAndSetup() {
|
|||
}
|
||||
|
||||
void InstructionBenchmarkClustering::dbScan(const size_t MinPts) {
|
||||
std::vector<size_t> Neighbors; // Persistent buffer to avoid allocs.
|
||||
for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) {
|
||||
const size_t NumPoints = Points_.size();
|
||||
|
||||
// Persistent buffers to avoid allocs.
|
||||
std::vector<size_t> Neighbors;
|
||||
std::vector<size_t> ToProcess(NumPoints);
|
||||
std::vector<char> Processed(NumPoints);
|
||||
|
||||
for (size_t P = 0; P < NumPoints; ++P) {
|
||||
if (!ClusterIdForPoint_[P].isUndef())
|
||||
continue; // Previously processed in inner loop.
|
||||
rangeQuery(P, Neighbors);
|
||||
|
@ -109,43 +114,40 @@ void InstructionBenchmarkClustering::dbScan(const size_t MinPts) {
|
|||
Cluster &CurrentCluster = Clusters_.back();
|
||||
ClusterIdForPoint_[P] = CurrentCluster.Id; /* Label initial point */
|
||||
CurrentCluster.PointIndices.push_back(P);
|
||||
Processed[P] = 1;
|
||||
|
||||
// Process P's neighbors.
|
||||
llvm::SetVector<size_t, std::deque<size_t>> ToProcess;
|
||||
ToProcess.insert(Neighbors.begin(), Neighbors.end());
|
||||
while (!ToProcess.empty()) {
|
||||
// Retrieve a point from the set.
|
||||
const size_t Q = *ToProcess.begin();
|
||||
ToProcess.erase(ToProcess.begin());
|
||||
// Enqueue P's neighbors.
|
||||
size_t Tail = 0;
|
||||
auto EnqueueUnprocessed = [&](const std::vector<size_t> &Neighbors) {
|
||||
for (size_t Q : Neighbors)
|
||||
if (!Processed[Q]) {
|
||||
ToProcess[Tail++] = Q;
|
||||
Processed[Q] = 1;
|
||||
}
|
||||
};
|
||||
EnqueueUnprocessed(Neighbors);
|
||||
|
||||
if (ClusterIdForPoint_[Q].isNoise()) {
|
||||
// Change noise point to border point.
|
||||
ClusterIdForPoint_[Q] = CurrentCluster.Id;
|
||||
CurrentCluster.PointIndices.push_back(Q);
|
||||
for (size_t Head = 0; Head < Tail; ++Head) {
|
||||
// Retrieve a point from the queue and add it to the current cluster.
|
||||
P = ToProcess[Head];
|
||||
ClusterId OldCID = ClusterIdForPoint_[P];
|
||||
ClusterIdForPoint_[P] = CurrentCluster.Id;
|
||||
CurrentCluster.PointIndices.push_back(P);
|
||||
if (OldCID.isNoise())
|
||||
continue;
|
||||
}
|
||||
if (!ClusterIdForPoint_[Q].isUndef()) {
|
||||
continue; // Previously processed.
|
||||
}
|
||||
// Add Q to the current custer.
|
||||
ClusterIdForPoint_[Q] = CurrentCluster.Id;
|
||||
CurrentCluster.PointIndices.push_back(Q);
|
||||
// And extend to the neighbors of Q if the region is dense enough.
|
||||
rangeQuery(Q, Neighbors);
|
||||
if (Neighbors.size() + 1 >= MinPts) {
|
||||
ToProcess.insert(Neighbors.begin(), Neighbors.end());
|
||||
}
|
||||
assert(OldCID.isUndef());
|
||||
|
||||
// And extend to the neighbors of P if the region is dense enough.
|
||||
rangeQuery(P, Neighbors);
|
||||
if (Neighbors.size() + 1 >= MinPts)
|
||||
EnqueueUnprocessed(Neighbors);
|
||||
}
|
||||
}
|
||||
// assert(Neighbors.capacity() == (Points_.size() - 1));
|
||||
// ^ True, but it is not quaranteed to be true in all the cases.
|
||||
|
||||
// Add noisy points to noise cluster.
|
||||
for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) {
|
||||
if (ClusterIdForPoint_[P].isNoise()) {
|
||||
for (size_t P = 0; P < NumPoints; ++P)
|
||||
if (ClusterIdForPoint_[P].isNoise())
|
||||
NoiseCluster_.PointIndices.push_back(P);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
llvm::Expected<InstructionBenchmarkClustering>
|
||||
|
|
Loading…
Reference in New Issue